2、在边长为a厘米的正方形上剪下一个最大的圆,这个圆与正方形的周长比是( )。 3、已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},E={ G拓扑排序的结果是:V1、V2、V4、V3、V5、V6、V7 4、 二叉树的层次遍历序列的第一个结点是二叉树的根。实际上,层次遍历序列中的每个结点都是“局部根”。确定根后,到二叉树的中序序列中,查到该结点,该结点将二叉树分为“左根右”三部分。若左、右子树均有,则层次序列根结点的后面应是左右子树的根;若中序序列中只有左子树或只有右子树,则在层次序列的根结点后也只有左子树的根或右子树的根。这样,定义一个全局变量指针R,指向层次序列待处理元素。算法中先处理根结点,将根结点和左右子女的信息入队列。然后,在队列不空的条件下,循环处理二叉树的结点。队列中元素的数据结构定义如下: typedef struct { int lvl; //层次序列指针,总是指向当前“根结点”在层次序列中的位置 int l,h; //中序序列的下上界 int f; //层次序列中当前“根结点”的双亲结点的指针 int lr; // 1—双亲的左子树 2—双亲的右子树 }qnode; BiTree Creat(datatype in[],level[],int n) //由二叉树的层次序列level[n]和中序序列in[n]生成二叉树。 n是二叉树的结点数 {if (n<1) {printf(“参数错误\\n”); exit(0);} qnode s,Q[]; //Q是元素为qnode类型的队列,容量足够大 init(Q); int R=0; //R是层次序列指针,指向当前待处理的结点 BiTree p=(BiTree)malloc(sizeof(BiNode)); //生成根结点 p->data=level[0]; p->lchild=null; p->rchild=null; //填写该结点数据 for (i=0; i s.lvl=++R; s.l=i+1; s.h=n-1; s.f=p; s.lr=2; enqueue(Q,s); } else if (i==n-1) //根结点无右子树,遍历序列的1—n-1是左子树 {p->rchild=null; s.lvl=++R; s.l=1; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s); } else //根结点有左子树和右子树 {s.lvl=++R; s.l=0; s.h=i-1; s.f=p; s.lr=1;enqueue(Q,s);//左子树有关信息入队列 s.lvl=++R; s.l=i+1;s.h=n-1;s.f=p; s.lr=2;enqueue(Q,s);//右子树有关信息入队列 } while (!empty(Q)) //当队列不空,进行循环,构造二叉树的左右子树 { s=delqueue(Q); father=s.f; for (i=s.l; i<=s.h; i++) if (in[i]==level[s.lvl]) break; p=(bitreptr)malloc(sizeof(binode)); //申请结点空间 p->data=level[s.lvl]; p->lchild=null; p->rchild=null; //填写该结点数据 if (s.lr==1) father->lchild=p; else father->rchild=p; //让双亲的子女指针指向该结点 if (i==s.l) {p->lchild=null; //处理无左子女 s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); } else if (i==s.h) {p->rchild=null; //处理无右子女 s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s); } else{s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);//左子树有关信息入队列 s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); //右子树有关信息入队列 } }//结束while (!empty(Q)) return(p); }//算法结束 5、 在1.66,1.6,1.7%和3/4中,最大的数是( ),最小的数是( )。 6、如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设 = , = ,那么 = _________ (结果用 、 表示). 7、六年级三个班植树,任务分配是:甲班要植三个班植树总棵树的40%,乙、丙两班植树的棵树的比是4:3,当甲班植树200棵时,正好完成三个班植树总棵树的2/7。丙班植树多少棵? 8、 在1.66,1.6,1.7%和3/4中,最大的数是( ),最小的数是( )。 9、The student found that all her homework was____ than she____ in her old school. A. less heavy, used to get B. less heavier, was used to getting C. less heavier, used to get D. less heavy, was used to getting 10、假设以邻接矩阵作为图的存储结构,编写算法判别在给定的有向图中是否存在一个简单有向回路,若存在,则以顶点序列的方式输出该回路(找到一条即可)。(注:图中不存在顶点到自己的弧) 有向图判断回路要比无向图复杂。利用深度优先遍历,将顶点分成三类:未访问;已访问但其邻接点未访问完;已访问且其邻接点已访问完。下面用0,1,2表示这三种状态。前面已提到,若dfs(v)结束前出现顶点u到v的回边,则图中必有包含顶点v和u的回路。对应程序中v的状态为1,而u是正访问的顶点,若我们找出u的下一邻接点的状态为1,就可以输出回路了。 void Print(int v,int start ) //输出从顶点start开始的回路。 {for(i=1;i<=n;i++) if(g[v][i]!=0 && visited[i]==1 ) //若存在边(v,i),且顶点i的状态为1。 {printf(“%d”,v); if(i==start) printf(“\\n”); else Print(i,start);break;}//if }//Print void dfs(int v) {visited[v]=1; for(j=1;j<=n;j++ ) if (g[v][j]!=0) //存在边(v,j) if (visited[j]!=1) {if (!visited[j]) dfs(j); }//if else {cycle=1; Print(j,j);} visited[v]=2; }//dfs void find_cycle() //判断是否有回路,有则输出邻接矩阵。visited数组为全局变量。 {for (i=1;i<=n;i++) visited[i]=0; for (i=1;i<=n;i++ ) if (!visited[i]) dfs(i); }//find_cycle 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务