ABriefII.CourseModerninTimes:SpontaneousTheBEHSymmetryMechanismBreaking
1
Fran¸coisEnglert2
ServicedePhysiqueTh´eorique
Universit´eLibredeBruxelles,CampusPlaine,C.P.225BoulevardduTriomphe,B-1050Bruxelles,Belgium
Abstract
Thetheoryofsymmetrybreakinginpresenceofgaugefieldsispre-sented,followingthehistoricaltrack.Particularemphasisisplacedupontheunderlyingconcepts.
I.Introduction
Itwasknowninthefirsthalfofthetwentiethcenturythat,attheatomiclevelandatlargerdistancescales,allphenomenaappeartobegovernedbythelawsofclassicalgeneralrelativityandofquantumelectrodynamics.Gravitationalandelectromagneticforcesarelongrangeandhencecanbeperceiveddirectlywithoutthemediationofhighlysophisticatedtechnicaldevices.Thedevelopmentoflargescalephysics,initiatedbytheGalileaninertialprinciple,issurelytributarytothiscircumstance.Itthentookaboutthreecenturiestoachieveasuccessfuldescriptionoflongrangeeffects.Thediscoveryofsubatomicstructuresandoftheconcomitantweakandstronginteractionshortrangeforcesraisedthequestionofhowtocopewithshortrangeforcesinquantumfieldtheory.TheFermitheoryofweakinter-actions,formulatedintermsofafourFermipoint-likecurrent-currentinter-action,waspredictiveinlowestorderperturbationtheoryandsuccessfullyconfrontedmanyexperimentaldata.However,itwasclearlyinconsistentinhigherorderbecauseofuncontrollablequantumdivergencesathighen-ergies.Inorderwords,incontradistinctionwithquantumelectrodynamics,theFermitheoryisnotrenormalizable.Thisdifficultycouldnotbesolvedbysmoothingthepoint-likeinteractionbyamassive,andthereforeshortrange,chargedvectorparticleexchange(theso-calledW+andW−mesons);theo-rieswithfundamentalmassivechargedvectormesonsarenotrenormalizableeither.Intheearlynineteensixties,thereseemedtobeinsuperableobstaclesforformulatingatheorywithshortrangeforcesmediatedbymassivevectors.Thesolutionofthelatterproblemcamefromthetheoryproposedin1964byBroutandEnglert[1]andbyHiggs[2,3].TheBrout-Englert-Higgs(BEH)theoryisbasedonamechanism,inspiredfromthespontaneoussymmetrybreakingofacontinuoussymmetry,discussedintheprevioustalkbyRobertBrout,adaptedtogaugetheoriesandinparticulartononabeliangaugetheories.Themechanismunifieslongrangeandshortrangeforcesmediatedbyvectormesons,byderivingthevectormesonsmassesfromafundamentaltheorycontainingonlymasslessvectorfields.Itledtoasolutionoftheweakinteractionpuzzleandopenedthewaytomodernperspectivesonunifiedlawsofnature.
Beforeturningtoanexpos´eoftheBEHmechanism,weshallinsectionII
1
review,inthecontextofquantumfieldtheory,theanalysisgivenbyRobertBroutofthespontaneousbreakingofacontinuoussymmetry.SectionIIIex-plainstheBEHmechanism.WepresentthequantumfieldtheoryapproachofBroutandEnglertwhereinthebreakingmechanismforbothabelianandnonabeliangaugegroupsisinducedbyscalarbosons.Wealsopresenttheirapproachinthecaseofdynamicalsymmetrybreakingfromfermionconden-sate.WethenturntotheequationofmotionapproachofHiggs.Finallyweexplaintherenormalizationissue.InsectionIV,webrieflyreviewthewell-knownapplicationsoftheBEHmechanismwithparticularemphasisonconceptsrelevanttothequestforunification.SomecommentsonthissubjectaremadeinsectionV.
II.SpontaneousBreakingofaGlobalSymmetry
SpontaneousbreakingofaLiegroupsymmetrywasdiscussedbyRobertBroutin“ThePaleoliticAge”.Ireviewhereitsessentialfeaturesinthequantumfieldtheorycontext.
Recallthatspontaneousbreakdownofacontinuoussymmetryincondensedmatterphysicsimpliesadegeneracyofthegroundstate,andasaconse-quence,inabsenceoflongrangeforces,collectivemodesappearwhoseener-giesgotozerowhenthewavelengthgoestoinfinity.ThiswasexemplifiedinparticularbyspinwavesinaHeisenbergferromagnet.There,thebrokensymmetryistherotationinvariance.
SpontaneoussymmetrybreakingwasintroducedinrelativisticquantumfieldtheorybyNambuinanalogytotheBCStheoryofsuperconductivity.TheproblemstudiedbyNambu[4]andNambuandJona-Lasinio[5]isthespon-taneousbreakingofchiralsymmetryinducedbyafermioncondensate1.The
¯=chiralphasegroupexp(iγ5α)isbrokenbythefermioncondensateψψ0
andthemasslessmodeisidentifiedwiththepion.Thelattergetsitstinymass(onthehadronscale)fromasmallexplicitbreakingofthesymmetry,justasasmallexternalmagneticfieldimpartsasmallgapinthespinwavespectrum.Thisinterpretationofthepionmassconstitutedabreakthroughinourunderstandingofstronginteractionphysics.Generalfeaturesofsponta-neoussymmetrybreakdowninrelativisticquantumfieldtheorywerefurther
formalizedbyGoldstone[6].Here,symmetryisbrokenbynonvanishingvac-uumexpectationvaluesofscalarfields.Themethodisdesignedtoexhibittheappearanceofamasslessmodeoutofthedegeneratevacuumanddoesnotreallydependonthesignificanceofthescalarfields.Thelattercouldbeelementaryorrepresentcollectivevariablesofmorefundamentalfields,aswouldbethecaseintheoriginalNambumodel.Compositenessaffectsdetailsofthemodelconsidered,suchasthebehaviorathighmomentumtransfer,butnottheexistenceofthemasslessexcitationsencodedinthedegeneracyofthevacuum.
LetusfirstillustratetheoccurrenceofthismasslessNambu-Goldstone(NG)bosoninasimplemodelofacomplexscalarfieldwithU(1)symmetry[6].TheLagrangiandensity,
L=∂µφ∗∂µφ−V(φ∗φ)withV(φ∗φ)=−µ2φ∗φ+λ(φ∗φ)2,λ>0,(1)isinvariantundertheU(1)groupφ→eiαφ.TheU(1)symmetryiscalledglobalbecausethegroupparameterαisconstantinspace-time.Itisbrokenbyavacuumexpectationvalueoftheφ-fieldgiven,attheclassicallevel,√bytheminimumofV(φ∗φ).Writingφ=(φ1+iφ2)/
Aroundtheunbrokenvacuumthefieldφ1hasnegativemassandacquiresapositivemassaroundthebrokenvacuumwherethefieldφ2ismassless.ThelatteristheNGbosonofbrokenU(1)symmetry.Themassivescalardescribesthefluctuationsoftheorderparameterφ1.ItsmassistheanalogoftheinverselongitudinalsusceptibilityoftheHeisenbergferromagnetdiscussedbyRobertBroutwhilethevanishingoftheNGbosonmasscorrespondstothevanishingofitsinversetransversesusceptibility.Thescalarbosonφ1isalwayspresentinspontaneousbreakdownofasymmetry.InthecontextoftheBEHmechanismanalyzedinthefollowingsection,itwasintroducedbyBroutandmyself,andbyHiggs.WeshalllabelittheBEHboson2(Fig.1).Intheclassicallimit,theoriginofthemasslessNGbosonφ2isclearlyillus-tratedintheFig.1.Thevacuumcharacterizedbytheorderparameterφ1isrotatedintoanequivalentvacuumbythefieldφ2atzerospacemomentum.
→
Suchrotationcostsnoenergyandthusthefieldφ2atspacemomentaq=0hasq0=0ontheequationsofmotion,andhencezeromass.
ThiscanbeformalizedandgeneralizedbynotingthattheconservedNoethercurrentJµ=φ1∂µφ2−φ2∂µφ1givesachargeQ=J0d3x.Theoperatorexp(iαQ)rotatesthevacuumbyanangleα.Intheclassicallimit,thischargeis,aroundthechosenvacuum,Q=φ1∂0φ2d3xandinvolvesonlyφ2atzeromomentum.Ingeneral,[Q,φ2]=iφ1isnonzerointhechosenvacuum.Thisimpliesthatthepropagator∂µTJµ(x)φ2(x′)cannotvanishatzerofour-momentumqbecauseitsintegraloverspace-timeisprecisely[Q,φ2].ExpressingthepropagatorintermsofFeynmandiagramsweseethattheφ2-propagatormusthaveapoleatq2=0.Thefieldφ2isthemasslessNGboson.
Theproofisimmediatelyextendedtothespontaneousbreakingofasemi-simpleLiegroupglobalsymmetry.LetφAbescalarfieldsspanningarep-resentationoftheLiegroupGgeneratedbythe(antihermitian)matricesTaAB.IfthedynamicsisgovernedbyaG-invariantactionandifthepo-tentialhasminimafornonvanishingφA,s,symmetryisbrokenandthe
a
vacuumisdegenerateunderG-rotations.TheconservedchargesareQ=
∂µφBTaBAφAd3x.Asintheabeliancaseabove,thepropagatorsofthefieldsφBsuchthat[Qa,φB]=TaBAφA=0haveaNGpoleatq2=0.
III.TheBEHMechanism
-Fromglobaltolocalsymmetry
TheglobalU(1)symmetryinEq.(1)canbeextendedtoalocalU(1)in-varianceφ(x)→eiα(x)φ(x)byintroducingavectorfieldAµ(x)transformingaccordingtoAµ(x)→Aµ(x)+(1/e)∂µα(x).ThecorrespondingLagrangiandensityis
1
L=Dµφ∗Dµφ−V(φ∗φ)−
where
aABBaaabcbc
(Dµφ)A=∂µφA−eAaφ,Fµν=∂µAaAµAν.(4)µTν−∂νAµ−ef
Here,φAbelongstotherepresentationofGgeneratedbyTaABandthe
potentialVisinvariantunderG.
ThesuccessofquantumelectrodynamicsbasedonlocalU(1)symmetry,andofclassicalgeneralrelativitybasedonalocalgeneralizationofPoincarein-variance,providesampleevidencefortherelevanceoflocalsymmetryforthedescriptionofnaturallaws.Oneexpectsthatlocalsymmetryhasafundamentalsignificancerootedincausalityandintheexistenceofexactconservationlawsatafundamentallevel,ofwhichchargeconservationap-pearsastheprototype.Asanexampleofthestrengthoflocalsymmetrywecitethefactthatconservationlawsresultingfromaglobalsymmetryaloneareviolatedinpresenceofblackholes.
Thelocalsymmetry,orgaugeinvariance,ofYang-Millstheory,abelianornonabelian,apparentlyreliesonthemasslesscharacterofthegaugefieldsAµ,henceonthelongrangecharacteroftheforcestheytransmit,astheadditionofamasstermforAµintheLagrangianEq.(2)or(3)destroysgaugeinvariance.Butshortrangeforces,suchastheweakinteractionforces,seemtobeasfundamentalastheelectromagneticonesdespitetheapparent
5
4
aFµνFaµν,
(3)
absenceofexactconservationlaws.Toreachabasicdescriptionofsuchforcesoneistemptedtolinktheviolationofconservationtoamassofthegaugefieldswhichwouldarisefromspontaneoussymmetrybreaking.Howevertheproblemofspontaneousbrokensymmetryisdifferentforglobalandforlocalsymmetry.
Tounderstandthedifference,letusbreakthesymmetriesexplicitly.TotheLagrangianEq.(1)weaddtheterm
φh∗+φ∗h,
(5)
whereh,h∗areconstantinspacetime.Letustakehreal.ThepresenceofthefieldhbreaksexplicitlytheglobalU(1)symmetryandthefieldφ1alwaysdevelopsanexpectationvalue.Whenh→0,thesymmetryoftheactionisrestoredbut,whenthesymmetryisbrokenbyaminimumofV(φφ∗)at|φ|=0,westillhaveφ1ofthedegeneratevacuainperfect=0.analogyThetinywithh-fieldtheinfinitesimalsimplypicksmagneticuponefieldwhichorientsthemagnetizationofaferromagnet.Asinstatisticalmechanics,spontaneousbrokenglobalsymmetrycanberecoveredinthelimitofvanishingexternalsymmetrybreaking.Thedegeneracyofthevacuumcanbeputintoevidencebychangingthephaseofh;inthisway,wecanreachinthelimith→0anyU(1)rotatedvacuum.
Whenthesymmetryisextendedfromglobaltolocal,onecanstillbreakthesymmetrybyanexternal“magnetic”field.Howeverinthelimitofvanishingmagneticfieldtheexpectationvalueofanygaugedependentlocaloperatorwilltendtozerobecause,incontradistinctiontoglobalsymmetry,itcostnoenergyinthelimittochangetherelativeorientationofneighboring“spins”;thereisthennoorderedconfigurationingroupspacewhichcanbeprotectedfromdisorderingfluctuations.Asaconsequence,thevacuumisgenericallynondegenerateandpointsinnoparticulardirectioningroupspaceastheexternalfieldgoestozero.Localgaugesymmetrycannotbespontaneouslybroken3andthevacuumisgaugeinvariant4.Recallingthattheexplicit
presenceofagaugevectormassbreaksgaugeinvariance,wearethusfacedwithadilemma.Howcangaugefieldsacquiremasswithoutbreakingthelocalsymmetry?-Solvingthedilemma
Inperturbationtheory,gaugeinvariantquantitiesareevaluatedbychoosingaparticulargauge.OneimposesthegaugeconditionbyaddingtotheactionagaugefixingtermandonesumsoversubsetsofgraphssatisfyingtheWardIdentities5.
ConsidertheYang-MillstheorydefinedbytheLagrangianEq.(3).LetuschooseagaugewhichpreservesLorentzinvarianceandaresidualglobalGsymmetry.ThiscanbeachievedbyaddingtotheLagrangianagaugefixing
aν
term(2η)−1∂µAµa∂νA.Thegaugeparameterηisarbitraryandhasnoobservableconsequences.
A(a)
(b)
(c)
BqFig. 2
Theglobalsymmetrycannowbespontaneouslybroken,forsuitablepoten-
tialV,bynonzeroexpectationvaluesφAofBEHfields.InFig.2wehaverepresentedfluctuationsofthisparameterinthespatialq-directionandinaninternalspacedirectionorthogonaltothedirectionA.TheorthogonaldirectiondepictedinthefigurehasbeenlabeledB.Fig.2apicturesthespontaneouslybrokenvacuumofthegaugefixedLagrangian.Fig.2band2crepresentfluctuationsoffinitewavelengthλ.
Clearlyasλ→∞thesefluctuationscanonlyinduceglobalrotationsintheinternalspace.Inabsenceofgaugefields,suchfluctuationswouldgiverise,asinspontaneouslybrokenglobalcontinuoussymmetries,tomasslessNGmode.Inagaugetheory,fluctuationsofφAarejustlocalrotationsintheinternalspaceandhenceareunobservablegaugefluctuations.HencetheNGbosonsinduceonlygaugetransformationsanditsexcitationsdisappearfromthephysicalspectrum.
ThedegreesoffreedomoftheNGfieldswerepresentintheoriginalgaugeinvariantactionandcannotdisappear.ButwhatmakeslocalinternalspacerotationsunobservableinagaugetheoryispreciselythefactthattheycanbeabsorbedthroughgaugetransformationsbytheYang-Millsfields.TheabsorptionofthelongrangeNGfieldsrendersmassivethosegaugefieldstowhichtheyarecoupled,andtransferstothemthemissingdegreesoffreedomwhichbecomestheirthirdpolarization.
Weshallseeinthenextsectionshowtheseconsiderationsarerealizedinquantumfieldtheory,givingrisetoanapparentbreakdownofsymmetry:despitetheabsenceofspontaneouslocalsymmetrybreaking,gaugeinvariantvectormasseswillbegeneratedinacosetG/H,leavinglongrangeforcesonlyinasubgroupHofG.
-Thequantumfieldtheoryapproach[1]α)BreakingbyBEHbosons
LetusfirstexaminetheabeliancaseasrealizedbythecomplexscalarfieldφexemplifiedinEq.(2).
Inthecovariantgauges,thefreepropagatorofthefieldAµis
0Dµν
=
gµν−qµqν/q2
8
q2
,(6)
whereηisthegaugeparameter.Itcanbeputequaltozero,asintheLandaugaugeusedinreference[1],butweleaveitarbitraryheretoillustrateexplicitlytheroleoftheNG-boson.
Gauge field
Complex scalar field
Fig. 3
Inabsenceofsymmetrybreaking,thelowestordercontributiontotheself-energy,arisingfromthecovariantderivativetermsinEq.(2),isgivenbytheone-loopdiagramsofFig.3.Theself-energy(suitablyregularized)takestheformofapolarizationtensor
Πµν=(gµνq2−qµqν)Π(q2),
(7)
wherethescalarpolarisationΠ(q2)isregularatq2=0,leadingtothegaugefieldpropagator
D=
gµν−qµqν/q2
µνq2.(8)ThepolarizationtensorinEq.(7)istransverseandhencedoesnotaffectthegaugeparameterη.Thetransversalityofthepolarizationtensorreflectsthegaugeinvarianceofthetheory6and,asweshallseebelow,theregularityofthepolarizationscalarsignalstheabsenceofsymmetrybreaking.ThisguaranteesthattheAµ-fieldremainsmassless.
Symmetrybreakingaddstadpolediagramstothepreviousones.Toseethiswrite
φ=12
(φ1+iφ2)φ1=0.(9)
TheBEHfieldisφ1andtheNGfieldφ2.TheadditionaldiagramsaredepictedinFig.4.
BEH tadpoleNG propagator
Fig. 4
Inthiscase,thepolarisationscalarΠ(q2)inEq.(7)acquiresapole
Π(q2
)=
e2φ12
qµqν/q2
q2−µ2
+η
Π(q)=
ab2
e2φ∗BT∗aBCTbCAφA
q2−µa2
+η
qµqν/q2
q2
=
λ=1
3
(λ)(λ)
eµ.eν,q2=µa2,
(17)
(λ)
wheretheeµarethethreepolarizationvectorswhichareorthonormalintherestframeoftheparticle.
Inthisway,theNGbosonsgeneratemassivepropagatorsforthosegaugefieldstowhichtheyarecoupled.Longrangeforcesonlysurviveinthesub-groupHofGwhichleavesinvariantthenonvanishingexpectationvaluesφA.
Notethat(asintheabeliancase)thescalarpotentialVdoesnotenterthecomputationofthegaugefieldpropagator.ThisisbecausethetrilineartermarisingfromthecovariantderivativesintheLagrangianEq.(3),whichyieldsthesecondgraphofFig.5,canonlycouplethetadpolestootherscalarfields
11
throughgrouprotationsandhencecouplethemonlytotheNGbosons.ThesearetheeigenvectorswithzeroeigenvalueofthescalarmassmatrixgivenbythequadratictermintheexpansionofthepotentialVarounditsminimum.Hencethemassmatrixdecouplesfromthetadpoleatthetreelevelconsideredabove.AnexplicitexampleofthisfeaturewillbegivenfortheLagrangianEq.(32).β)Dynamicalsymmetrybreaking
Thesymmetrybreakinggivingmasstogaugevectorbosonsmayarisefromthefermioncondensatebreakingchiralsymmetry.ThisisillustratedbythefollowingchiralinvariantLagrangian
1¯¯L=LF−eψγψV−eψγγψA−FµνFµν(A).(18)VµµAµ5µ0
4
HereFµν(V)andFµν(A)areabelianfieldstrengthforU(1)×U(1)symmetry.Chiralanomaliesareeventuallycanceledbyaddingintherequiredadditionalfermions.
TheWardidentityforthechiralcurrent
qµΓµ5(p+q/2,p−q/2)=S−1(p+q/2)γ5+γ5S−1(p−q/2),
(19)
showsthatifthefermionself-energyγµpµΣ2(p2)−Σ1(p2)acquiresanonvanishingΣ1(p2)term,thusadynamicalmassmatΣ1(m2)=m(takingforsimplicityΣ2(m2)=1),theaxialvertexΓµ5developsapoleatq2=0.Inleadingorderinq,weget
qµ
Γµ5→2mγ5
Thevalidityoftheapproximation,andinfactofthedynamicalapproach,restsonthehighmomentumbehaviorofthefermionselfenergy,butthisproblemwillnotbediscussedhere.
7
12
Γµ5γν5axiovector propagatorfermion propagator
Fig.6
Thisexampleillustratesthefactthatthetransversalityofthepolarization
tensorusedinthequantumfieldtheoreticapproachtomassgenerationisaconsequenceofaWardidentity.ThisistruewhethervectormassesarisethroughfundamentalfundamentalBEHbosonsorthroughfermionconden-sate.Thegenerationofgaugeinvariantmassesisthereforenotcontingentuponthe“treeapproximation”usedtogetthepropagatorsEqs.(11)and(16).Itisaconsequenceofthe1/q2singularityinthevacuumpolarisationscalarsEqs.(10),(13)or(22)whichcomesfromNGbosoncontribution.-Theequationofmotionapproach[2,3]
Shortlyaftertheaboveanalysiswaspresented,Higgswrotetwopapers.Inthefirstone[2],heshowedthattheproofoftheGoldstonetheorem[6,7],whichstatesthat,inrelativisticquantumfieldtheory,spontaneoussymmetrybreakingofacontinuousglobalsymmetryimplieszeromassNGbosons,failsinthecaseofgaugefieldtheory.Inthesecondpaper[3],hederivedtheBEHtheoryintermsoftheclassicalequationsofmotion,whichheformulatedfortheabeliancase.
FromtheactionEq.(2),takingasinEq.(9),theexpectationvalueoftheBEHbosontobeφ1,andexpandingtheorder
NGfieldφ2tofirstorder,onegetstheclassicalequationsofmotiontothat∂µ∂F{∂µφ2µν=−eeφφ1Aµ}=0φ,
(23)ν1{∂µφ2−e1Aµ}.
(24)
Defining
B1
µ=Aµ−
Inthisformulation,weseeclearlyhowtheGoldstonebosonisabsorbedintoaredefinedmassivevectorfieldwhichhasnolongerexplicitgaugeinvariance.Thesamephenomenoninthequantumfieldtheoryapproachisrelatedtotheunobservabilityofthe1/q2polementionedinthediscussionofEq.(15);thiswillbemadeexplicitinthenextsection.
Theequationofmotionapproachisclassicalincharacterbut,aspointedoutbyHiggs[3],theformulationoftheBEHmechanisminthequantumfieldtheorytermsofreference[1]indicatesitsvalidityinthequantumregime.WenowshowhowthelatterformulationsignalstherenormalizabilityoftheBEHtheory.
-Therenormalizationissue
ThemassivevectorpropagatorEq.(16)differsfromaconventionalfreemas-sivepropagatorintworespects.Firstthepresenceoftheunobservablelongi-tudinaltermreflectsthearbitrarinessofthegaugeparameterη.SecondtheNGpoleatq2=0inthetransverseprojectorgµν−qµqν/q2isunconventional.ItssignificanceismadeclearbyexpressingthepropagatoroftheAµfieldinEq.(16)as(puttingηtozero)
aDµν
≡
gµν−qµqν/q2
q2−µa2
+
1
q2
.(27)
ThefirsttermintherighthandsideofEq.(27)istheconventionalmassivevectorpropagator.Itmaybeviewedasthe(non-abeliangeneralizationofthe)freepropagatoroftheBµfielddefinedinEq.(25)whilethesecondtermisapuregaugepropagatorduetotheNGboson([1/eφ1]∂µφ2inEq.(25))whichconvertstheAµfieldintothismassivevectorfieldBµ.
ThepropagatorEq.(16)whichappearedinthefieldtheoreticapproachcon-tainsthus,inthecovariantgauges,thetransverseprojectorgµν−qµqν/q2inthenumeratorofthemassivegaugefieldAaµpropagator.Thisisinsharpcontradistinctiontothenumeratorgµν−qµqν/µa2characteristicofthecon-ventionalmassivevectorfieldBµpropagator.Itisthetransversalityoftheselfenergyincovariantgauges,whichledinthe“treeapproximation”tothetransverseprojectorinEq.(16).Asalreadymentioned,thetransversalityisaconsequenceofaWardidentityandthereforedoesnotdependonthetreeapproximation.Thisfactisalreadysuggestedfromthedynamicalexample
14
presentedabovebutwasproveninmoregeneraltermsinasubsequentpub-lication8[9].Theimportanceofthisfactisthatthetransversalityoftheself-energyincovariantgaugesdeterminesthepowercountingofirreduciblediagrams.ItisthenstraightforwardtoverifythattheBEHquantumfieldtheoryformulationisrenormalizablebypowercounting.
OnthisbasiswesuggestedthattheBEHtheoryconstitutesindeedacon-sistentrenormalizablefieldtheory[9].Toprovethisstatement,onemustverifythatthetheoryisunitary,afactwhichisnotapparentinthe“renor-malizable”covariantgaugesbecauseofthe1/q2poleintheprojector,butwouldbemanifestinthe“unitarygauge”definedinthefreetheorybytheBµpropagator.Intheunitarygaugehowever,renormalizationfrompowercountingisnotmanifest.Theequivalence,atthefreelevel,betweentheAµandBµfreepropagators,whichisonlytrueinagaugeinvarianttheorywheretheirdifferenceistheunobservableNGpropagatorappearinginEq.(27),istheclueoftheconsistencyoftheBEHtheory.Afullproofthatthetheoryisrenormalizableandunitarywasachievedby’tHooftandVeltman[10].
IV.Consequences
ThemostdramaticapplicationoftheBEHmechanismistheelectroweaktheory,amplyconfirmedbyexperiment.Considerableworkhasbeendone,usingtheBEHmechanism,toformulateGrandUnifiedtheoriesofnongrav-itationalinteractions.WeshallsummarizeherethesewellknownideasandthenevoketheconstructionofregularmonopolesandfluxlinesusingBEHbosons,becausetheyraisepotentiallyimportantconceptualissues.Weshallalsomentionbrieflytheattemptstoincludegravityintheunificationquest,inthesocalledM-theoryapproach,andfocusesinthiscontextonaninter-estinggeometricalinterpretationoftheBEHmechanism.-Theelectroweaktheory[11]
Intheelectroweaktheory,thegaugegroupistakentobeSU(2)×U(1)
a′′
withcorrespondinggeneratorsandcouplingconstantsgAaµTandgBµY.
TheSU(2)actsonleft-handedfermionsonly.TheelectromagneticchargeoperatorisQ=T3+Y′andtheelectricchargeeisusuallyexpressedintermsofthemixingangleθasg=e/sinθ,g′=e/cosθ.TheBEHbosons(φ+,φ0)areinadoubletofSU(2)andtheirU(1)chargeisY′=1/2.BreakingoccursinsuchawaythatQgeneratesanunbrokensubgroup,coupledtowhichis√themasslessphotonfield.Thusthevacuumischaracterizedbyφ=1/
4
whosediagonalizationyieldstheeigenvalues
2MW+
=
v2
4
g,
2
2
MZ
=
v2
2G)−1.
Althoughtheelectroweaktheoryhasbeenamplyverifiedbyexperiment,theexistenceoftheBEHbosonhas,asyet,notbeenconfirmed.ItshouldbenotedthatthephysicsoftheBEHbosonismoresensitivetodynamicalassumptionsthanthemassivevectorsW±andZ,beitagenuineelementaryfieldoramanifestationofacompositeduetoamoreelaboratemechanism.Henceobservationofitsmassandwidthisofparticularinterestforfurtherunderstandingofthemechanismatwork.-Grandunificationschemes
Thediscoverythatconfinementcouldbeexplainedbythestrongcouplinglimitofquantumchromodynamicsbasedonthe“color”gaugegroupSU(3)ledtotentativeGrandUnificationschemeswhereelectroweakandstronginteractioncouldbeunifiedinasimplegaugegroupGcontainingSU(2)×U(1)×SU(3)[12].BreakingoccursthroughvacuumexpectationvaluesofBEHfieldsandunificationcanberealizedathighenergiesbecausewhilethe
16
renormalizationgroupmakesthesmallgaugecouplingofU(1)increaseloga-rithmicallywiththeenergyscale,theconverseistruefortheasymptoticallyfreenonabeliangaugegroups.
-Monopoles,fluxtubesandelectromagneticduality
Inelectromagnetism,monopolescanbeincludedattheexpenseofintroduc-ingaDiracstring[13].Thelattercreatesasingularpotentialalongthestringterminatingatthemonopole.Forinstancetodescribeapoint-likemonopolelocatedatr=0,onecantaketheline-singularpotential
A
=gz3z3BA3ry2Bry2x1unobservabilitygauging outx1Fig. 8AnexampleistheSO(3)monopole,representedinFig.8,arisingfromthepotential
g
Aai=,eg=4π.(31)
r2
BreakingthesymmetrytoU(1)byaBEHfieldbelongingtotheadjointgroupSO(3)onecanremovethepointsingularitytogetthetopologicallystable’tHooft-Polyakovregularmonopole[14].
ThisprocedurecanbeextendedtoLiegroupsGofhigherrank[15].ForageneralLiegroupG,thepossibilityofgaugingouttheDiracstringdependsontheglobalpropertiesofG.Namely,themappingofasmallcirclesurroundingtheDiracstringontoGmustbeacurvecontinuouslydeformabletozero.ClosedcurvesinGarecharacterizedbyZwhereZisthesubgroupofthe
˜ofGsuchthatG=G˜/Z.GaugingoutcenteroftheuniversalcoveringG
onlyoccursforthecurvecorrespondingtotheunitelementofZ.Thisistheoriginfortheunconventionalfactorof2(4π=2.2π)inEq.(31)asSO(3)=SU(2)/Z2.
Theconstructionofregularmonopoleshasinterestingconceptualimplica-tions.
ThemixingbetweenspaceandisospaceindicesinEq.(31)meansthattheregularmonopoleisinvariantunderthediagonalsubgroupofSO(3)space×SO(3)isospace.Thisimpliesthataboundstateofascalarofisospin1/2withthemonopoleisaspace-timefermion.Inthisway,fermionscanbemadeoutofbosons[16].
18
OnecandefineregularmonopolesinalimitinwhichtheBEH-potentialvanishes.ThesearetheBPSmonopoles.Theyadmitasupersymmetricextensionsinwhichthereareindicationsthatelectromagneticdualitycanberealizedatafundamentallevel,namelythattheinterchangeofelectricandmagneticchargecouldberealizedbyequivalentbutdistinctactions.TheBEH-mechanism,whenGsymmetryiscompletelybroken,isarelativisticanalogofsuperconductivity.Thelattermaybeviewedasacondensationofelectriccharges.Magneticfluxisthenchanneledintoquantizedfluxtubes.Inconfinement,itistheelectricfluxwhichischanneledintoquantizedtubes.Thereforeelectric-magneticdualitysuggeststhat,atsomefundamentallevel,confinementisacondensationofmagneticmonopolesandconstitutesthemagneticdualoftheBEHmechanism[17].
-AgeometricalinterpretationoftheBEHmechanism
TheBEHmechanismoperateswithinthecontextofgaugetheories.DespitethefactthatgrandunificationschemesreachscalescomparabletothePlanckscale,therewas,apriori,noindicationthatYang-Millsfieldsofferanyinsightintoquantumgravity.Theonlyapproachtoquantumgravitywhichhadsomesuccess,inparticularinthecontextofaquantuminterpretationoftheblackholesentropies,arethesuperstringtheoryapproachesandthepossiblemergingofthefiveperturbativeapproaches(TypeIIA,IIB,TypeIandthetwoheteroticstrings)intoanelusiveM-theorywhoseclassicallimitwouldbe11-dimensionalsupergravity.OfparticularinterestinthatcontextisthediscoveryofDp-branesalongwhichtheendsofopenstringscanmove[18].Thisled,forthefirsttime,toaninterpretationoftheareaentropyofsomeblackholesintermsofacountingofquantumstates.HereweshallexplainhowDp-branesyieldageometricalinterpretationoftheBEHmechanism.WhenNBPSDp-branescoincide,theyadmitmasslessexcitationsfromtheN2zerolengthorientedstringswithbothendattachedontheNcoincidentbranes.ThereareN2masslessvectorsandadditionalN2masslessscalarsforeachdimensiontransversetothebranes.TheopenstringsectorhaslocalU(N)invariance.Atrest,BPSDp-branescanseparatefromeachotherinthetransversedimensionsatnocostofenergy.ClearlythiscanbreakthesymmetrygroupfromU(N)uptoU(1)Nwhenallthebranesareatdistinctlocationinthetransversespace,becausestringsjoiningtwodifferentbranes
19
havefinitelengthandhencenowdescribefinitemassexcitations.Theonlyremainingmasslessexcitationsarethenduetothezerolengthstringswithbothendsonthesamebrane.
Fig. 9
Dp-branesThissymmetrybreakingmechanismcanbeunderstoodasaBEHmechanismfromtheactiondescribinglowenergyexcitationsofNDp-branes.Thisactionisthereductiontop+1dimensionsof10-dimensionalsupersymmetricYang-MillswithU(N)gaugefields[19,20].TheLagrangianisL=−
1
2
DµAiDµAi−
1
ToidentifythelatterweconsiderthescalarpotentialinEq.(32),namelyV=Tr1
4,Aj]|m.
(34)
i,j
Aj]|nn|[Ai;m,n
m|[Ai,Wewrite
Herethediagonalelementsm|Aj{xj|n=xjmδmn+yj
mn.
(35)
yjmmn(=−[yjnm]∗)defined(N2}aretheBEHexpectationivaluesandtheymn=(ymn)1+i(ymn)−2,Nm)hermitian>n,andscalardisthefieldsnumber(ymn)a(a=1,2)
wherejjj
oftransverse
spacedimensions.Themassmatrixforthefields(yi
mn)ais
∂2V
andnotvacuumexpectationvalues.Thenondiagonalquantumdegreesoffreedomymn⊥(xm−xn)haveapositivepotentialenergyproportionaltothedistancesquaredbetweentheD0-branesmandn.HencetheygetlockedintheirgroundstatewhentheD0-branesarelargelyseparatedfromeachother.Inthisway,theD0-braneAi={ximn}matricescommuteatlargedistancescaleanddefinegeometricaldegreesoffreedom.Howeverthesematricesdonotcommuteatshortdistanceswherethepotentialenergiesof
i
theymngotozero.Thissuggeststhatthespace-timegeometryexhibitsnoncommutativityatsmalldistances,afeaturewhichmaywellturnouttobeanessentialelementofquantumgravity.
V.Remarks
Physics,asweknowit,isanattempttointerprettheapparentdiversityofnaturalphenomenaintermsofgenerallaws.Byessencethen,itincitesonetowardsaquestforunifyingdiversephysicallaws.
OriginallytheBEHmechanismwasconceivedtounifythetheoreticalde-scriptionoflongrangeandshortrangeforces.Thesuccessoftheelectroweaktheorymadethemechanismacandidateforfurtherunification.Granduni-ficationschemes,wherethescaleofunificationispushedclosetothescaleofquantumgravityeffects,raisedthepossibilitythatunificationmightalsohavetoincludegravity.Thistrendtowardsthequestforunificationreceivedafurtherimpulsefromthedevelopmentsofstringtheoryandfromitscon-nectionwitheleven-dimensionalsupergravity.ThelatterwasthenviewedasaclassicallimitofahypotheticalM-theoryintowhichallperturbativestringtheorieswouldmerge.Inthatcontext,thegeometrizationoftheBEHmechanismissuggestiveoftheexistenceofanunderlyingnoncommutativegeometry.
References
[1]F.EnglertandR.Brout,Phys.Rev.Lett.13(31August1964)321.[2]P.W.Higgs,PhysicsLetters12(15September1964)132.
22
[3]P.W.Higgs,Phys.Rev.Lett.13(19October1964)508.9
[4]Y.Nambu,Phys.Rev.Lett.4(1960)380.
[5]Y.NambuandG.Jona-Lasinio,Phys.Rev.122(1961)345;Phys.Rev.
1241961246.[6]J.Goldstone,IlNuovoCimento19(1961)154.
[7]J.Goldstone,A.SalamandS.Weinberg,Phys.Rev.127(1962)965.[8]S.Elitzur,Phys.Rev.D12(1975)3978.
[9]F.Englert,R.BroutandM.Thiry,IlNuovoCimento43A(1966)244;
seealsotheProceedingsofthe1997SolvayConference,FundamentalProblemsinElementaryParticlePhysics,IntersciencePublishersJ.Wi-leyansSons,p18.[10]Foradetailedhistoryonthissubject,seeM.Veltman“Thepathto
renormalizability”,invitedtalkattheThirdInternationalSymposiumontheHistoryofParticlePhysics,June24-27,1992;(PrintedinHoddesonandal.,1997).[11]S.L.Glashow,Nucl.Phys.B22(1961)579;S.Weinberg,Phys.Rev.
Lett.19(1967)1264;A.Salam,inElementaryParticlePhysicsed.N.Svartholm(AmquistandWiksels,Stockholm,1969).[12]H.Georgi,H.R.QuinnandS.Weinberg,Phys.Rev.Lett.333(1974)
1974.[13]P.A.M.Dirac,Phys.Rev.74(1948)817.
[14]G’tHooft,Nucl.Phys.B79(1974)276;A.M.Polyakov,ZhETF20
(1974)403,(JETPLett.20(1974)199).[15]F.EnglertandP.Windey,Phys.Rev.D14(1976)2728;P.Goddard,J.
NuytsandD.Olive,Nucl.Phys.B125(1977)1.
[16]R.JackiwandC.Rebbi,Phys.Rev.Lett.36(1976)1116;P.Hasenfratz
andG.’tHooft,Phys.Rev.Lett.36(1976)1119;A.Goldhaber,Phys.Rev.Lett.36(1976)1122.[17]N.SeibergandE.Witten,Nucl.Phys.B431(1994)484,hep-th/9408099,
andreferencestherein.[18]J.Dai,R.G.LeighandJ.Polchinski,Mod.Phys.Lett.A4(1989)2073.[19]J.Polchinski,Phys.Rev.D50(1994)6041.
[20]E.Witten,Nucl.Phys.B460(1996)335,hep-th/9510135.
[21]T.Banks,W.Fischler,S.H.ShenkerandL.Susskind,hep-th/9610043.
24
因篇幅问题不能全部显示,请点此查看更多更全内容