2016年湖北省荆州市中考数学试卷
一、选择题(每小题3分,共30分)
1.(3分)(2016?荆州)比0小1的有理数是( ) A.﹣1B.1C.0D.2
2.(3分)(2016?荆州)下列运算正确的是( ) A.m6÷m2=m3B.3m2﹣2m2=m2C.(3m2)3=9m6D.m?2m2=m2
3.(3分)(2016?荆州)如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是( )
A.55°B.65°C.75°D.85°
4.(3分)(2016?荆州)我市气象部门测得某周内七天的日温差数据如下:4,6,6,5,7,6,8(单位:℃),这组数据的平均数和众数分别是( ) A.7,6B.6,5C.5,6D.6,6
5.(3分)(2016?荆州)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
A.120元B.100元C.80元D.60元
6.(3分)(2016?荆州)如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧
上不与点A、点C重合
的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是( )
A.15°B.20°C.25°D.30°
7.(3分)(2016?荆州)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是( )
A.2B.C.D.
8.(3分)(2016?荆州)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为( )
A.1B.2C.3D.4
9.(3分)(2016?荆州)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为( )
A.671B.672C.673D.674
10.(3分)(2016?荆州)如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数
的图象恰好经过斜边A′B的中点C,S△ABO=4,
tan∠BAO=2,则k的值为( )
A.3B.4C.6D.8
二、填空题(每小题3分,共24分)
11.(3分)(2016?荆州)将二次三项式x2+4x+5化成(x+p)2+q的形式应为 .
12.(3分)(2016?荆州)当a=值是 .
﹣1时,代数式的
13.(3分)(2016?荆州)若12xm﹣1y2与3xyn+1是同类项,点P(m,n)在双曲线
上,则a的值为 .
14.(3分)(2016?荆州)若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第 象限. 15.(3分)(2016?荆州)全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,
若CD=10米,则此塑像的高AB约为 米(参考数据:tan78°12′≈).
16.(3分)(2016?荆州)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为 cm2.
17.(3分)(2016?荆州)请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).
18.(3分)(2016?荆州)若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为 .
三、解答题(本大题共7小题,共66分) 19.(7分)(2016?荆州)计算:
.
20.(8分)(2016?荆州)为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:
组别 分数段 频数(人) 频率
1 50≤x<60 30
2 60≤x<70 45
3 70≤x<80 60 n
4 80≤x<90 m
5 90≤x<100 45
请根据以图表信息,解答下列问题:
(1)表中m= ,n= ;
(2)补全频数分布直方图;
(3)全体参赛选手成绩的中位数落在第几组;
(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.
21.(8分)(2016?荆州)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.
22.(9分)(2016?荆州)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗
的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系. (1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
23.(10分)(2016?荆州)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H. (1)求证:CD是半圆O的切线; (2)若DH=6﹣3
,求EF和半径OA的长.
24.(12分)(2016?荆州)已知在关于x的分式方程
2
①和一元二次
方程(2﹣k)x+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.
(1)求k的取值范围;
(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;
(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由. 25.(12分)(2016?荆州)阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.
问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线在正方形内部.
经过B、C两点,顶点D
(1)直接写出点D(m,n)所有的特征线;
(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;
(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?
2016年湖北省荆州市中考数学试卷
参考答案与试题解析
一、选择题(每小题3分,共30分)
1.(3分)(2016?荆州)比0小1的有理数是( ) A.﹣1B.1C.0D.2 【考点】有理数的减法.
【分析】直接利用有理数的加减运算得出答案. 【解答】解:由题意可得:0﹣1=﹣1, 故比0小1的有理数是:﹣1. 故选:A.
【点评】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.
2.(3分)(2016?荆州)下列运算正确的是( ) A.m6÷m2=m3B.3m2﹣2m2=m2C.(3m2)3=9m6D.m?2m2=m2
【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.
【分析】分别利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则、单项式乘以单项式运算法则分别分析得出答案. 【解答】解:A、m6÷m2=m4,故此选项错误; B、3m2﹣2m2=m2,正确;
C、(3m)=27m,故此选项错误; D、m?2m2=m3,故此选项错误;
2
3
6
故选:B.
【点评】此题主要考查了同底数幂的除法运算以及合并同类项、积的乘方运算、单项式乘以单项式等知识,熟练应用相关运算法则是解题关键.
3.(3分)(2016?荆州)如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是( )
A.55°B.65°C.75°D.85°
【考点】平行线的性质.
【分析】根据两直线平行,同旁内角互补可求出∠AFD的度数,然后根据对顶角相等求出∠2的度数. 【解答】解:∵AB∥CD, ∴∠1+∠F=180°, ∵∠1=115°, ∴∠AFD=65°,
∵∠2和∠AFD是对顶角, ∴∠2=∠AFD=65°, 故选B.
【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.
4.(3分)(2016?荆州)我市气象部门测得某周内七天的日温差数据如下:4,6,6,5,7,6,8(单位:℃),这组数据的平均数和众数分别是( ) A.7,6B.6,5C.5,6D.6,6 【考点】众数;算术平均数.
【分析】根据众数定义确定众数;应用加权平均数计算这组数据的平均数. 【解答】解:平均数为:
=6,
数据6出现了3次,最多, 故众数为6, 故选D.
【点评】此题考查了加权平均数和众数的定义,属基础题,难度不大.
5.(3分)(2016?荆州)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
A.120元B.100元C.80元D.60元 【考点】一元一次方程的应用.
【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论. 【解答】解:设该商品的进价为x元/件, 依题意得:(x+20)÷
=200,
解得:x=80.
∴该商品的进价为80元/件. 故选C.
【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+20)÷
=200.本题属于基础题,难度不大,解决该题型题目时,根据数量关
系列出方程(或方程组)是关键.
6.(3分)(2016?荆州)如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧
上不与点A、点C重合
的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是( )
A.15°B.20°C.25°D.30°
【考点】切线的性质.
【分析】根据四边形的内角和,可得∠BOA,根据等弧所对的圆周角相等,根据圆周角定理,可得答案.
【解答】解;如图
由四边形的内角和定理,得
,
∠BOA=360°﹣90°﹣90°﹣80°=100°, 由
=
,得
∠AOC=∠BOC=50°. 由圆周角定理,得 ∠ADC=∠AOC=25°,
故选:C.
【点评】本题考查了切线的性质,切线的性质得出利用了圆周角定理.
=是解题关键,又
7.(3分)(2016?荆州)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是( )
A.2B.C.D.
【考点】勾股定理;勾股定理的逆定理;锐角三角函数的定义.
【分析】先根据勾股定理的逆定理判断出△ABC的形状,再由锐角三角函数的定义即可得出结论.
【解答】解:∵由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25, ∴△ABC是直角三角形,且∠ACB=90°, ∴cos∠ABC=
=
.
故选D.
【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
8.(3分)(2016?荆州)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为( )
A.1B.2C.3D.4
【考点】线段垂直平分线的性质;角平分线的性质;含30度角的直角三角形.
【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,
【解答】解:∵DE垂直平分AB, ∴DA=DB, ∴∠B=∠DAB, ∵AD平分∠CAB, ∴∠CAD=∠DAB, ∵∠C=90°, ∴3∠CAD=90°, ∴∠CAD=30°,
∵AD平分∠CAB,DE⊥AB,CD⊥AC,
∴CD=DE=BD,
∵BC=3, ∴CD=DE=1, 故选A.
【点评】本题主要考查线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
9.(3分)(2016?荆州)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为( )
A.671B.672C.673D.674
【考点】规律型:图形的变化类.
【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.
【解答】解:∵第1个图案中白色纸片有4=1+1×3张; 第2个图案中白色纸片有7=1+2×3张; 第3个图案中白色纸片有10=1+3×3张; …
∴第n个图案中白色纸片有1+n×3=3n+1(张), 根据题意得:3n+1=2017, 解得:n=672, 故选:B.
【点评】本题考查了图形的变化问题,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键.
10.(3分)(2016?荆州)如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到
△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,
tan∠BAO=2,则k的值为( )
A.3B.4C.6D.8
【考点】反比例函数图象上点的坐标特征;反比例函数系数k的几何意义. 【分析】先根据S△ABO=4,tan∠BAO=2求出AO、BO的长度,再根据点C为斜边A′B的中点,求出点C的坐标,点C的横纵坐标之积即为k值. 【解答】解:设点C坐标为(x,y),作CD⊥BO′交边BO′于点D, ∵tan∠BAO=2, ∴
=2,
∵S△ABO=?AO?BO=4,
∴AO=2,BO=4, ∵△ABO≌△A'O'B,
∴AO=A′0′=2,BO=BO′=4,
∵点C为斜边A′B的中点,CD⊥BO′, ∴CD=A′0′=1,BD=BO′=2,
∴x=BO﹣CD=4﹣1=3,y=BD=2, ∴k=x?y=3?2=6. 故选C.
【点评】本题考查了反比例函数图象上点的坐标特征,解答本题的关键在于读懂题意,作出合适的辅助线,求出点C的坐标,然后根据点C的横纵坐标之积等于k值求解即可.
二、填空题(每小题3分,共24分)
11.(3分)(2016?荆州)将二次三项式x+4x+5化成(x+p)+q的形式应为 (x+2)2+1 . 【考点】配方法的应用.
【分析】直接利用完全平方公式将原式进行配方得出答案.
2
2
【解答】解:x+4x+5 =x+4x+4+1 =(x+2)2+1.
故答案为:(x+2)2+1.
【点评】此题主要考查了配方法的应用,正确应用完全平方公式是解题关键.
2
2
12.(3分)(2016?荆州)当a=值是 \\frac{\\sqrt{2}}{2} . 【考点】分式的值.
﹣1时,代数式的
【分析】根据已知条件先求出a+b和a﹣b的值,再把要求的式子进行化简,然后代值计算即可. 【解答】解:∵a=∴a+b=
+1+
﹣1=2
﹣1,
,a﹣b=
+1﹣
+1=2,
∴===;
故答案为:.
【点评】此题考查了分式的值,用到的知识点是完全平方公式、平方差公式和分式的化简,关键是对给出的式子进行化简.
13.(3分)(2016?荆州)若12xm﹣1y2与3xyn+1是同类项,点P(m,n)在双曲线
上,则a的值为 3 .
【考点】反比例函数图象上点的坐标特征;同类项.
【分析】先根据同类项的定义求出m、n的值,故可得出P点坐标,代入反比例函数的解析式即可得出结论. 【解答】解:∵12xm﹣1y2与3xyn+1是同类项, ∴m﹣1=1,n+1=2,解得m=2,n=1, ∴P(2,1).
∵点P(m,n)在双曲线
上,
∴a﹣1=2,解得a=3. 故答案为:3.
【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
14.(3分)(2016?荆州)若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第 一 象限. 【考点】一次函数图象与系数的关系;关于x轴、y轴对称的点的坐标. 【分析】首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.
【解答】解:∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内, ∴点M(k﹣1,k+1)位于第三象限, ∴k﹣1<0且k+1<0, 解得:k<﹣1,
∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限, 故答案为:一.
【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过二、三、四象限.
15.(3分)(2016?荆州)全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为 58 米(参考数据:tan78°12′≈).
【考点】解直角三角形的应用-仰角俯角问题.
【分析】直接利用锐角三角函数关系得出EC的长,进而得出AE的长,进而得出答案.
【解答】解:如图所示:由题意可得:CE⊥AB于点E,BE=DC, ∵∠ECB=18°48′, ∴∠EBC=78°12′, 则tan78°12′=
=
=,
解得:EC=48(m),
∵∠AEC=45°,则AE=EC,且BE=DC=10m, ∴此塑像的高AB约为:AE+EB=58(米). 故答案为:58.
【点评】此题主要考查了解直角三角形的应用,根据题意得出EC的长是解题关键.
16.(3分)(2016?荆州)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为 4π cm2.
【考点】由三视图判断几何体.
【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.
【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;
根据三视图知:该圆锥的母线长为3cm,底面半径为1cm,
故表面积=πrl+πr=π×1×3+π×1=4πcm. 故答案为:4π.
【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
222
17.(3分)(2016?荆州)请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).
【考点】图形的剪拼;平行四边形的性质.
【分析】沿AB的中点E和BC的中点F剪开,然后拼接成平行四边形即可. 【解答】解:如图所示.
AE=BE,DE=EF,AD=CF.
【点评】本题考查了图形的剪拼,操作性较强,灵活性较大,根据三角形的中位线定理想到从AB、BC的中点入手剪开是解题的关键.
18.(3分)(2016?荆州)若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为 ﹣1或2或1 . 【考点】抛物线与x轴的交点.
【分析】直接利用抛物线与x轴相交,b2﹣4ac=0,进而解方程得出答案. 【解答】解:∵函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,
当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0, 解得:a1=﹣1,a2=2,
当函数为一次函数时,a﹣1=0,解得:a=1. 故答案为:﹣1或2或1.
【点评】此题主要考查了抛物线与x轴的交点,正确得出关于a的方程是解题关键.
三、解答题(本大题共7小题,共66分)
19.(7分)(2016?荆州)计算:.
【考点】实数的运算;零指数幂;负整数指数幂.
【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、零指数幂的性质化简,进而求出答案. 【解答】解:原式=
+3×2﹣2×
﹣1
=+6﹣﹣1
=5.
【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.
20.(8分)(2016?荆州)为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:
组别 分数段 频数(人) 频率
1 50≤x<60 30
2 60≤x<70 45
3 70≤x<80 60 n
4 80≤x<90 m
5 90≤x<100 45
请根据以图表信息,解答下列问题:
(1)表中m= 120 ,n= ; (2)补全频数分布直方图;
(3)全体参赛选手成绩的中位数落在第几组;
(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.
【考点】频数(率)分布直方图;频数(率)分布表;中位数;概率公式.
【专题】统计与概率.
【分析】(1)根据表格可以求得全体参赛选手的人数,从而可以求得m的值,n的值;
(2)根据(1)中的m的值,可以将补全频数分布直方图; (3)根据表格可以求得全体参赛选手成绩的中位数落在第几组; (4)根据表格中的数据可以求得这名选手恰好是获奖者的概率. 【解答】解:(1)由表格可得, 全体参赛的选手人数有:30÷=300, 则m=300×=120,n=60÷300=, 故答案为:120,;
(2)补全的频数分布直方图如右图所示, (3)∵35+45=75,75+60=135,135+120=255,
∴全体参赛选手成绩的中位数落在80≤x<90这一组; (4)由题意可得,
,
即这名选手恰好是获奖者的概率是.
【点评】本题考查频数分布直方图、频数分布表、中位数、概率公式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
21.(8分)(2016?荆州)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.
【考点】菱形的性质;全等三角形的判定;平移的性质. 【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角形,
△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出
∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.
【解答】解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.
理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB, ∴CD=DA=DB, ∴∠DAC=∠DCA, ∵A′C∥AC,
∴∠DA′E=∠A,∠DEA′=∠DCA, ∴∠DA′E=∠DEA′, ∴DA′=DE,
∴△A′DE是等腰三角形. ∵四边形DEFD′是菱形, ∴EF=DE=DA′,EF∥DD′,
∴∠CEF=∠DA′E,∠EFC=∠CD′A′, ∵CD∥C′D′,
∴∠A′DE=∠A′D′C=∠EFC, 在△A′DE和△EFC′中,
,
∴△A′DE≌△EFC′.
【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.
22.(9分)(2016?荆州)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系. (1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
【考点】一次函数的应用;一元一次不等式组的应用.
【分析】(1)根据函数图象找出点的坐标,结合点的坐标分段利用待定系数法求出函数解析式即可;
(2)根据B种苗的数量不超过35棵,但不少于A种苗的数量可得出关于x的一元一次不等式组,解不等式组求出x的取值范围,再根据“所需费用为W=A种树苗的费用+B种树苗的费用”可得出W关于x的函数关系式,根据一次函数的性质即可解决最值问题.
【解答】解:(1)设y与x的函数关系式为:y=kx+b, 当0≤x≤20时,把(0,0),(20,160)代入y=kx+b中, 得:
,解得:
,
此时y与x的函数关系式为y=8x;
当20<x时,把(20,160),(40,288)代入y=kx+b中, 得:
,解得:
,
此时y与x的函数关系式为y=+32.
综上可知:y与x的函数关系式为y=.
(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量, ∴
,
∴≤x≤35,
设总费用为W元,则W=+32+7(45﹣x)=﹣+347, ∵k=﹣,
∴y随x的增大而减小,
∴当x=35时,W总费用最低,W最低=﹣×35+347=326(元).
【点评】本题考查了一次函数的应用、待定系数法求函数解析式以及解一元一次不等式组吗,解题的关键是:(1)分段,利用待定系数法求出函数解析式;(2)根据数量关系找出W关于x的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,再利用待定系数法求出函数解析式是关键.
23.(10分)(2016?荆州)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H. (1)求证:CD是半圆O的切线;
(2)若DH=6﹣3,求EF和半径OA的长.
【考点】切线的判定;平行四边形的性质.
【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;
(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到﹣
,根据直角三角形的性质即可得到结论.
,求得EF=2
【解答】解:(1)连接OB, ∵OA=OB=OC,
∵四边形OABC是平行四边形, ∴AB=OC,
∴△AOB是等边三角形, ∴∠AOB=60°,
∵∠FAD=15°, ∴∠BOF=30°, ∴∠AOF=∠BOF=30°, ∴OF⊥AB, ∵CD∥OF, ∴CD⊥AD, ∵AD∥OC, ∴OC⊥CD,
∴CD是半圆O的切线;
(2)∵BC∥OA, ∴∠DBC=∠EAO=60°, ∴BD=BC=AB, ∴AE=AD,
∵EF∥DH, ∴△AEF∽△ADH,
∴,
∵DH=6﹣3∴EF=2﹣∵OF=OA,
, ,
∴OE=OA﹣(2﹣∵∠AOE=30°, ∴
=
),
=,
解得:OA=2.
【点评】本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.
24.(12分)(2016?荆州)已知在关于x的分式方程①和一元二次
方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.
(1)求k的取值范围;
(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;
(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由. 【考点】根与系数的关系;根的判别式;分式方程的解.
【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;
(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,再根据方程有解△≥0,得出m≥0或m≤﹣,符合题意,分别把m=1和﹣1代入方程后解出即可.
(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算得出m的等式,并由根的判别式组成两式可做出判断.
【解答】解:(1)∵关于x的分式方程
的根为非负数,
∴x≥0且x≠1, 又∵x=
≥0,且
≠1,
∴解得k≥﹣1且k≠1,
又∵一元二次方程(2﹣k)x+3mx+(3﹣k)n=0中2﹣k≠0, ∴k≠2,
综上可得:k≥﹣1且k≠1且k≠2;
(2)∵一元二次方程(2﹣k)x+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,
∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,
∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0, ∴△=9m2﹣4m(m﹣1)=m(5m+4)≥0, 则m≥0或m≤﹣;
2
2
∵x1、x2是整数,k、m都是整数, ∵x1+x2=3,x1?x2=∴1﹣为整数,
=1﹣,
∴m=1或﹣1,
由(1)知k≠1,则m+2≠1,m≠﹣1
∴把m=1代入方程mx﹣3mx+m﹣1=0得:x﹣3x+1﹣1=0, x﹣3x=0, x(x﹣3)=0, x1=0,x2=3;
(3)|m|≤2成立,理由是:
由(1)知:k≥﹣1且k≠1且k≠2, ∵k是负整数, ∴k=﹣1,
(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2, ∴x1+x2=﹣
=
=﹣m,x1x2=
=n,
2
22
x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k), x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2, x12+x22═x1x2+k2,
(x1+x2)2﹣2x1x2﹣x1x2=k2, (x1+x2)2﹣3x1x2=k2,
(﹣m)﹣3×n=(﹣1),
22
m﹣4n=1,n=
2
①,
△=(3m)2﹣4(2﹣k)(3﹣k)n=9m2﹣48n≥0②,
把①代入②得:9m2﹣48×≥0,
m2≤4, 则|m|≤2, ∴|m|≤2成立.
【点评】本题考查了一元二次方程的根与系数的关系,考查了根的判别式及分式方程的解;注意:①解分式方程时分母不能为0;②一元二次方程有两个整数根时,根的判别式△为完全平方数.
25.(12分)(2016?荆州)阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.
问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线在正方形内部.
(1)直接写出点D(m,n)所有的特征线;
(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;
(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上? 【考点】二次函数综合题.
【分析】(1)根据特征线直接求出点D的特征线;
(2)由点D的一条特征线和正方形的性质求出点D的坐标,从而求出抛物线解析式;
(2)分平行于x轴和y轴两种情况,由折叠的性质计算即可. 【解答】解:(1)∵点D(m,n),
经过B、C两点,顶点D
∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n; (2)点D有一条特征线是y=x+1, ∴n﹣m=1, ∴n=m+1
∵抛物线解析式为∴y=(x﹣m)2+m+1,
,
∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n), ∴B(2m,2m),
∴(2m﹣m)+n=2m,将n=m+1带入得到m=2,n=3;
2
∴D(2,3),
∴抛物线解析式为y=(x﹣2)2+3
(3)如图,当点A′在平行于y轴的D点的特征线时,
根据题意可得,D(2,3),
∴OA′=OA=4,OM=2, ∴∠A′OM=60°, ∴∠A′OP=∠AOP=30°, ∴MN=
=
,
∴抛物线需要向下平移的距离=3﹣=.
如图,当点A′在平行于x轴的D点的特征线时,
∵顶点落在OP上, ∴A′与D重合, ∴A′(2,3), 设P(4,c)(c>0), 由折叠有,PD=PA,
∴∴c=
,
=c,
∴P(4,)
,
∴直线OP解析式为y=∴N(2,
),
∴抛物线需要向下平移的距离=3﹣=,
即:抛物线向下平移或距离,其顶点落在OP上.
【点评】此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,特征线的理解,解本题的关键是用正方形的性质求出点D的坐标.
参与本试卷答题和审题的老师有:sd2011;733599;sjzx;曹先生;18;CJX;王学峰;三界无我;caicl;lantin;ZJX;守拙;gbl210;zgm666;弯弯的小河;tcm123;星月相随(排名不分先后) 菁优网
2016年7月17日
考点卡片
1.有理数的减法
(1)有理数减法法则:减去一个数,等于加上这个数的相反数. 即:a﹣b=a+(﹣b) (2)方法指引:
①在进行减法运算时,首先弄清减数的符号;
②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数);
【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.
减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.
2.实数的运算
(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.
(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.
另外,有理数的运算律在实数范围内仍然适用.
【规律方法】实数运算的“三个关键”
1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等. 2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.
3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.
3.同类项
(1)定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.
同类项中所含字母可以看成是数字、单项式、多项式等. (2)注意事项:
①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可; ②同类项与系数的大小无关;
③同类项与它们所含的字母顺序无关; ④所有常数项都是同类项.
4.合并同类项
(1)定义:把多项式中同类项合成一项,叫做合并同类项.
(2)合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.
(3)合并同类项时要注意以下三点:
①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;
②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;
③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.
5.规律型:图形的变化类 图形的变化类的规律题
首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
6.幂的乘方与积的乘方
(1)幂的乘方法则:底数不变,指数相乘. (am)n=amn(m,n是正整数)
注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.
(2)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘. (ab)n=anbn(n是正整数)
注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.
7.同底数幂的除法
同底数幂的除法法则:底数不变,指数相减. am÷an=a m﹣n(a≠0,m,n是正整数,m>n) ①底数a≠0,因为0不能做除数;
②单独的一个字母,其指数是1,而不是0;
③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.
8.单项式乘单项式
运算性质:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
注意:①在计算时,应先进行符号运算,积的系数等于各因式系数的积;②注意按顺序运算;③不要丢掉只在一个单项式里含有的字母因式;④此性质对于多个单项式相乘仍然成立.
9.分式的值
分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.
10.零指数幂
零指数幂:a0=1(a≠0)
由am÷am=1,am÷am=am﹣m=a0可推出a0=1(a≠0) 注意:00≠1.
11.负整数指数幂
负整数指数幂:a﹣p=1ap(a≠0,p为正整数) 注意:①a≠0;
②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.
③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.
④在混合运算中,始终要注意运算的顺序.
12.一元一次方程的应用
(一)、一元一次方程解应用题的类型有:(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题; (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).
(二)、利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答. 列一元一次方程解应用题的五个步骤
1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系. 2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数. 3.列:根据等量关系列出方程.
4.解:解方程,求得未知数的值.
5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.
13.根的判别式
利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况. 一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系: ①当△>0时,方程有两个不相等的两个实数根; ②当△=0时,方程有两个相等的两个实数根; ③当△<0时,方程无实数根. 上面的结论反过来也成立.
14.根与系数的关系
(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q,反过来可得p=﹣(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.
(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax+bx+c=0(a≠0)的两根时,x1+x2=﹣(x1+x2),=x1x2.
2
,x1x2=,反过来也成立,即=
(3)常用根与系数的关系解决以下问题:
①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.
15.配方法的应用
1、用配方法解一元二次方程.
配方法的理论依据是公式a2±2ab+b2=(a±b)2
配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.
2、利用配方法求二次三项式是一个完全平方式时所含字母系数的值. 关键是:二次三项式是完全平方式,则常数项是一次项系数一半的平方.
3、配方法的综合应用.
16.分式方程的解
求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.
注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.
17.一元一次不等式组的应用
对具有多种不等关系的问题,考虑列一元一次不等式组,并求解. 一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:
(1)分析题意,找出不等关系; (2)设未知数,列出不等式组; (3)解不等式组;
(4)从不等式组解集中找出符合题意的答案;
(5)作答.
18.一次函数图象与系数的关系
由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
①k>0,b>0?y=kx+b的图象在一、二、三象限; ②k>0,b<0?y=kx+b的图象在一、三、四象限; ③k<0,b>0?y=kx+b的图象在一、二、四象限; ④k<0,b<0?y=kx+b的图象在二、三、四象限.
19.一次函数的应用
1、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际. 2、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数. 3、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用.
(2)理清题意是采用分段函数解决问题的关键.
20.反比例函数系数k的几何意义 比例系数k的几何意义
在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.
21.反比例函数图象上点的坐标特征
反比例函数y=k/x(k为常数,k≠0)的图象是双曲线, ①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;
②双曲线是关于原点对称的,两个分支上的点也是关于原点对称; ③在y=k/x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
22.抛物线与x轴的交点
求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标. (1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.
△=b2﹣4ac决定抛物线与x轴的交点个数. △=b2﹣4ac>0时,抛物线与x轴有2个交点; △=b2﹣4ac=0时,抛物线与x轴有1个交点; △=b2﹣4ac<0时,抛物线与x轴没有交点.
(2)二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).
23.二次函数综合题
(1)二次函数图象与其他函数图象相结合问题
解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项. (2)二次函数与方程、几何知识的综合应用
将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.
(3)二次函数在实际生活中的应用题
从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
24.平行线的性质 1、平行线性质定理
定理1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.
定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.
定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
2、两条平行线之间的距离处处相等.
25.全等三角形的判定
(1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等. (2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.
(3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.
(4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.
(5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等. 方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已
知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
26.角平分线的性质
角平分线的性质:角的平分线上的点到角的两边的距离相等.
注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE
27.线段垂直平分线的性质
(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”. (2)性质:①垂直平分线垂直且平分其所在线段. ②垂直平分线上任意一点,到线段两端点的距离相等. ③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.
28.含30度角的直角三角形
(1)含30度角的直角三角形的性质:
在直角三角形中,30°角所对的直角边等于斜边的一半.
(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.
(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;
②应用时,要注意找准30°的角所对的直角边,点明斜边.
29.勾股定理
(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
(2)勾股定理应用的前提条件是在直角三角形中.
(3)勾股定理公式a+b=c 的变形有:a=c2﹣b2,b=c2﹣a2及c=a2+b2.
2
2
2
(4)由于a+b=c>a,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.
2222
30.勾股定理的逆定理
(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形. 说明:
①勾股定理的逆定理验证利用了三角形的全等.
②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断. (2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.
注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
31.平行四边形的性质
(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.
(2)平行四边形的性质:
①边:平行四边形的对边相等. ②角:平行四边形的对角相等.
③对角线:平行四边形的对角线互相平分. (3)平行线间的距离处处相等. (4)平行四边形的面积:
①平行四边形的面积等于它的底和这个底上的高的积. ②同底(等底)同高(等高)的平行四边形面积相等.
32.菱形的性质
(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形. (2)菱形的性质
①菱形具有平行四边形的一切性质; ②菱形的四条边都相等;
③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
(3)菱形的面积计算
①利用平行四边形的面积公式.
②菱形面积=ab.(a、b是两条对角线的长度)
33.切线的性质
(1)切线的性质
①圆的切线垂直于经过切点的半径.
②经过圆心且垂直于切线的直线必经过切点. ③经过切点且垂直于切线的直线必经过圆心. (2)切线的性质可总结如下:
如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.
(3)切线性质的运用
由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.
34.切线的判定
(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.
(2)在应用判定定理时注意:
①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.
②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.
③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.
35.关于x轴、y轴对称的点的坐标 (1)关于x轴对称点的坐标特点:
横坐标不变,纵坐标互为相反数.
即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y). (2)关于y轴对称点的坐标特点: 横坐标互为相反数,纵坐标不变.
即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).
36.图形的剪拼
图形的剪拼.
37.平移的性质
(1)平移的条件
平移的方向、平移的距离 (2)平移的性质
①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. ②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
38.锐角三角函数的定义 在Rt△ABC中,∠C=90°.
(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.
即sinA=∠A的对边斜边=ac.
(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA. 即cosA=∠A的邻边斜边=bc.
(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA. 即tanA=∠A的对边∠A的邻边=ab.
(4)三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.
39.解直角三角形的应用-仰角俯角问题
(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.
(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三
角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.
40.由三视图判断几何体
(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.
(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:
①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;
②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线; ③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助; ④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.
41.频数(率)分布表
1、在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.
2、列频率分布表的步骤:
(1)计算极差,即计算最大值与最小值的差.
(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).
(3)将数据分组. (4)列频率分布表.
42.频数(率)分布直方图 画频率分布直方图的步骤:
(1)计算极差,即计算最大值与最小值的差.(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).(3)确定分点,将数据分组.(4)列频率分布表.(5)绘制频率分布直方图.
注:①频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频数组距=频率.②各组频率的和等于1,即所有长方形面积的和等于1.③频率分布表在数量表示上比较确切,但不够直观、形象,不利于分析数据分布的总体态势.④从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容.
43.算术平均数
(1)平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.
(2)算术平均数:对于n个数x1,x2,…,xn,则xˉ=1n(x1+x2+…+xn)就叫做这n个数的算术平均数.
(3)算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.
44.中位数 (1)中位数:
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.
如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
(2)中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.
(3)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
45.众数
(1)一组数据中出现次数最多的数据叫做众数.
(2)求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
(3)众数不易受数据中极端值的影响.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量..
46.概率公式
(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.
(2)P(必然事件)=1. (3)P(不可能事件)=0.
因篇幅问题不能全部显示,请点此查看更多更全内容