您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页济南山大附中小升初招生考试练习题

济南山大附中小升初招生考试练习题

来源:意榕旅游网
济南山大附中小升初招生考试

1. 2012年伦敦夏季奥运会的吉祥物( ),它是以富有激情的( )动物为原型。

2. 球的降落速度与( )有关,与( )无关。

3. 近期中菲的黄岩岛事件,黄岩岛位于我国的( )海( )沙群岛。

4.在明朝,谁下西洋?

5.中国有关青少年保护的法律叫什么名字? 6.如何防止铁生锈

7.我国的外交政策是什么?

8.李奶奶淘洗了一些黄豆,然后洒上点水,放到暖气片上,黄豆发芽了,问,你认为黄豆发芽跟什么有关?黄豆发芽后,李奶奶把黄豆芽一部分放在室外,一部分放在室内,室外的变成了绿色,问:你认为黄豆芽变绿和什么有关?

9.350年前,( )光复了台湾

10.小明买果奶1听和可乐4听付20元,找回3元,已知每听可乐比果奶贵0.5元,问果奶每听多少元?

11.用火柴拼一个上字用了6根,用了10根拼了大些的上字,用14根拼了更大的上字(原卷有图),问第6个上字要用多少根火柴?问第N个上字要用多少个火柴棍?

12.收复台湾,打败荷兰的人 是谁?

13.高层建筑的避雷针是金属的,这是运用了金属的什么特性? 14.在明朝,谁开启了中国航海的先河? 15.中国在世界各地开设了什么书院?

16.两个不同重量的物体从同一高处往下落,结果同时落地,问这与什么有关,与什么无关。

17.小明生病了,医生不叫他吃蛋白质高和油腻的东西,你会为他配餐:A炸鸡腿;面条 B鸡蛋;牛奶 C馒头稀饭

18.如果让你给外国朋友介绍中国节日,你会:1、母亲节 2、端午节 3、元旦 4、中秋节

19.太阳能电扇是吧什么能转化成什么能?

20.3的二次方=( ) 3的三次方=( ) 3的五次方=( )

3的二次方与3的三次方与3的五次方有什么关系?

a的m次方与a的n次方与a的m+n次方有什么关系?

21.黑板上一串数,小红先擦了a个数,然后每一次都比上一次多1,正好6次擦完。如果一直擦a个数,则9次擦完,问共几个数? 22.现代文阅读是朱自清的《冬天》,其中有道题是对划线句子的理解,句子是“虽然外面是冬天,而家里是春天”。 23.作文时写一段你熟悉的冬天的画面。

2012山大附中小升初心理测试题 2012年山大附中小升初报名多了一道流程,在面试结束后。还要做两套心理测试题,在电脑上进行测试。大约200道左右,时间为半小时左右。下面是根据5月12日和5月13日报名孩子回忆整理的2012年山大附中小升初心理测试题。下面让我们看看这套题有多奇怪。 1.心理测试:你说过谎吗?你不运动时心也经常跳吗,你怕黑吗?你拿过别人的东西吗?

2.心理测试有:你的尿比别人多吗?你在和朋友玩时是否有孤独感?

3.心理测试还有一个问你想过死了要比活着好吗?你想过从高处跳下去吗?你梦见过死人吗?你梦见过考试不好被父母打吗?你经常头疼吗?你经常肚子疼吗?你认为自己的身体有问题吗? 4.心理测试从孩子进去到出来不到半小时:1、你喜欢热闹的地方吗,2、你喜欢自已在家吗3、你和朋友在一起时快乐吗,4、你会整晚开着灯睡觉吗

5.心理测试,你开灯睡觉吗?你对父母发过火吗? 6.你是否会无缘无故的哭?你主动跟陌生人交谈吗?

7.你考试前紧张吗?遇到不会的题焦虑吗?经常做噩梦吗?总觉得有人跟着你吗?有仇人吗?人缘好吗? 8.你撒过谎吗?

9.你以为死了比活着解脱吗?

10.你舔指甲吗?你咬手指吗?你手心出汗吗?你怕打雷吗?你晚上经常睡不着觉?你有过因焦虑而睡不着觉的经历吗?

11.你是不是比别人撒尿多?你是否宁肯在家一个人玩也不出去跟小朋友玩?

12.心理测试有一道是,你不喜欢的一堂课早下了,你是高兴还是不高兴?

13.有同学说你坏话,你会讨厌他吗?

14.当你遇到比较困难的问题时,是努力想办法解决,还是放弃? 15.当受到批评时的态度:a不理会b接受c打击报复 16.你撒过谎么? 17.家长对你严厉吗? 18.你喜欢独自出去旅游吗?

19.你怕黑吗?你梦到过死人吗?你不运动时也会感到心跳吗?你经常上不来气吗?你说过谎吗?你头晕吗?你经常感到孤单吗? 20.有道题是你和同学们在一起玩的时候,你是否感到孤独?你的朋友是否很少?你的人缘是否很好?你的爸爸是否对你严厉?老师经常表扬你了?你为什么要报考山大附中

21.考试后出成绩前,是否会放不下心做其他的事? 22.父母老师交待给你的事你会不会马上去做? 23.你是否喜欢坐在正在高速行驶的摩托车上? 24.你是否有很多的朋友?

25.你是否认为与其这么多人聚在一起还不如呆在家里?

26.你是否总觉得背后有个人?你是否总觉得有人在背后说你的坏话?

27.你的朋友很多么? 28.你曾经欺骗过别人吗? 29.你患有失眠吗?

30.你是否因为做了不该做的事而感到不安?

2012小升初数学-应用题综合训练(一)

1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵

需要种的天数是2150÷86=25天 甲25天完成24×25=600棵

那么乙就要完成900-600=300棵之后,才去帮丙

即做了300÷30=10天之后 即第11天从A地转到B地。

2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

这是一道牛吃草问题,是比较复杂的牛吃草问题。 把每头牛每天吃的草看作1份。

因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份

所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份

因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份

所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份

所以45-30=15天,每亩面积长84-60=24份 所以,每亩面积每天长24÷15=1.6份 所以,每亩原有草量60-30×1.6=12份

第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份

新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛

所以,一共需要38.4+3.6=42头牛来吃。 两种解法: 解法一:

设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为 24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)

解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量

(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头

3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元 乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元

甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元

三人合作一天完成(5/12+4/15+7/20)÷2=31/60, 三人合作一天支付(750+400+560)÷2=855元

甲单独做每天完成31/60-4/15=1/4,支付855-400=455元 乙单独做每天完成31/60-7/20=1/6,支付855-560=295元

丙单独做每天完成31/60-5/12=1/10,支付855-750=105元

所以通过比较

选择乙来做,在1÷1/6=6天完工,且只用295×6=1770元

4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

把这个容器分成上下两部分,根据时间关系可以发现,上面部分水的体积是下面部分的18÷3=6倍

上面部分和下面部分的高度之比是(50-20):20=3:2 所以上面部分的底面积是下面部分装水的底面积的6÷3×2=4倍

所以长方体的底面积和容器底面积之比是(4-1):4=3:4

独特解法:

(50-20):20=3:2,当没有长方体时灌满20厘米就需要时间18*2/3=12(分),

所以,长方体的体积就是12-3=9(分钟)的水量,因为高度相同,

所以体积比就等于底面积之比,9:12=3:4

5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

把甲的套数看作5份,乙的套数就是6份。

甲获得的利润是80%×5=4份,乙获得的利润是50%×6=3份 甲比乙多4-3=1份,这1份就是10套。 所以,甲原来购进了10×5=50套。

6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

把一池水看作单位“1”。

由于经过7/3小时共注了一池水,所以甲管注了7/12,乙管注了5/12。

甲管的注水速度是7/12÷7/3=1/4,乙管的注水速度是1/4×5/7=5/28。

甲管后来的注水速度是1/4×(1+25%)=5/16 用去的时间是5/12÷5/16=4/3小时 乙管注满水池需要1÷5/28=5.6小时 还需要注水5.6-7/3-4/3=29/15小时 即1小时56分钟 继续再做一种方法:

按照原来的注水速度,甲管注满水池的时间是7/3÷7/12=4小时

乙管注满水池的时间是7/3÷5/12=5.6小时 时间相差5.6-4=1.6小时

后来甲管速度提高,时间就更少了,相差的时间就更多了。 甲速度提高后,还要7/3×5/7=5/3小时 缩短的时间相当于1-1÷(1+25%)=1/5 所以时间缩短了5/3×1/5=1/3

所以,乙管还要1.6+1/3=29/15小时 再做一种方法:

①求甲管余下的部分还要用的时间。 7/3×5/7÷(1+25%)=4/3小时 ②求乙管余下部分还要用的时间。 7/3×7/5=49/15小时

③求甲管注满后,乙管还要的时间。 49/15-4/3=29/15小时

7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?

爸爸骑车和小明步行的速度比是(1-3/10):(1/2-3/10)=7:2

骑车和步行的时间比就是2:7,所以小明步行3/10需要5÷(7-2)×7=7分钟

所以,小明步行完全程需要7÷3/10=70/3分钟。

8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B 地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.

乙车比甲车多行11-7+4=8分钟。

说明乙车行完全程需要8÷(1-80%)=40分钟,甲车行完全程需要40×80%=32分钟

当乙车行到B地并停留完毕需要40÷2+7=27分钟。 甲车在乙车出发后32÷2+11=27分钟到达B地。 即在B地甲车追上乙车。

9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

甲车和乙车的速度比是15:10=3:2 相遇时甲车和乙车的路程比也是3:2

所以,两城相距12÷(3-2)×(3+2)=60千米 10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

我的解法如下:(共12辆车)

本题的关键是集装箱不能像其他东西那样,把它给拆散来装。因此要考虑分配的问题。

3吨(4个) 2.5吨(5个) 1.5吨(14个) 1吨(7个) 车的数量 4个 4个 4辆 2个 2个 2辆 6个 6个 3辆 2个 1个 1辆 6个 2辆 2012小升初数学-应用题综合训练(二)

11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比

徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?

给徒弟加工的零件数加上10*4=40个以后,师傅加工零件个数的1/3就正好等于徒弟加工零件个数的1/4。这样,零件总数就是3+4=7份,师傅加工了3份,徒弟加工了4份。

12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.

这个题目和第8题比较近似。但比第8题复杂些! 大轿车行完全程比小轿车多17-5+4=16分钟

所以大轿车行完全程需要的时间是16÷(1-80%)=80分钟

小轿车行完全程需要80×80%=64分钟

由于大轿车在中点休息了,所以我们要讨论在中点是否能追上。

大轿车出发后80÷2=40分钟到达中点,出发后40+5=45分钟离开

小轿车在大轿车出发17分钟后,才出发,行到中点,大轿车已经行了17+64÷2=49分钟了。

说明小轿车到达中点的时候,大轿车已经又出发了。那么就是在后面一半的路追上的。

既然后来两人都没有休息,小轿车又比大轿车早到4分钟。 那么追上的时间是小轿车到达之前4÷(1-80%)×80%=16分钟

所以,是在大轿车出发后17+64-16=65分钟追上。 所以此时的时刻是11时05分。

13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?

甲每小时完成1/14,乙每小时完成1/20,两人的工效和为:1/14+1/20=17/140;

因为1/(17/140)=8(小时)......1/35,即两人各打8小时之后,还剩下1/35,这部分工作由甲来完成,还需要:

(1/35)/(1/14)=2/5小时=0.4小时。

所以,打完这部书稿时,两人共用:8*2+0.4=16.4小时。

14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?

黄气球数量:(32+4)/2=18个,花气球数量:(32-4)/2=14个;

黄气球总价:(18/3)*2=12元,花气球总价:(14/2)*3=21元。

15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?

船的顺水速度:60+20=80米/分,船的逆水速度:60-20=40米/分。

因为船的顺水速度与逆水速度的比为2:1,所以顺流与逆流的时间比为1:2。

这条船从上游港口到下游某地的时间为:

3小时30分*1/(1+2)=1小时10分=7/6小时。 (7/6小时=70分)

从上游港口到下游某地的路程为: 80*7/6=280/3千米。(80×70=5600)

16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满

后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?

由于两个粮仓容量之和是相同的,总共的面粉43+37=80吨也没有发生变化。

所以,乙粮仓差1-1/2=1/2没有装满,甲粮仓差1-1/3=2/3没有装满。

说明乙粮仓的1/2和甲粮仓的2/3的容量是相同的。 所以,乙仓库的容量是甲仓库的2/3÷1/2=4/3 所以,甲仓库的容量是80÷(1+4/3÷2)=48吨 乙仓库的容量是48×4/3=64吨

17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?

根据题意得:

甲数=乙数×商+2;乙数=丙数×商+2 甲、乙、丙三个数都是整数,还有丙数大于2。

商是大于0的整数,如果商是0,那么甲数和乙数都是2,就不符合要求。

所以,必然存在,甲数>乙数>丙数,由于丙数>2,所以乙数大于商的2倍。

因为甲数+乙数=乙数×(商+1)+2=478

因为476=1×476=2×238=4×119=7×68=14×34=17×28,所以\"商+1\"<17

当商=1时,甲数是240,乙数是238,丙数是236,和就是714

当商=3时,甲数是359,乙数是119,丙数是39,和就是517

当商=6时,甲数是410,乙数是68,丙数是11,和就是489 当商=13时,甲数是444,乙数是34,丙数是32/11,不符合要求

当商=16时,甲数是450,乙数是28,丙数是26/16,不符合要求

所以,符合要求的结果是。714、517、489三组。

18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?

这个问题很难理解,仔细看看哦。

原定时间是1÷10%×(1-10%)=9小时

如果速度提高20%行完全程,时间就会提前9-9÷(1+20%)=3/2

因为只比原定时间早1小时,所以,提高速度的路程是1÷3/2=2/3

所以甲乙两第之间的距离是180÷(1-2/3)=540千米 山岫老师的解答如下:

第18题我是这样想的:原速度:减速度=10:9, 所以减时间:原时间=10:9,

所以减时间为:1/(1-9/10)=10小时;原时间为9小时; 原速度:加速度=5:6,原时间:加时间=6:5, 行驶完180千米后,原时间=1/(1/6)=6小时,

所以形式180千米的时间为9-6=3小时,原速度为180/3=60千米/时,

所以两地之间的距离为60*9=540千米

19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?

利用平方数解答题目:

根据题意,方阵人数要满足60×3<方阵人数≤60×4,并且满足70×2<方阵人数≤70×3

说明总人数在60×3=180和70×3=210之间 这之间的平方数只有14×14=196人。 所以组成这个方阵的人数应为196人。

20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三

台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?

我用份数来解答

甲车床加工方形零件4份,圆形零件4×2=8份 乙车床加工方形零件3份,圆形零件3×3=9份 丙车床加工方形零件3份,圆形零件3×4=12份 圆形零件共8+9+12=29份,每份是58÷29=2份 方形零件有2×(3+3+4)=20个 所以,共加工零件20+58=78个 (170+10*4)/7=30个 30*4-40=80个 或者:

把师傅加工的零件数减去10*3=30个,师傅的1/3就正好等于徒弟的1/4。

(170-10*3)/(3+4)*4=80个

2012小升初数学-应用题综合训练(三)

21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金

属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?

截取两根长度为B的金属线比截取两根长度为A的金属线少用2-0.4=1.6米

说明每根B比A少1.6÷2=0.8米

那么把5根B换成A就会还差0.8×5=4米, 把30米分成3+5+2=10根A,就差4+2=6米 所以长度为A的金属线,每根长(30+6)÷10=3.6米 利用特殊数据与和差问题思想来解答: 如果金属线长30+2=32就够5个A和5个B, 那么每根A和B共长6.4米

每根A比B长(2-0.4)÷2=0.8米 A长(6.4+0.8)÷2=3.6米

22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同

时运送,至少要几次? 这是最优方案的问题。

每次不能超过4吨,将两种材料组合,看哪种组合最接近4吨,

最优办法是900×2+700×3=3900千克

所以,80÷2=40,120÷3=40,所以,40÷5=8次 23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?

用份数来解答:

把家到体育馆的路程看作4份,家到学校就是5份

从体育馆回来每分钟行4÷17=4/17份,去学校每分钟行5÷25=1/5份

所以每份是15÷(4/17-1/5)=425米 家到学校的距离是425×5=2125米

24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?

徒弟独做6天完成:1-13/30-2/5=1/6,所以徒弟独做的工效为:

25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?

一班=二班+三班,二班=四班+五班;

可知,五个班的总和=一班+二班+三班+二班=二班×3+三班×2=100

所以二班×5>100>三班×5

所以二班人数超过20,三班人数少于20人

如果二班植树21棵,那么三班植树(100-21×3)÷2=17.5,棵数不能为小数。

如果二班植树22棵,那么三班植树(100-22×3)÷2=17棵

所以三班最多植树17棵。

26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?

乙多跑的20分钟,跑了20/60×11=11/3千米, 结果甲共追上了11/3-2=5/3千米, 需要5/3÷(13-11)=5/6小时,

乙共行了11×(5/6+20/60)=77/6千米

27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,

容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?

这个题目要注意是\"底面积\"而不是\"底面半径\",与高的关系!

容器A中的水全部倒入容器B,

容器B的水深就应该占容器高的(6×6)÷(8×8)=9/16

所以容器高2÷(7/8-9/16)=6.4厘米

28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.

用进一法解决问题,次数要整数才行。

需要跑的次数是104÷9=11次„„5吨,所以要跑11+1=12次

实际跑的次数是104÷(9+1)=10次„„4吨,故10+1=11次

往返一次1小时,所以提前(12-11)×1=1小时。 29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

这个题目有点像鸡兔同笼问题:

如果两人工作效率都提高24%,那么两人共加工零件225×(24%+1)=279个

说明徒弟提高45%-24%=21%的工作效率就可以加工300-279=21个

所以徒弟第一天加工21÷21%=100个,那么徒弟第二天加工了100×(1+45%)=145个

那么师傅加工了300-145=155个零件。

30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?

利用等差数列来解答:

行程每天增加2千米我是这样理解的,第一天按照原来的速度行使,从第二天开始,都比前一天多行2千米。所以形成了一个等差数列。

由于前面四天和后面三天行的路程相等。

去时,四天相当于原速行四天还要多2+4+6=12千米 返回时,三天相当于原速行三天还要多8+10+12=30千米 所以原速每天行30-12=18千米,可以求出学校距离百花山18×3+30=84千米

(1/6)/6=1/36;

徒弟合作时的工效为:(1/36)*6/5=1/30;

师傅合作时的工效为:(2/5)/6-1/30=1/30; 师傅独做时的工效为:(1/30)*10/11=1/33; 师傅独做需要:1/(1/33)=33天。 2012小升初数学-应用题综合训练(四)

31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?

因为33÷8=4...1,33÷5=6...3,即都有余数,所以,既不可能两户都达到或超过50度用电量,也不可能两户都未达到50度用电量,因此只有一种情况:

32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?

效率比原来降低1/5,即变为原来的4/5,那么所用时间就是原来的5/4,比原来多用:

5/4-1=1/4

所以,推迟的20分钟就是原来完成160个零件所用时间的1/4。原来完成160个零件需要:

20/(1/4)=80分钟

这批零件共有:160/(80/120)=240个。 160个的时间比是4:5,相差1份,是20分钟 4份是80分钟

160个前做了120-80=40分, 80分160个,40分160/2=80 160+80=240

我也来做一种方法:

推迟的20分钟,即1/3小时相当于后来用时的1/5,所以,后来用时1/3÷1/5=5/3小时

原来的工效做160个零件就用了5/3-1/3=4/3小时。 所以,每小时可以完成160÷4/3=120个 2小时完成任务,这批零件就有120×2=240个

33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张0.50元,丙种

卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?

买甲比买丙多8+6=14张,而丙每张比甲贵0.70元,多买14张甲一共0.50*14=7元,所以可以支付丙7/0.70=10张,钱数一共是1.20*0=12元,可以买乙10+6=16张,所以乙的价钱是12/16=0.75元。

34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?

我的思路是这样的。

三个儿子共拿出1200×3=3600元,

这3600元刚好就是两个儿子应该分得的钱。 每个儿子应该分得3600÷2=1800元。 三间房子共值1800×5=9000元, 那么每间房子值9000÷3=3000元。 再做一种思路:

每人应该分得3÷5=3/5间房子,那么分得房子的就多分了1-3/5=2/5间

也就是说2/5间房子值1200元,所以每间房子值1200÷2/5=3000元

继续分享算法:

如果还有5-3=2间房子,每人都分得房子,那么就要拿出1200×5=6000元

所以,每间房子值6000÷2=3000元。

35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?

我的思考如下:

小燕两次相差2A,且两次相差总画册的1/3-1/4=1/12 当A=1时,两人的总和是2÷1/12=24本,少于38本 当A=2时,两人的总和是4÷1/12=48本,多于38本 所以,A=1

第一次交换,小燕有24×1/3=8本,

原来小燕有8-1=7本 小明有24-7=17本

36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?

先理清思路:根据题意可以得出下面的关系。

37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?

充分利用年龄差来解答问题。

妹妹:9岁, 哥哥:兄妹差+9 ,爸爸:(兄妹差+9)×3

妹妹:兄妹差, 哥哥:兄妹差×2,爸爸:34岁 因为爸爸和哥哥的年龄差也将恒定不变。 所以,(兄妹差+9)×2=34-兄妹差×2 所以,兄妹差是(34-2×9)÷4=4岁

即当妹妹9岁时,哥哥4+9=13岁,爸爸13×3=39岁 三人年龄和是9+13+39=61岁

所以,再过(64-61)÷3=1年,年龄和就是64岁了。 所以,现在妹妹9+1=10岁,哥哥13+1=14岁,爸爸39+1=40岁

38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信

乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B 地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?

我选择让丙先去追后出发的乙,10÷(3-1)=5分钟追上, 拿到信后去追甲,甲乙相距甲行10+10+10+5+5=40分钟的路程,

丙用40÷(3-1)=20分钟追上甲

交换信后返回追乙,这时乙丙相距乙行40+20×2=80分钟的路程,

丙用80÷(3-1)=40分钟追上乙,把信交给乙。 所以,共用了5+20+40=65分钟。

乙共行了65+10=75分钟,丙回到B地还要75÷3=25分钟。

所以共用去65+25=90分钟

又想到一个思路,追上并返回。

追上乙并返回,需要10÷(3-1)×2=10分钟 追上甲并返回,需要10×3÷(3-1)×2=30分钟 再追上乙并返回,需要(10×2+30)÷(3-1)×2=50分钟

共用10+30+50=90分钟

39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?

假设全是甲车间的工人,共生产:94*15=1410把;

40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?

如果甲的速度和乙相同,那么甲的路程应该是乙的10/14=5/7,比乙少2/7;

而实际甲是乙的6/7,比乙少1/7,是因为甲每分钟比乙多走12米、10分钟共多走12*10=120米。

所以,这120米就是乙路程的2/7-1/7=1/7; 乙回家的路程为:120/(1/7)=840米。 我也做两种基本的方法 方法一:

乙行甲那么远的路,就要14÷(1+1/6)=12分钟 所以甲回家有12÷(1/10-1/12)=720米 所以乙回家的路程是720×(1+1/6)=840米 方法二:

甲行乙那么所需要的时间是10×(1+1/6)=35/3分钟

所以乙回家的路程是12÷(3/35-1/14)=840米 比实际少生产:1998-1410=588把;

一个甲车间工人换成乙车间的,多生产:43-15=28把; 乙车间共有工人:588/28=21人;

甲车间每天比乙车间多生产:1998-21*43*2=192把。 红球×1/3+黄球×1/4+白球×1/5=160-120=40„„„„„„①

红球×1/5+黄球×1/4+白球×1/3=160-116=44„„„„„„②

红球+黄球+白球=

160„„„„„„„„„„„„„„„„„„③

利用初中的代数消元法思想来解答。 如果按照第一种方案,取160÷40=4次刚好取完

红球还差4/3-1=1/3,白球就多出1-4/5=1/5,黄球取完了, 说明红球的1/3和白球的1/5相等,红球和白球的个数比是3:5

按照两种方案的比较发现,白球的1/3-1/5=2/15比红球的2/15多4个

即白球比红球多4÷2/15=30个

所以红球有30÷(5-3)×3=45个,白球有45+30=75个

黄球就是160-45-75=40个 甲超过了50度,乙未达到 50度。 因为33=5*5+8,可以得出:

甲用电:50+1=51度,乙用电:50-5=45度。

如果都超过50度,那么相差就应该是8的倍数,显然33不是8的倍数;

如果都没有超过50度,那么相差就应该是5的倍数,同样33也不是5的倍数。

因此,甲50度以上,乙50度以下。

33-8×n的得数是5的倍数(从个位数字可以得出)只有33-8×1=25=5×5符合要求。

所以甲50+1=51度,乙50-5=45度

2012小升初数学-应用题综合训练(五)

41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?

原来每天的利润是72×25%×100=1800元 后来每件的利润是是72÷(1+25%)×(1-90%)=9元 后来每天获得利润100×2.5×9=2250元 所以,增加了2250-1800=450元

42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?

利用份数来解答:甲车行3份,乙车就行了3×4/5=2.4份,72千米相当于4-2.4=1.6份,每份是72÷1.6=45千米 所以A和B两站之间的距离是45×(3+4)=315千米

利用分数来解答:甲车行全程的3/7,乙车就要行全程的3/7×4/5=12/35 72千米对应的分率是4/7-12/35=8/35 所以全程是72÷8/35=315千米

43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采

摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以多采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?

如果猴王一直不在场,那么35只猴子8小时共可采摘桃子:4400-35*12*2=3560千克 每小时采摘:3560/8=445千克 假设35 只猴子都是大猴子,每小时可采:35*15=525千克 比实际多:525-445=80千克 而每只小猴子比每只大猴子每小时少采15-11=4千克 所以共有小猴子:80/4=20只,大猴子:35-15=20只。

44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙两校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?

根据条件(2)和(3):二等奖总人数为11份,那么一等奖总人数为11*2/3=22/3;转化为整数比,二等奖与一等奖人数比为33:22;甲、乙两校二等奖人数比为5:6=15:18,甲、乙两校获奖人数比为6:5=30:25。所以,甲校获二等奖的人数占该校获奖总人数的:15/30=50%

用份数来解答:

获奖总人数6+5=11份,二等奖人数11×60%=6.6份,甲校二等奖人数6.6×5/11=3份

所以,甲校二等奖人数占该校获奖总人数的3÷6=50% 45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?

根据条件,小明、小强和小刚的速度比是:2*4:3*4:5*3=8:12:15 再根据\"小刚10分钟比小明多走420米\"可以得出,小明10分钟走:420*8/(15-8)=480米 所以,小明在20分钟里比小强少走:[480*(12-8)/8]*2=480米 做完才发现,小明20分钟比小强少走

的,正好是小明10分钟走的路程,所以方法应该更简单一些。 用分数来解答:把小强的看作单位\"1\",那么小明是小强的2/3,小刚是小强的5/4 所以小强10分钟行420÷(5/4-2/3)=720米小明10分钟比小强少行1-2/3=1/3,那么20分钟就少行1/3×2=2/3 所以,小明在20分钟里比小强少走720×2/3=480米

46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?

在加工剩下的1-3/5=2/5零件时,工效变为原来的6/5,那么所用时间就是原来加工这部分零件所用时间的5/6,比原来少用1/6。所以,提前的10天时间,就是原时间的:

10/(1/6)=60天 原计划加工这批零件的时间为:60/(2/5)=150天 这批零件共有:15*150=2250个。

采用新技术,完成1-3/5=2/5的任务,需要2/5÷(1+20%)=1/3的时间,所以计划用的天数是10÷(2/5-1/3)=150天 所以这批零件的个数是15×150=2250个

47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每

秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?

开始时,甲、乙速度比为8:6=4:3,所以甲跑4圈时第一次追上乙; 追上后,甲速变为8-2=6米/秒,乙速变为6-0.5=5.5米/秒,速度比为12:11,所以,甲再跑12圈第二次追上乙;第二次追上乙后,甲速变为6-2=4米/秒,乙速变为5.5-0.5=5米/秒,速度比为4:5。此时乙快甲慢,所以乙再跑5圈追上甲。 这

时,甲共跑了:4+12+4=20圈,还剩10000/400-20=5圈;乙共跑了:3+11+5=19圈,还剩10000/400-19=6圈。 甲速变为4+0.5=4.5米/秒,乙速变为5+0.5=5.5米/秒,速度比为9:11。当乙跑完剩余的6圈(2400米)时到达终点时,甲跑了6圈的9/11: 6*9/11=54/11圈,还剩:5-54/11=1/11圈,即:400*1/11=400/11米。

48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?

时间变为原来的4/5,说明速度是原来的5/4,所以,原来的速度是:1.5/(5/4-1)=6(千米/小时)现在每小时比原来少走1.5千米,也就是速度变为原来的:(6-1.5)/6=3/4那么所用时间就是原来的4/3,比原来多4/3-1=1/3

49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?

利用和差问题的思想来解答:现在丙和丁的年龄和是64-21-17=26岁当甲18岁时,即21-18=3年前,丙和丁的年龄和是26-3×2=20岁丁的年龄是20÷(3+1)=5岁 所以丁现在的年龄是5+3=8岁

50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?

继续用第46题的这个思路来做:由于改进技术,完成1-1/3=2/3的任务,需要原计划总时间的2/3÷(1+10%)=20/33 所以,原计划的总时间是4÷(2/3-20/33)=66天所以这批零件有66×30=1980个

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务