BangYeWu
Kun–MaoChao
April1,2004
Theoptimalcommunicationspanningtree(OCT)problemisdefinedasfollows.LetG=(V,E,w)beanundirectedgraphwithnonnegativeedgelengthfunctionw.Wearealsogiventherequirementsλ(u,v)foreachpairofvertices.ForanyspanningtreeTofG,thecommunicationcostbetweentwoverticesisdefinedtobetherequirementmultipliedbythepathlengthofthetwoverticesonT,andthecommunicationcostofTisthetotalcommunicationcostsummedoverallpairsofvertices.Ourgoalistoconstructaspanningtreewithminimumcommunicationcost.
Thatis,wewanttofindaspanningtreeTsuchthatu,v∈Vλ(u,v)dT(u,v)isminimized.
TherequirementsintheOCTproblemarearbitrarynonnegativevalues.Byrestrictingtherequirements,severalspecialcasesoftheproblemweredefinedintheliterature.Welistthe
+
problemsinthefollowing,inwhichr:V→Z0isagivenvertexweightfunctionandS⊂Visasetofkverticesgivenassources.
•λ(u,v)=1foreachu,v∈V:ThisversionistheMinimumRoutingCostSpanningTree(MRCT)problemdiscussedinthepreviouschapter.•λ(u,v)=r(u)r(v)foreachu,v∈V:ThisversioniscalledtheOptimalProduct-RequirementCommunicationSpanningTree(PROCT)problem.
•λ(u,v)=r(u)+r(v)foreachu,v∈V:ThisversioniscalledtheOptimalSum-RequirementCommunicationSpanningTree(SROCT)problem./S:Thisversioniscalledthep-SourceOCT(p-OCT)problem.Inother•λ(u,v)=0ifu∈
words,thegoalistofindaspanningtreeminimizingu∈Sv∈Vλ(u,v)dT(u,v).
•λ(u,v)=1ifu∈S,andλ(u,v)=0otherwise:Thisversioniscalledthep-SourceMRCT(p-MRCT)problem.Inotherwords,thegoalistofindaspanningtreeminimiz-
ingu∈Sv∈VdT(u,v).WedefinetwocommunicationcostsandnotationsforthePROCTandtheSROCTproblems.Definition1:Theproduct-requirementcommunication(orp.r.c.inabbreviation)costofatree
TisdefinedbyCp(T)=u,vr(u)r(v)dT(u,v).
Whentherearemorethanonevertexweightfunctions,weshalluseCp(T,r)toindicatethatthecostiswithrespecttoweightr.
Definition2:Thesum-requirementcommunication(ors.r.c.inabbreviation)costofatreeTis
definedbyCs(T)=u,v(r(u)+r(v))dT(u,v).
GivenagraphG,thePROCT(orSROCT)problemasksforaspanningtreeTofGsuchthatCp(T)(orCs(T)respectively)isminimumamongallpossiblespanningtrees.
1
r(b)=0
3r(c)=1
2r(d)=2
21r(a)=3r(e)=1Figure1:Theproduct-requirementcommunicationcostbetweenverticesaanddis3×2×(2+
3+2)=42,andthesum-requirementcommunicationcostbetweenverticesaandeis(3+1)×(2+3+1)=24.
Optimal Communication Spanning Treesmore generalPROCTSROCTp-source OCT, fixed p2-source OCTp-source MRCT, arbitrary pMRCTp-source MRCT, fixed p2-source MRCTFigure2:TherelationshipoftheOCTproblems.
Example1:Thep.r.c.costands.r.c.costbetweenapairofverticesareillustratedinFigure1.
Thecostofthetreeisthesumofthecostforallpairsofvertices.
TherelationshipofthedifferentversionsoftheOCTproblemsisillustratedinFigure2.Notethattherearevariantsforthemulti-sourceproblems.By“arbitraryp,”wemeanthereisnorestrictiononthenumberofsourcesintheinputdata,whileby“fixedp,”thenumberofsourcesisalwaysequaltotheconstantp.
Table1summarizestheresults.
BibliographicNotesandFurtherReading
ThecurrentbestapproximationratioforthegeneralOCTproblemisduetoYairBartal’salgorithmswhichapproximatearbitrarymetricsbytreemetrics.Hefirstpresentedarandomizedalgorithm[1]andthenderandomizedittoadeterministicalgorithm[2].ItsapplicationtoapproximatingtheOCTproblemwaspointedoutin[10].
ThePROCTandSROCTproblemswereintroducedin[8].Inthatpaper,BangYeWu,Kun-MaoChao,andChuanYiTanggavea1.577-approximationalgorithmforthePROCTproblemanda2-approximationalgorithmfortheSROCTproblem.ThePTASusingtheScaling-and-RoundingtechniqueforaPROCTproblemwaspresentedin[9]bythesameauthors.Scalingtheinputinstancesisatechniquethathasbeenusedtobalancetherunningtimeandtheapproximationratio.Forexample,OscarH.IbarraandChulE.Kimusedthescalingtechniquetodevelopa
2
Table1:TheobjectivesandcurrentlybestratiosoftheOCTproblems.
ProblemOCTPROCTSROCTMRCTp-MRCT2-MRCT
Objective
u,v
Ratio
O(lognloglogn)PTAS2PTAS2PTAS
λ(u,v)dT(u,v)r(u)r(v)dT(u,v)
+r(v))dT(u,v)
u,v
u,v(r(u)u,v
dT(u,v)
v∈V
u∈S
dT(u,v)
v
(dT(s1,v)+dT(s2,v))
fullypolynomialtimeapproximationscheme(FPTAS)fortheknapsackproblem[5],andsomeimprovementwasmadebyEugeneL.Lawler[6].Aniceexplanationofthetechniquecanalsobefoundin[4](pp.134–137).
TheNP-hardnessofthe2-MRCTwasshownbyBangYeWu[7],inwhichthereductionisfromtheExactCoverBy3-Sets(X3C)problem([SP2]in[4]).Thetransformationissimplerandeasiertoextendtotheweightedcase,whichisdesignedtoshowtheNP-hardnessofthep-MRCTproblemforanyfixedp.Asimilarreduction(for2-MRCT)wasalsoshownbyHaroldConnamacherandAndrzejProskurowski[3].Theyshowedthatthe2-MRCTproblemisNP-hard.ThePTASforthe2-MRCTproblemalsoappearedin[7].InadditiontothePTASforthe2-MRCTproblem,thereisalsoaPTASfortheweighted2-MRCTproblem.ButthePTASworksonlyformetricinputsandthecounterpartongeneralgraphswasleftasanopenproblem.
References
[1]Y.Bartal.Probabilisticapproximationofmetricspacesanditsalgorithmicapplications.In
Proceedingsofthe37thAnnualIEEESymposiumonFoundationsofComputerScience,pages184–193,1996.[2]Y.Bartal.Onapproximatingarbitrarymetricsbytreemetrics.InProceedingsofthe30th
AnnualACMSymposiumonTheoryofComputing,pages161–168,1998.[3]H.S.ConnamacherandA.Proskurowski.Thecomplexityofminimizingcertaincostmetrics
fork-sourcespanningtrees.DiscreteAppl.Math.,131:113–127,2003.[4]M.R.GareyandD.S.Johnson.ComputersandIntractability:AGuidetotheTheoryofNP-Completeness.W.H.FreemanandCompany,SanFrancisco,1979.[5]O.H.IbarraandC.E.Kim.Fastapproximationalgorithmsfortheknapsackandsumofsubset
problems.J.ACM,22:463–468,1975.[6]E.L.Lawler.Fastapproximationalgorithmsforknapsackproblems.
4(4):339–356,1979.
Math.Oper.Res.,
3
[7]B.Y.Wu.Apolynomialtimeapproximationschemeforthetwo-sourceminimumroutingcost
spanningtrees.J.Algorithms,44:359–378,2002.[8]B.Y.Wu,K.-M.Chao,andC.Y.Tang.Approximationalgorithmsforsomeoptimumcommu-nicationspanningtreeproblems.DiscreteAppl.Math.,102:245–266,2000.[9]B.Y.Wu,K.-M.Chao,andC.Y.Tang.Apolynomialtimeapproximationschemeforoptimal
product-requirementcommunicationspanningtrees.J.Algorithms,36:182–204,2000.[10]B.Y.Wu,G.Lancia,V.Bafna,K.-M.Chao,R.Ravi,andC.Y.Tang.Apolynomialtime
approximationschemeforminimumroutingcostspanningtrees.SIAMJ.Comput.,29:761–778,2000.
4
因篇幅问题不能全部显示,请点此查看更多更全内容