您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页薄膜材料及其制备技术

薄膜材料及其制备技术

来源:意榕旅游网


课程设计

实验课程名称 电子功能材料制备技术 实验项目名称 薄膜材料及薄膜技术 专 业 班 级

学 生 姓 名 学 号 指 导 教 师

薄膜材料及薄膜技术

薄膜技术发展至今已有200年的历史。在19世纪可以说一直是处于探索和预研阶段。经过一代代探索者的艰辛研究,时至今日大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位,各种材料的薄膜化已经成为一种普遍趋势。其中包括纳米薄膜、量子线、量子点等低维材料,高K值和低K值介质薄膜材料,大规模集成电路用Cu布线材料,巨磁电阻、厐磁电阻等磁致电阻薄膜材料,大禁带宽度的“硬电子学”半导体薄膜材料,发蓝光的光电半导体材料,高透明性低电阻率的透明导电材料,以金刚石薄膜为代表的各类超硬薄膜材料等。这些新型薄膜材料的出现,为探索材料在纳米尺度内的新现象、新规律,开发材料的新特性、新功能,提高超大规

模集成电路的集成度,提高信息存储记录密度,扩大半导体材料的应用范围,提高电子元器件的可靠性,提高材料的耐磨抗蚀性等,提供了物质基础。以至于将薄膜材料及薄膜技术看成21世纪科学与技术领域的重要发展方向之一。

一、薄膜材料的发展

在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应

用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。 自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。生物体生命现象的重要过程就是在这些表面上进行的。细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。细胞膜的这些结构和功能带来了生命,带来了神奇。

二、薄膜材料的分类

目前,对薄膜材料的研究正在向多种类、高性能、新工艺等方面发展,其基础研究也在向分子层次、原子层次、纳米尺度、介观结构等方向深入,新型薄膜材料的应用范围正在不断扩大。当前薄膜科学与技术得到迅猛发展的主要原因是,新型薄膜材料的研究工作,始终同现代高新技术相联系,并得到广泛的应用,常用的有:超导薄膜、导电薄膜、电阻薄膜、半导体薄膜、介质薄膜、绝缘薄膜、钝化与保护薄膜、压电薄膜、铁电薄膜、光电薄膜、磁电薄膜、磁光薄膜等。近10年来,新型薄膜材料在以下几个方面的发展更为突出: (1)金刚石薄膜

金刚石薄膜的禁带宽,电阻率和热导率大,载流子迁移率高,介电常数小,击穿电压高,是一种性能优异的电子薄膜功能材料,应用前景十分广阔。 金刚石薄膜有很多优异的性质:硬度高、耐磨性好、摩擦系数高、化学稳定性好、热导率高、热膨胀系数小,是优良的绝缘体。金刚石薄膜属于立方晶系,面心立方晶胞,每个晶胞含有8个C原子,每个C原子采取sp3杂化与周围4个C原子形成共价键,牢固的共价键和空间网状结构是金刚石硬度很高的原因。

利用它的高导热率,可将它直接积在硅材料上成为既散热又绝缘的薄层,是高频微波器件、超大规模集成电路最理想的散热材料。利用它的电阻率大,可以制成高温工作的二极管,微波振荡器件和耐高温高压的晶体管以及毫米波功率器件等。

金刚石薄膜制备的基本原理是:在衬底保持在800~1000℃的温度范围内,化学气相沉积的石墨是热力学稳定相,而金刚石是热力学不稳定相,利用原子态氢刻蚀石墨的速率远大于金刚石的动力学原理,将石墨去除,这样最终在衬底上沉积的是金刚石薄膜。金刚石薄膜的许多优良性能有待进一步开拓,我国已将金刚石薄膜纳入863新材料专题进行跟踪研究并取得了很大进展。 (2)铁电薄膜

铁电薄膜的制备技术和半导体集成技术的快速发展,推动了铁电薄膜及其集成器件的实用化。铁电材料已经应用于铁电动态随机存储器(FDRAM)、铁电场效应晶体管( FEET)、铁电随机存储器( FFRAM)、IC卡、红外探测与成像器件、超声与声表面波器件以及光电子器件等十分广阔的领域。铁电薄膜的制作方法一般采用溶胶-凌胶法、离子束溅射法、磁控溅射法、有机金属化学蒸汽沉积法、准分子激光烧蚀技术等。已经制成的晶态薄膜有铌酸锂、铌酸钾、钛酸铅、钛酸钡、钛酸锶、氧化铌和锆钛酸铅等,以及大量的铁电陶瓷薄膜材料。 (3)氮化碳薄膜

美国伯克利大学物理系的M.L.Cohen教授以b-Si3N4晶体结构为出发点,预言了一种新的C-N化合物b-Si3N4,Cohen计算出b-Si3N4b-C3N4是一种晶体结构类似于b-Si3N4,具有非常短的共价键结合的C-N化合物,其理论模量为4.27Mbars,接近于金刚石的模量4.43 Mbars。随后,不同的计算方法显示b-Si3N4具有比金刚石还高的硬度,不仅如此,b-Si3N4还具有一系列特殊的性质,引起了科学界的高度重视,目前世界上许多著名的研究机构都集中研究这一新型物质。

b-Si3N4的制备方法主要有激光烧蚀法、溅射法、高压合成、等离子增强化学气相沉积、真空电弧沉积、离子注入法等多种方法。在CNx膜的诸多性能中,最吸引人的可能超过金刚石的硬度,尽管现在还没有制备出可以直接测量其硬度的CNx晶体,但对CNx膜硬度的研究已有许多报道。

(4)半导体薄膜复合材料

以非晶硅氢合金薄膜(a—Si:H)和非晶硅基化物薄膜(a—SiGe:H、a—SiC:H、a—SiN:H等)为代表。它有良好的光电特性,可以应用于太阳能电池,其特点是:廉价、高效率和大面积化。为了改善这些器件的性能,又研制了多晶硅膜、微晶硅膜及纳米晶硅薄膜。这些器件已列入各国发展计划中,如日本的阳光计划,欧洲的焦耳—热量计划,美国的百万屋顶计划,中国的973和863计划,并已发展成为高新技术产业,另一项有发展前途的是Cu(1nGa)Se2(小面积效率>18.8%)及口为16.4%的CdTe薄膜太阳电池也列入国家863计划。这类半导体薄膜复合材料,特别是硅薄膜复合材料已开始用于低功耗、低噪声的大规模集成电路中,以减小误差,提高电路的抗辐射能力。

(5)超晶格薄膜材料

随着半导体薄膜层制备技术的提高,当前半导体超晶格材料的种类已由原来的砷化镓、镓铝砷扩展到铟砷、镓锑、铟铝砷、铟镓砷、碲镉、碲汞、锑铁、锑锡碲等多种。组成材料的种类也由半导体扩展到锗、硅等元素半导体,特别是今年来发展起来的硅、锗硅应变超晶格,由于它可与当前硅的前面工艺相容和集成,格外受到重视,甚至被誉为新一代硅材料。

半导体超晶格结构不仅给材料物理带来了新面貌,而且促进了新一代半导体器件的产生,除上面提到的可制备高电子迁移率晶体管、高效激光器、红外探测器外,还能制备调制掺杂的场效应管、先进的雪崩型光电探测器和实空间的电子转移器件,并正在设计微分负阻效应器件、隧道热电子效应器件等,它们将被广泛应用于雷达、电子对抗、空间技术等领域。 (6)纳米复合薄膜材料

随着纳米材料的出现,纳米薄膜(涂层)技术也得到相应的发展。时至今日,已从单一材料的纳米薄膜转向纳米复合薄膜的研究,薄膜的厚度也由数微米发展到数纳米的超薄膜。

纳米复合薄膜是指由特征维度尺寸为纳米数量级(1~100nm)的组元镶嵌于不同的基体里所形成的复合薄膜材料,有时也把不同组元构成的多层膜如超晶格称为纳米复合薄膜,它具有传统复合材料和现代纳米材料两者的优越性。

到目前为止,概括起来纳米复合材料可分为三种类型:①0-0复合,即不同

成分、不同相或不同种类的纳米粒子复合而成的纳米固体,通常采用原位压块、 相转变等方法实现,结构具有纳米非均匀性,也称为聚集型;②0-2复合,即把纳米粒子分散到二维的薄膜材料中,它又可分为均匀弥散和非均匀弥散两类,称为纳米复合薄膜材料。有时,也把不同材质构成的多层膜如超晶格也称为纳米复合薄膜材料。③0-3复合,即纳米粒子分散在常规三维固体中。另外,介孔固体亦可作为复合母体通过物理或化学方法将纳米粒子填充在介孔中,形成介孔复合的纳米复合材料。

纳米复合薄膜是一类具有广泛应用前景的纳米材料,按用途可分为两大类,即纳米复合功能薄膜和纳米复合结构薄膜。前者主要利用纳米粒子所具有的光、电、磁方面的特异性能 ,通过复合赋予基体所不具备的性能,从而获得传统薄膜所没有的功能。而后者主要通过纳米粒子复合提高机械方面的性能。由于纳米粒子的组成、性能、工艺条件等参量的变化都对复合薄膜的特性有显著的影响,因此可以在较多自由度的情况下人为地控制纳米复合薄膜的特性。

组成复合薄膜的纳米粒子可以是金属、半导体、绝缘体、有机高分子等材料,而复合薄膜的基体材料可以是不同于纳米粒子的任何材料。人们采用各种物理和化学方法先后制备了一系列金属/绝缘体、半导体/绝缘体、金属/半导体、金属/高分子、半导体/高分子等纳米复合薄膜。特别是硅系纳米复合薄膜材料得到了深入的研究,人们利用热蒸发、溅射、等离子体气相沉积等各种方法制备了Si/SiOx、Si/a-Si:H、Si/SiNx、Si/SiC等纳米镶嵌复合薄膜。尽管目前对其机制不十分清楚,却 有大量实验现象发现在此类纳米复合薄膜中观察到了强的从红外到紫外的可见光发射。由于这一类薄膜稳定性大大高于多孔硅,工艺上又可与集成电路兼容,因而被期待作为新型的光电材料应用于大规模光电集成电路。

由于纳米复合薄膜的纳米相粒子的量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道效 应等使得它们的光学性能、电学性能、力学性能、催化性能、生物性能等方面呈现出常规材 料不具备的特性。因此,纳米复合薄膜在光电技术、生物技术、能源技术等各个领域都有广 泛的应用前景。现以硅系纳米复合薄膜材料为例介绍它们的特性及其应用。

三、纳米复合薄膜的制备技术

膜的方法进行适当的改进,控制必要的参数就可以获得纳米复合薄膜,比较

常见的制备方法有等离子体化学气相沉积技术(PCVD)、溶胶-凝胶法(sol-gel)和溅射法(Sputtering)热分解化学气相沉积技术(CVD)等。 (1)等离子体化学气相沉积技术(PCVD)

PCVD是一种新的制膜技术,它是借助等离子体使含有薄膜组成原子的气态物质发生化学反应而在基板上沉积薄膜的一种方法,特别适合于半导体薄膜和化合物薄膜的合成,被视为第二代薄膜技术。

PCVD技术是通过反应气体放电来制备薄膜的,这就从根本上改变了反应体系的能量供给方式 ,能够有效地利用非平衡等离子体的反应特征。当反应气体压力为101~102Pa时,电子温度比气体温度约高1~2个数量级,这种热力学非平衡状态为低温制备纳米薄膜提供了条件。由于等离子体中的电子温度高达104K,有足够的能量通过碰撞过程使气体分子激发、分解和电离,从而大大提高了反应活性,能在较低的温度下获得纳米级的晶粒,且晶粒尺寸也易于控制。所以被广泛用于纳米镶嵌复合膜和多层复合膜的制备,尤其是硅系纳米复合薄膜的制备。

PCVD装置虽然多种多样,但基本结构单元往往大同小异。如果按等离子体发生方法划分,有直流辉光放电、射频放电、微波放电等几种。目前,广泛使用的是射频辉光放电PCVD装置, 其中又有电感耦合和电容耦合之分。实验使用的钟罩型电容耦合辉光放电PCVD 装置,射频频率为13.586MHz,电极间矩为2.5cm。电容耦合辉光放电装置的最大优点是可以获得大面积均匀的电场分布,适于大面积纳米复合薄膜的制备。关于微波放电的ECR法由于能够产生长寿命自由基和高密度等离子体已引起了广泛兴趣,但尚处于积极研究阶段。因此,可以说射频放电的电感耦合和平行板电容耦合是目前最常用的PCVD装置。 (2)溶胶-凝胶法(sol-gel)

溶胶-凝胶法是60年代发展起来的一种制备玻璃、陶瓷等无机材料的新方法。近年来有许多人利用该方法制备纳米复合薄膜。其基本步骤是先用金属无机盐或有机金属化合物在低温下液相合成为溶胶,然后采用提拉法(dip-coating) )或旋涂法(spin-coating)使溶液吸附在衬底上,经胶化过程(gelating)成为凝胶,凝胶经一定温度处理后即可得到纳米晶复合薄膜,目前已采用sol-gel法得到的纳米镶嵌复合薄膜主要有Co(Fe,Ni,Mn)/SiO2,CdS(ZnS,PbS)/SiO2。由于

溶胶的先驱体可以提纯且溶胶-凝胶过程在常温下可液相成膜,设备简单,操作方便。因此,溶胶-凝胶法是常见的纳米复合薄膜的制备方法之一。 (3)溅射法(Sputtering)

溅射镀膜法是利用直流或高频电场使惰性气体发生电离,产生辉光放电等离子体,电离产生的正离子和电子高速轰击靶材,使靶材上的原子或分子溅射出来,然后沉积到基板上形成薄膜。美国B.G.Potter和德国慕尼黑工大Koch研究组都采用这种方法制备纳米晶半导体镶嵌在介质膜内的纳米复合薄膜。Baru等人利用Si和SiO2组合靶进行射频磁控溅射获得Si/SiO2纳米镶嵌复合薄膜发光材料。溅射法镀制薄膜原则上可溅射任何物质,可以方便地制备各种纳米发光材料,是应用较广的物理沉积纳米复合薄膜的方法。 (4)热分解化学气相沉积技术(CVD)

CVD技术主要是利用含有薄膜元素的一种或几种气相化合物或单质在衬底表面上进行化学反应生成薄膜的方法。其薄膜形成的基本过程包括气体扩散、反应气体在衬底表面的吸附、表 面反应、成核和生长以及气体解吸、扩散挥发等步骤。CVD内的输运性质(包括热、质量及动 量输运)、气流的性质(包括运 动速度、压力分布、气体加热、激活方式等)、基板种类、表 面状态、温度分布状态等都影响薄膜的组成、结构、形态与性能。利用该方法可以制备氧化物、氟化物、碳化物等纳米复合薄膜。W.A.P.Classen等人报道SiO2或Si3N4基板上用 CVD法可以得到纳米尺寸的硅孤鸟状晶粒。我们用CVD法成功地制备了Si/SiC纳米复合薄膜材料。我们实验使用的常压化学相沉积设备反应装置的特点是反应气体通过匀速移动的喷头直接喷到基板上,可以精确控制反应温度和反应时间来控制晶粒的大小,从而获得纳米复合薄膜材料。

由于PVD、CVD等方法工艺复杂,成本昂贵,不宜用于大面积制备纳米复合薄膜,因此近十多年来,国外对电沉积法制备纳米晶体材料进行了较多研究,国内近几年也开始了这方面的研究。电沉积法因设备简单、工艺成熟、低温且参数可控等突出优点而逐渐受到重视。电沉积方法经历了直流、脉冲及选择性喷射电沉积的发展,目前已能制备出各种厚度的薄膜。已研究的电沉积纳米材料有镍、铜、钴等,其中镍及镍基合金的复合沉积是最受关注的,已沉积的材料有Ni-P、Ni-Fe、Ni-Cu、Ni-Mo、Ni-SiC、Ni-Al2O3、Ni-ZrO2等。在基体上电沉积薄金

属层(厚度100μm以下)以改善表面性能是电沉积技术最广泛的应用。电沉积的纳米结构薄层,具有高耐磨、耐蚀性的同时,又具有高的硬度及与基体极好的结合力,可作为理想的保护性镀层;所具有的低磨损率和较低的摩擦系数,可用于要求高耐磨性的同时又要求低摩擦系数的场合,如刀具材料、汽车发动机和液压活塞的表面涂层等。

四、学习薄膜技术的意义

如今材料、能源、信息工程是近代社会在物质上的三大支柱,有人还说材料是能源、信息工程的基础。而材料研究至今所面临的问题是扩大资源,提高质量,改进性能与合理使用。如何提高质量,改进性能,目前集中注意到两个方面:一个是材料表面的研究,已经发展为材料表面技术新领域,另一个是研究材料内部的结构如非晶、微晶、高完整性结晶等问题。材料表面技术日益受到重视的原因是近代技术对材料多方面性能的要求,已远非一种材料所能满足。再者,薄膜制作和微细加工工艺不断创新,特别是各种薄膜在高新技术中的应用更加普及至使互联网中采集、处理信息及通信网络设备中,都需要数量巨大的元器件、电子回路、集成电路等,制造这些都要采用薄膜技术可以说,薄膜技术和薄膜材料已成为构筑高新技术产业的基本要素。

在科学日新月异的今天,真空薄膜技术与薄膜材料越来越发挥其无可替代的作用。无论在民用或军事上,我们都可以发现它的影子。在民用上,它在微电子行业上的作用越发突出,并出现一系列以薄膜技术与薄膜材料为根基的高科技新产品,而以太阳能薄膜为代表的一系列光学薄膜,在利用太阳能等新能源方向上给人们以新的希望,防腐薄膜等耐腐蚀薄膜使我们的产品更加耐用,为我们的飞机保驾护航;在军事上,以薄膜技术与薄膜材料为基础的新一代隐形技术,防腐蚀技术以及导弹追踪技术则给予我们更加巩固的国防。

在真空薄膜技术与薄膜材料的研究上,中国取得了很大的成就,但由于我国科研起步较晚,使得我国在薄膜技术的研究上与国外先进技术相比有一定差距。作为马上就要进入社会的一代人,我们必须扎实学习薄膜技术及相关知识,为祖国的社会主义现代化做贡献,努力追平与国外的差距,甚至超越。

五、薄膜材料的前景

新型薄膜材料对当代高新技术起着重要的作用,是国际上科学技术研究的热门学科之一。开展新型薄膜材料的基础研究直接关系到信息技术、微电子技术、计算机科学等领域的发展方向和进程。新型薄膜的发展依赖于人们对先进薄膜材料、先进的成膜技术和薄膜结构的控制,以及对薄膜的物理、化学行为的深入研究。

迄今,人们已经设计和开发出了多种不同结构和不同功能的薄膜材料,这些材料在化学分离、化学传感器、人工细胞、人工脏器、水处理等许多领域具有重要的潜在应用价值,被认为将是21世纪膜科学与技术领域的重要发展方向之一。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务