您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页霍尔电流传感器的应用毕业论文外文翻译

霍尔电流传感器的应用毕业论文外文翻译

来源:意榕旅游网



英文文献
Application of Hall Curre nt Sen sor

1.In troduct ion

Withthe expa nsion of urba n populati on and the scale of con struct ion,all electrical equipme

ntin creases, con sumpti on in creases, the city ofte n overload thepower supply equipme nt, power has

becomein creas in gly harsh en vir onment, the power of the "test"more and more serious. According to

statistics,everyday, electrical equipme nt have bee n about 120 times the powerproblems of various in

trusive,60% of electronic equipment from power failure. Therefore, thegrowing importance of power

issuesprominent. Origin ally as a support ing role, more power with lesscapital in vestme nt by manu

facturersand researchers,the atte nti on, power tech no logy thus become a newtech no logy.

Today,small power equipment has been integrated more and more new tech nologies. For example,

switching power supply, hard switchi ng, soft switch ing, parameterregulatio n, lin ear feedback

regulator,magn etic amplifier tech no logy, nu merical con trol pressureregulator, PWM, SPWM,

electromagnetic compatibility, etc.. Direct promoti on of the actual n eeds ofthe power tech no logy

con ti nues to develop and progress, to automatically detect anddisplay the current, and over current,

trol with sen sor detect ion, sen sor sampli ng, Sensing a grow ingtendency to protect the power supply
over voltage and otherhazards happe ns with automatic protecti on and more adva need intellige nt con

techno logy to detect curre nt or voltage sen sors have come into beingand by the majority of power in

Chinabega n desig ners of all ages.

2.The curre nt sen sor prin ciple of work

Currentsensor can measure all types of current, from DC to tens of kHz AC,its working principle

ismainly based on Hall-effect principle. (This article is mostly belowzero flux prin ciple of closed-

loopproduct example)

Whenthe primary con ductor through the curre nt sen sor, the primarycurre nt IP will produce

magneticfield lines, the primary focus in the core air gap magnetic fieldlines around the air gap

builtinto the core of the Hall chip can gen erate electricity and isproportional to the primary

magneticfield lines the size of only a few millivolts of induced voltage,through follow-up this tiny

electroniccircuits into the signal edge curre nt Vice IS, and there is thefollowi ng relatio nship: IS

*NS = IP * NP.

One, IS-Vice edge curre nt;





IP-theprimary curre nt;

NP-theprimary nu mber of tur ns;

NS-Vice-sidecoil turns;

NP/NS-turns ratio, and gen erally the NP = 1.

1)Curre nt sen sor output sig nal Is the sec on dary side curre nt IS,it is with the in put sig nal

(theprimary curre nt IP) is proporti onal to IS gen erally small, only 10~ 400mA.

Ifthe output current through the measuring resistance RM, you can get aside with the orig in al. Curre

ntproporti onal to the size of a few volts of the voltage output signal.

2)Sen sor supply voltage 'A

VAmeans the current sensor supply voltage, it must be within the scopedefined by sen sors. Over

thisran ge, the sen sor does not work or reduce the reliability of theother, the sensor supply voltage

Ais divided into positive and negative power supply voltage supplyvoltage VA + VA-. Should pay atte

ntion to sin gle-phase power sen sors, the power supply voltage is atwo-phase supply voltage

\AminVAmin2 times, so its measureme nt range for more tha n double compared tothe sen sor.

3) Measuri ng range Ipmax.

erally higher tha n the sta ndard rat ing IPN.
Range refersto the maximum current sensor measures the current value, measuri ngrange is gen

3. Themain parameters of the curre nt sen sor.

1)The sta ndard rati ng IPN and rated output curre nt ISN

IPNrefers to the standard current sensor can test ratings, with RMS that(A. R.

M.S), IPN and sensors the size of the model. ISN means the currentsensor rated output curre nt,

typically10 ~ 400mA, of course, accord ing to some specific models may vary.

2)Offset current ISO

Offsetcurrent is also called the residual current or residual current, itis mainly from the Hall

element or electro nic circuit operati onal amplifier in stability causedby working conditions.

Currentsensors in production, in 25 °C , IP = 0 when the circumsta nceshave bee n offset curre nt to

themi nimum, but left the product ion line sensor will produce a certainsize of the offset current.

Producttechnical docume ntatio n referred to in the accuracy of the curre ntin crease has bee n con

sideredthe impact of migrati on.

3)Lin earity

Lin earity determ ines the sen sor output sig nal (Vice-side curre ntIS) and the in put signal



(theprimary current IP) within the measurement is proportional to thedegree of Nanji ng Electro nic

Techno logy Co., Ltd. Asahi curre nt sen sor li nearity is better than 0.5%.

4)Temperature drifts

Offsetcurrent ISO is calculated at 25 C,when the Hall electrodes surrounding temperature

changes,ISO will make a differenee. Therefore, considering the maximum offsetcurrent ISO is very

importantchanges, which, IOT refers to the curre nt sen sor temperature driftperforma nee of the table

values.

5)Overload

CurrentSen sor overload is occurri ng curre nt overload, the measureme ntscope, the primary

current will in crease, and overload curre nt durati on may be shorter andthe overload value may

exceedthe sen sor allows the value of overload curre nt value of sen sorGen eral measureme nt does not

comeout, but will not damage the sen sor.

6)Accuracy

Hall-effectsensor accuracy depends on the standard rated current of IPN. At +25C,the sen sor

measureme nt precisi on and the primary curre nt has some in fluenee, while assessmentf sensor accuracy

4. Sen sor type, structure and in stallatio n method must also takeinto account the current offset, lin earity, temperature drifteffects.

Sensors gen erally label "Se nsor Model" and "product iondate" of two parts. "Sensor Model" is

usedto indicate the sensor model, rated measurements, the Worki ng powersupply and wiring in struct

ions, "Se nsor product ion date" is from the 8-bit digitalform, in dicat ing that the sen sor in the

month of product ion, lot (in January in the first several groups ofproducts).Many sensors, each

sensorshape structure, size and so different, the following describes thestructure and shape of

severaltypical methods of installing wiring.

1)25A Current Sensor

25Acurre nt sen sor a kind of small-scale sen sors, can measure therated curre nt of 5,6,8,12,25

A,the primary pins can be connected in different measurementsto determine the rated curre nt of the nu

mber,see in struct ions.

2)With a line current sensor

Suchas the conven tio nal curre nt sen sors, the sen sors are gen erallypositive (+), n egative

(-),measured end (M) and real (0) 4 pin, but with a line curre nt sen soris not the 4 pin, but red,

black, yellow, gree n 3-lead, corresp onding to positive, n egative,measuring terminal and ground.



Whilemost sensors have a bore, when measuring the primary current to wirethrough the bore. Pore size

andproduct type, measuring curre nt has a causal relatio nship betwee nthe sizes.

Nomatter what type of current sensors, wiring installation pin the noteshould be con ducted accord ing

tothe in struct ion corresp onding conn ecti on.

inthe measurement of alternating current must be forced to use bipolarpower supply. The sensor's

positive(+) then the power supply "+ VA" side, then negative power"-VA" side, this accessmethod is

calledbipolar power supply. Simultaneous measureme nt side (M) through theresistor conn ected power

"0V"term in al (i n terms of zero magn etic flux-type).

Measuring DC curre nt, you can use a uni polar or sin gle-phase electricitysupply, be positive or

negativeand "0V" terminal shorted to form only one electrode phaseof the situati on.

Inaddition, the installation must take full account of the use ofproducts, models, measuri ng ran ge,

thein stallati on en vir onment. Such sen sors should be in stalled inthe heat of the situati on is

conducive.

5.Improve the precisi on of measureme nt

In additi on to in stall and conn ect, real-time calibrati on, notethat the sen sor working

1) The primary sen sor wire should be placed in the cen ter of thehole, try not to let environment, through the following methods canalso improve the measureme nt accuracy:

bias;

2) Theprimary sensor wire filled as completely as possible within the hole,do not leave gaps;

3) Measurements of the curre nt sen sor should be close to the sta ndard rat ingIPN, not that much

differenee. Such con diti on s, it is only a rat ing of very high hand sensors, and wish to measure

thecurrent value is lower than rating a lot, in order to improve themeasureme nt accuracy, can be more

than the primary wire around a few times, so close to the rati ng. Forexample, whe n used to measure

thesen sor 100A rated curre nt 10A, i n order to improve the precisi onof the origi nal side of the

sensor wire in side

thehole in the center around 10 laps (normally, NP = 1; including thehole in the perimeter of, NP = 2;

.............................;arou nd nine lap s, NP = 10, the NP 10A = 100A and thex

sensor rati ng equal to, which can improve the precisi on);

4)When measuring the current value of IPN/10 for the time, at 25 °Cstill have high accuracy.

6. Sen sor in terfere nee immu nity



1)Electromag netic field

Hall-effectcurre nt sen sors, using the prin ciple of the primary con ductor ofthe electromagnetic

field.Therefore, the following factors directly affect the sensor isaffected by exter nal electromag

neticin terfere nee.

2)Sen sor in the vic in ity of an exter nal curre nt size and curre ntfreque ncy is cha nged;

3)External wires an d sen sors from the external con ductor shape,locatio n an d sen sor Neihuo Err

electrodepositi on;

4)Installation of sensors used with or without magnetic materials;

5)Whether the curre nt sen sor used to shield;

Inorder to mini mize the in terfere nee of exter nal electromag neticfield, preferably as described

aboverequire the in stallati on of sen sors.

7.Sen sor calibrati on

1) Offsetcurre nt ISO

Offsetcurre nt to be IP = 0, the ambie nt temperature T Cunder theconditi ons of calibration,

(bipolar power supply) terminal, and the measurementof voltage VMmustbe met:

VM RM XISO

2)Accuracy

Inthe IP = IPN (AC or DC), the ambient temperature T ~25°C, sensors bipolar power supply, RM resista

neewas measured un der the con diti ons of measureme nt.

3)Protect ion of test

Shortcircuit in the measuring sensor to measure open circuit, power supplyopen circuit, the primary

currentoverload, power accident conditions can be inverted to be protected.Test on the above example:

Measurementof short circuit

Thetest must be IP = IPN, the ambient temperature T C,sensor4w25way power

supply,RM for the practical applicati on of the resista nee un der the conditi ons, the output and to

accepta switch, the switch should be closed within a minute and turn on .

Measurement of ope n circuit

Thetest conditions for IP = IPN, the ambient temperature T C,sensor two-25ay

power supply, RM is the practical applicati on of the resista nee under the con diti ons, the output



resistorconn ected with a switch, switch S should be completed within oneminute closed / Open the

switchwas.

Powerunexpected inversion test

Topreve nt accide ntal power inv ersi on Ershi sen sor is damaged,specialized in the installation of

circuitprotection diode, the test can use the multimeter to test diodes atboth en ds, test should be

IP= 0, the ambie nt temperature T C,the sen sori5otpowered, Measuri ng resista nee is not conn

ectedcon diti ons. Can be tested using the followi ng two methods:

Thefirst: red table in his writings connected sensor multimeter "M"side of the table in his writings

connectedsensor multimeter black "+" end;

Second:then sensors multimeter red tables to pen negative, multimeter sensorM Black tables to pen the

nend;

Inthe test, such as multimeter whistle, indicating diode is damaged.

8.Sensors calculate

Themai n curre nt sen sor is calculated as follows:

NPIP = NSIS; calculate the primary or sec on dary side curre nt

VS = RSIS; calculated sec on dary voltage VM = RMI; calculation ofmeasuring voltage

VA= e + VS + VM; calculation of the supply voltage

Where,e is the diode voltage drop across the internal and the outputtransistor, differe nt types of

sensors have differe nt e values. Here we on ly HNC-300LT example, sucha sen sor turns ratio NP / NS =

1/ 2000, the sta ndard rated curre nt value of IPN = 300A rms, powersupply voltage VA in the range of

12V± 15V( ±%),Vice-side

resistanceRS= 30 Q,inthe bipolar ( ±VA)power supply, the sensor measurement ran ge> 100A and no

powersupply to preve nt accide ntal reverse protect ion diode case, e =1V. Un der these con diti ons:

1)for a give n supply voltage VA, calculati on and measureme nt ofresista nee measuri ng voltage VM

RM:

Hypothesis:power supply voltage \A = ±5V

According to the formula was:

Measuring voltage VM = 9. 5 V;

Measuri ng resista nee RM = VM / IS = 63. 33

Q ;





Vice-sidecurre nt IS = 0. 15A.

Sowhen we use 63. 33 Qresistancemeasurement, the full amount in the sensor measurements, the output

currentsignal is 0.15A, measuring voltage of 9.5V

2)For a given supply voltage and resistance measurementsto calculatewant to measure the peak curre

nt;

Hypothesis:power supply voltage V= ±IfjVneasuringresistance RM = 12 Q,Are: VM + VS = (RM + RS)

IS=VA-e = 14V

And:RM + RS = 12W +30 W = 42W,

Vice-sideis the maximum output current: ISmax = 0. 333A

Theprimary peak current: IPmax = ISmax (NS / NP) = 666A

Thisshows that un der these con diti ons, the sen sor can measure themaximum curre nt that the primary

peakcurre nt of 666A. If the primary curre nt is larger tha n this value,although the sen sor does not

measureit, but sen sors would not be damaged.

3) Measurement of resista nee (load resista nee) can affect the sensor'smeasureme nt ran ge.

Measuri ng resista nee of the sen sor measureme nt range effects alsoexist, so we n eed to carefully
select the measuring resistor.Calculated using the following formula measuri ng resista nee:

Which, VAmin-after deduct ing the minimum supply voltage error;

e-sensor internal tran sistor voltage drop;

RS-Vice-edgesen sor coil resista nee;

ISmax-theprimary curre nt IP for the maximum curre nt value whe n the sec ondary side.

Inaddition, we recognized the following formula can be selected by thestability of the sen sor.

IfVAmin does not meet the type, will cause in stability in the sensor.If this happe ns, we can

overcomethe follow ing three ways:

thereplacement of the power supply voltage is greater;

reducethe measured resista nee value;

replacethe sensor into a smaller sensor RS.

Forexample, certain types of current sensors, the standard rated currentIPN = 1000A,

theturns ratio of NP / NS = 1 / 2000, e value of 1.5V, Vice-side resistanee RS = 30 Q,

measuring resista nee RM = 15W, with a 15V un ipolar power supply. The n VA= 30V

(un ipolar bipolar power supply is 2 times), and:



IS= IP NP / NS = 0. 5A

VS= RS XS= 15V

VM= RM XIS= 7. 5V

Throughthe above test, we can see in this eon diti on, the sen sor measurementsto en sure stability.

Itcan measure the primary curre nt maximum (ie, measuri ng ran ge)=1267A

9.Con clud ing remarks

Electricalequipme nt in creased in urba n and rural power supply due to repairaging equipment

situation,urban and rural areas would often unstable voltage, short circuit,over curre nt and other

phenomen a, result ing in inconvenience to people's lives and equipme ntdamage. Power use in the

detection sen sor can make a more compact power supply, in tellige nee andsafety.

Powerto today, has been integrated electronics, power integration,automation, materials, sen sors,

computer,electromag netic compatibility, thermal and many other tech ni calareas of the esse nee, we

havereas on to believe that the power in the 21st cen tury tech no logy,the sen sor will also play a

crucialrole, so the curre nt sen sor application and design development,sensors workers should be

givenadequate atte nti on.

Hall Current Sensor for its various models, wider range (current 5 ~10000A; voltage of 5 ~ 5000V), high

reliable, MTBF MTBF long time, etc., in various fields especially inthe field of locomotive tracti on
accuracy, high sen sitivity,good lin earity, sta ndard, easy to in stall, anti-interfereneeability,

andin dustrial applicati ons is worth customers.





中文翻译
霍尔电流传感器的应用
一、前言伴随着城市人口和建设规模的扩大,各种用电设备的增多,用电量越来越大,城市的供电设备经常超负荷运转,用电环境变得越来越恶劣,对电源的“考验”越来越严重。据统计,每天,用电设备都要遭受120次左右各种的电源问题的侵扰,电子设备故障的 60%来自电源。因此,电源问题的重要性日益凸显出来。原先作为配角,资金投入较少的电源越来越受到厂商和研究人员的重视,电源技术遂发展成为一门崭新的技术。

而今,小小的电源设备已经融合了越来越多的新技术。例如开关电源、硬开关、软开关、参数稳压、线性反馈稳压、磁放大器技术、数控调压、PWMSPWM电磁兼容等等。实际需求直接推动电源技术不断发展和进步,为了自动检测和显示电流,并在过流、过压等危害情况发生时具有自动保护功能和更高级的智能控制,具有传感检测、传感采样、传感保护的电源技术渐成趋势,检测电流或电压的传感器便应运而生并在我国开始受到广大电源设计者的青睐。

二、电流传感器的工作原理
电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作

当原边导线经过电流传感器时,原边电流IP 会产生磁力线,原边磁力线集中在磁芯气隙周
原理主要是霍尔效应原理。(本文下面多以以零磁通闭环产品原 理为例)

围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,
通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式:IS*NS= IP*NP其中,IS—副边电流;
IP—原边电流;
NP-原边线圈匝数;
NS-副边线圈匝数;
NP/NS-匝数比,一般取NP=1
1、电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比,IS —般很小,只有10~400mA如果输出电流经过测量电阻RM则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。

2、传感器供电电压VA
VA指电流传感器的供电电压,它必须在传感器所规定的范围内。超过此范围,传感器不能正

常工作或可靠性降低,另外,传感器的供电电压 VA又分为正
极供电电压VA+和负极供电电压VA-。要注意单相供电的传感器,其供电电压VAmin是双相供电电压



VAmin2倍,所以其测量范围要相供高于双电的传感器。

3、测量范围Ipmax
测量范围指电流传感器可测量的最大电流值,测量范围一般高于标准额定值IPN

三、电流传感器主要特性参数
1、标准额定值IPN和额定输出电流ISN
IPN指电流传感器所能测试的标准额定值,用有效值表示(Arms),IPN的大小与传感器产品的型号有关。ISN指电流传感器额定输出电流,一般为10~400mA当然根据某些型号具体可能会有所不同。

2、偏移电流ISO偏移电流也叫残余电流或剩余电流,它主要是由霍尔元件或电子电路中运算放大器工作状态不稳造成的。电流传感器在生产时,在25C,IP=0时的情况下,偏移电流已调至最小,但传感器在离开生产线时,都会产生一定大小的偏移电流。产品技术文档中提到的精度已考虑了偏移电流增加的影响。

3、线性度
线性度决定了传感器输出信号(副边电流IS)与输入信号(原边电流IP)在测量范围内成
正比的程度,南京中旭电子科技有限公司的电流传感器线性度要优于 05% 4、温度漂移

偏移电流ISO是在25C时计算出来的,当霍尔电极周边环境温度变化时,ISO会产生变化。因此,考虑偏移电流ISO的最大变化是很重要的,其中,IOT是指电流传感器性能表中的温度漂移值。

5、过载
电流传感器的过载能力是指发生电流过载时,在测量范围之外,原边电流仍会增加,而且过载电流的持续时间可能很短,而过载值有可能超过传感器的允许值,过载电流值传感器一般测量不出来,但不会对传感器造成损坏。

6、精度
霍尔效应传感器的精度取决于标准额定电流IPN。在+25C时,传感器测量精度与原边电流有一定影响,同时评定传感器精度时还必须考虑偏移电流、线性度、温度漂移的影响。

四、传感器型号、结构和安装方法
传感器产品标签一般由“传感器产品型号”和“生产日期”两部分构成。“传感器产品型号”用于标明传感器的型号、额定测量值、工作电源及接线指示,“传感器生产日期”则是由 8



位数字构成,表明传感器的生产年月份、批次(一月中的第几批产品)。

传感器产品很多,每种传感器的外形结构、尺寸大小等都有所不同,下面介绍几种典型的外形结构及安装接线方法。

125A电流传感器
25A电流传感器一种量程很小的传感器,所能测量的额定电流为 5681225A,原边管脚的不同接法可确定额定测量电流为多少,参见说明书。

2、带线电流传感器
如常规电流传感器一样,一般传感器都有正极(+)、负极(-)、测量端(M)及地(0)四个管脚,但带线电流传感器则没有此四个管脚,而是有红、黑、黄、绿三根引线,分别对应于正极、负极、测量端及地。同时在大多传感器中有一内孔,测量原边电流时要将导线穿过该内孔。孔径大小与产品型号、测量电流大小有着必然的关系。不管是什么型号的电流传感器,安装时管脚的接线应根据说明书所注情况进行相应连线。

1)在测量交流电时,必须强制使用双极性供电电源。即传感器的正极(+) 接供电电源“+VA端,负极接电源的“-VA'端,这种接法叫双极性供电电源。同时测量端(M通过电阻接电 源“0V”端(单指零磁通式)。

“0V”端短接,从而形成只有一个电极相接的情况 2 在测量直流电流时,可使用单极性或单相供电电源,即将正极或负极与

另外,安装时必须全面考虑产品的用途、型号、量程范围、安装环境等。比如传感器应尽量安装在利于散热的场合。

五、提高测量精度的方法除了安装接线、即时标定校准、注意传感器的工作环境外,通过下述方
还可以提高测量精度:
1、原边导线应放置于传感器内孔中心,尽可能不要放偏;
2、原边导线尽可能完全放满传感器内孔,不要留有空隙;
3、需要测量的电流应接近于传感器的标准额定值IPN,不要相差太大。如条件所限,手头仅有一个额定值很高的传感器,而欲测量的电流值又低于额定值很多,为了提高测量精度,可以把原边导线多绕几圈,使之接近额定值。例如当
用额定值100A的传感器去测量10A的电流时,为提高精度可将原边导线在传感器的内孔中心绕十圈(一般情况,NP=1在内孔中绕一圈,NP=2,,;绕九圈, NP=10NPX10A=100A与传感器的额定值相等,从而可提高精度);



4、当欲测量的电流值为IPN/10的时,在25T仍然可以有较高的精度。

六、传感器的抗干扰性
1、电磁场霍尔效应电流传感器,利用了原边导线的电磁场原理。因此下列因素直接影响传感器是否受外部电磁场干扰。

2、传感器附近的外部电流大小及电流频率是否变化;
3、外部导线与传感器的距离、外部导线的形状、位置和传感器内霍尔电极的位置;
4、安装传感器所使用的材料有无磁性;
5、所使用的电流传感器是否屏蔽;
为了尽量减小外部电磁场的干扰,最好按上述要求安装传感器。

七、传感器标定
1、偏移电流ISO
偏移电流必须在IP=0、环境温度T~25C的条件下进行校准,(双极性供电)接线,且测量电压 VM必须满足:VM^RMKISO

2、精度

IP=IPN (AC orDC)、环境温度T~25C、传感器双极性供电、RM为实际测量电阻的条件下进行
测量。

3、保护性测试传感器在测量电路短路、测量电路开路、供电电源开路、原边电流过载、电源意外倒置的条件下都可受到保护。对上述各项测试举例如下:
(1)测量电路短路
此项测试必须在IP=IPN、环境温度T"25C、传感器双向供电、RM为实际应用中的电阻条件下进行,输出与地接一开关,开关应在一分钟之内合上和打开。

(2)测量电路开路
此项测试条件为IP=IPN、环境温度T"25C、传感器双向供电、RM是实际应用中的电阻条件下进行,输出与电阻接一开关,开关S应在一分钟之内完成闭合/打开切换动作。

( 3)电源意外倒置测试为防止电源意外倒置而使传感器损坏,在电路中专门加装了保护二极 管,
此项测试可使用万用表测试二极管两端,测试应在IP=0、环境温度T-25C
传感器不供电、不连接测量电阻的条件下进行。可使用以下两种方法测试:



第一种:万用表红表笔端接传感器“M端,万用表黑表笔端接传感器“+端;第二种:万用表红表笔接传感器负极,万用表黑表笔接传感器 M端;在测试中,如万用表鸣笛,说明二极管已损坏。

八、传感器应用计算
电流传感器的主要计算公式如下:
NPIP=NSIS 计算原边或副边电流
VM=RMI 计算测量电压
VS=RSIS;计算副边电压
VA=e+VS+VM计算供电电压
其中,e 是二极管内部和晶体管输出的压降,不同型号的传感器有不同的e 值。这里我们仅以HNC-300LT为例,这种传感器的匝数比NP/NS=1/2OO0标准 额定电流值IPN=300Arms、供电电压VA的范围为土12V~± 15V(± 5%、副边电阻RS=3(D,在双极性(VA供电,其传感器测量量程>100A且无防止供电电源意外倒置的保护二极管的情况下,e=1V。在上述条件下:
(1)给定供电电压VA计算测量电压VM和测量电阻RM
假设:供电电压VA=±15V
根据上述公式得: 测量电压VM=95V

测量电阻RM=VM/IS=63 33Q;
副边电流IS=015A

所以当我们选用6333Q的测量电阻时,在传感器满额度测量时,其输出电流信号为 015A,测量电压为95V

(2)给定供电电压和测量电阻,计算欲测量的峰值电流;
假设:供电电压VA=±15V,测量电阻RM=12
U:VM+VS(RM+R)X IS=VA-e=14V
而:RM+RS=12W+30W=42W
贝最大输出副边电流:ISmax=0333A
原边峰值电流:IPmax=ISmax(NS/NP)=666A
这说明,在上述条件下,传感器所能测量的最大电流即原边峰值电流为666A。如果原边电流大于此值,传感器虽测量不出来,但传感器不会被损坏。

( 3)测量电阻(负载电阻)能影响传感器的测量范围。测量电阻对传感器测量范围也存在影响,



所以我们需要精心选择测量电阻。

用下式可计算出测量电阻:
其中,VAmin扣除误差后的最小供电电压;
e传感器内部晶体管的电压降;
RS-传感器副边线圈的电阻;
ISmax-原边电流IP为最大值时的副边电流值。另外我们可以通过下式确认所选传感器的稳定性。

如果VAmin不符合上式,则会造成传感器的不稳定。一旦出现这种情况,我们可以有以下三种方法克服:
1)更换电压更大的供电电源;
2)减小测量电阻的值;
3)将传感器更换成RS较小的传感器。

例如,某种型号的电流传感器,其标准额定电流IPN=1000A匝数比NP/NS=1/2000,e值为15V,副边电阻RS=3D,测量电阻RM=15W15V
源单极性供电。则VA=30V(单极性供电是双极性供电的2倍),而:

VS=RSIS=15V IS=IP X NP/NS =0b5A

VM=RXMIS=7.5V
通过以上检验,可知这种传感器在此条件下测量能保证稳定性。它所能测
量的原边电流的最大值(即测量范围)=1267A
九、结束语在城市用电设备增多,农村供电设备老化欠修的情况下,城乡各地经常会
出现电压不稳、电路短路、过流等现象,结果造成人民生活不便和仪器损毁。在电源技术中使用传感检测功能可以使电源设备更加小型化、智能化和安全可靠。电源技术发展到今天,已融合了电子、功率集成、自动控制、材料、传感、计算机、电磁兼容、热工等诸多技术领域的精华,我们有理由相信,在21世纪的电源技术中,传感器也将发挥着至关重要的作用,所以对电流传感器的应用和设计开发,传感器工作者应该给予足够重视。

霍尔电流传感器因其型号多,量程宽(电流5~10000A电压5~5000V、高精度、灵敏度高、线性度好、规范、易安装、抗干扰能力强、质量可靠、平均无故障时间MTBF长等优点,在各个领域特别是在机车牵引和工业应用领域中值得用户信赖。



Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务