您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页2017-2018学年第一学期江苏省苏州市高三期中调研试卷数学(理)

2017-2018学年第一学期江苏省苏州市高三期中调研试卷数学(理)

来源:意榕旅游网
苏州市2017—2018学年第一学期高三期中调研试卷 数

注意事项:

1.本试卷共4页.满分160分,考试时间120分钟.

2.请将填空题的答案和解答题的解题过程写在答题卷上,在本试卷上答题无效. 3.答题前,务必将自己的姓名、学校、准考证号写在答题纸的密封线内.

一、填空题(本大题共14小题,每小题5分,共70分,请把答案直接填写在答卷纸相应的位置) ...1.已知集合U{1,2,3,4,5},A{1,3},B{2,3},则AI(ðUB) ▲ . 2.函数y 学 2017.11

1的定义域为 ▲ .

ln(x1)3.设命题p:x4;命题q:x25x4≥0,那么p是q的 ▲ 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).

4.已知幂函数yx2mm(mN*)在(0,)是增函数,则实数m的值是 ▲ . 5.已知曲线f(x)ax3lnx在(1,f(1))处的切线的斜率为2,则实数a的值是 ▲ . 6.已知等比数列{an}中,a32,a4a616,则

2a7a9 ▲ .

a3a5,则的值是 ▲ . 12f(x)8.已知奇函数f(x)在(,0)上单调递减,且f(2)0,则不等式0的解集为 ▲ .

x19.已知tan()2,则cos2的值是 ▲ .

4x8,x≤2(a0且a1)的值域为[6,),则实数a的取值范围是 ▲ . 10.若函数f(x)logx5,x2a7.函数ysin(2x)(0)图象的一条对称轴是x211(nN*),则b1b2Lb2017 ▲ . 11.已知数列{an},{bn}满足a1,anbn1,bn12an112.设△ABC的内角A,B,C的对边分别是a,b,c,D为AB的中点,若bacosCcsinA且CD2,则△ABC面积的最大值是 ▲ .

13.已知函数f(x)sin(x),若对任意的实数[6f()f()0,则实数m的最小值是 ▲ .

5,],都存在唯一的实数[0,m],使62高三数学 期中试卷 第 1 页 共 14 页

lnx,x014.已知函数f(x),若直线yax与yf(x)交于三个不同的点A(m,f(m)),B(n,f(n)),

2x1,x≤0C(t,f(t))(其中mnt),则n12的取值范围是 ▲ . m二、解答题(本大题共6个小题,共90分,请在答题卷区域内作答,解答时应写出文字说明、证明过程或

演算步骤) 15.(本题满分14分)

已知函数f(x)间的距离为

21sin(2ax)b(a0,b0)的图象与x轴相切,且图象上相邻两个最高点之242. 2(1)求a,b的值;

(2)求f(x)在[0,]上的最大值和最小值.

16.(本题满分14分)

在错误!未找到引用源。中,角A,B,C所对的边分别是a,b,c,已知sinBsinCmsinA(mR),且

4a24bc0错误!未找到引用源。错误!未找到引用源。.

(1)当a2,m5时,求b,c的值; 4(2)若角A错误!未找到引用源。为锐角,求m的取值范围.

高三数学 期中试卷 第 2 页 共 14 页

17.(本题满分15分)

已知数列{an}的前n项和是Sn,且满足a11,Sn13Sn1(nN*). (1)求数列{an}的通项公式; (2)在数列{bn}中,b13,bn1bnan1(nN*),若不等式anbn≤n2对nN*有解,求实数an的取值范围.

18.(本题满分15分)

如图所示的自动通风设施.该设施的下部ABCD是等腰梯形,其中AB为2米,梯形的高为1米,CD是个半圆,为3米,上部CmD固定点E为CD的中点.MN是由电脑控制可以上下滑动的伸缩横杆(横

杆面积可忽略不计),且滑动过程中始终保持和CD平行.当MN位于CD下方和上方时,通风窗的形状均为矩形MNGH(阴影部分均不通风). (1)设MN与AB之间的距离为x(0≤x关于x的函数yS(x);

(2)当MN与AB之间的距离为多少米时,通风窗的通风面积S取得最大值?

5且x1)米,试将通风窗的通风面积S(平方米)表示成2

高三数学 期中试卷 第 3 页 共 14 页

19.(本题满分16分)

已知函数f(x)lnx,g(x)x2xm. (1)求过点P(0,1)的f(x)的切线方程;

(2)当m0时,求函数F(x)f(x)g(x)在(0,a]的最大值;

(3)证明:当m≥-3时,不等式f(x)g(x)x2(x2)ex对任意x[,1]均成立(其中e为自然对数的底数,e2.718...).

20.(本题满分16分)

已知数列{an}各项均为正数,a11,a22,且anan3an1an2对任意nN*恒成立,记{an}的前n项和为Sn.

(1)若a33,求a5的值;

(2)证明:对任意正实数p,{a2npa2n1}成等比数列;

(3)是否存在正实数t,使得数列{Snt}为等比数列.若存在,求出此时an和Sn的表达式;若不存在,说明理由.

122017—2018学年第一学期高三期中调研试卷

数 学 (附加) 2017.11

注意事项:

1.本试卷共2页.满分40分,考试时间30分钟. 2.请在答题卡上的指定位置作答,在本试卷上作答无效.

3.答题前,请务必将自己的姓名、学校、考试证号填写在答题卡的规定位置.

高三数学 期中试卷 第 4 页 共 14 页

21.【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,...................则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A.(几何证明选讲) (本小题满分10分)

如图,AB为圆O的直径,C在圆O上,CFAB于F,点D为线段CF上任意一点,延长AD交圆O于E,AEC300. (1)求证:AFFO;

(2)若CF3,求ADAE的值.

B.(矩阵与变换) (本小题满分10分)

CDAFOEBurr412u49已知矩阵A,2,求A的值. 21

C.(极坐标与参数方程) (本小题满分10分)

4

xt25

在平面直角坐标系中,直线l的参数方程为(t为参数),以原点O为极点,x轴正半轴为

y2t5

极轴建立极坐标系,圆C的极坐标方程为2acos()(a0).

4(1)求直线l和圆C的直角坐标方程;

(2)若圆C任意一条直径的两个端点到直线l的距离之和为5,求a的值.

D.(不等式选讲) (本小题满分10分)

设x,y均为正数,且xy,求证:2x1≥2y3.

x22xyy2

【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说.......明、证明过程或演算步骤.

高三数学 期中试卷 第 5 页 共 14 页

22.(本小题满分10分)

在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏. (1)求甲拿到礼物的概率;

(2)设表示甲参加游戏的轮数,求的概率分布和数学期望E(). ..

23.(本小题满分10分)

(1)若不等式(x1)ln(x1)≥ax对任意x[0,)恒成立,求实数a的取值范围; (2)设nN*,试比较

111与ln(n1)的大小,并证明你的结论. L23n12017—2018学年第一学期高三期中调研试卷

数 学 参 考 答 案

一、填空题(本大题共14小题,每小题5分,共70分)

1.{1} 2.(1,2)U(2,) 3.充分不必要 4.1 5.

134 8.(2,0)U(1,2) 9. 10.(1,2]

531111. 12.21 13. 14.(1,e)

e201826.4 7.

二、解答题(本大题共6个小题,共90分) 15.(本题满分14分)

解:(1)∵f(x)图象上相邻两个最高点之间的距离为

, 2∴f(x)的周期为

2且a0,·,∴·····································································2分 2|a|22∴a2,··················································································································4分

高三数学 期中试卷 第 6 页 共 14 页

21sin(4x)b, 24212且b0,·又∵f(x)的图象与x轴相切,∴|b|······················································6分

2221;∴b··········································································································8分 2222sin(4x)(2)由(1)可得f(x), 242∵x[0,],∴4x[,],

444421∴当4x,即x时,f(x)有最大值为;·················································11分

2444当4x,即x时,f(x)有最小值为0.························································14分

4216此时f(x)16.(本题满分14分)

解:由题意得bcma,a24bc0.···············································································2分

(1)当错误!未找到引用源。时,错误!未找到引用源。,

1b2b解得·······························································································6分 2;·1或c2c2a2(ma)a222222bca(bc)2bca22m23,·(2)cosA···························8分 2a2bc2bc22∵A错误!未找到引用源。为锐角,∴cosA2m23(0,1),∴

3···················································11分 m22,·

2又由bcma可得m0,·························································································13分 ∴6m2.·····································································································14分 217.(本题满分15分)

解:(1)∵Sn13Sn1(nN*),∴Sn3Sn11(nN*,n≥2),

∴an13an(nN*,n≥2),·························································································2分 又当n1时,由S23S11得a23符合a23a1,∴an13an(nN*),······························3分 ∴数列{an}是以1为首项,3为公比的等比数列,通项公式为an3n1(nN*);·····················5分 (2)∵bn1bnan13(nN*),∴{bn}是以3为首项,3为公差的等差数列,····················7分 an高三数学 期中试卷 第 7 页 共 14 页

∴bn33(n1)3n(nN*),·····················································································9分 ∴anbn≤n,即32n1n23n3n≤n,即≤n1对nN*有解,··································10分

32n23n(nN*), 设f(n)n13(n1)23(n1)n23n2(n24n1)n1∵f(n1)f(n),

3n33n∴当n≥4时,f(n1)f(n),当n4时,f(n1)f(n), ∴f(1)f(2)f(3)f(4)f(5)f(6)L, ∴[f(n)]maxf(4)∴≤4,···························································································14分 274.·············································································································15分 2718.(本题满分15分)

解:(1)当0≤x1时,过A作AKCD于K(如上图),

CDAB1,HM1x, 22AKMHHM1x由, 2,得DHDKDH22则AK1,DK∴HG32DH2x,

∴S(x)HMHG(1x)(2x)x2x2;·······························································4分 当1x5时,过E作ETMN于T,连结EN(如下图), 22MN93则ETx1,TN(x1)2(x1)2,

242∴MN29(x1)2, 49(x1)2(x1),······································································8分 4∴S(x)MNET2x2x2,0≤x1综上:S(x)································································9分 95;·2(x1),1x2(x1)42(2)当0≤x1时,S(x)x2x2(x)2129在[0,1)上递减, 4∴S(x)maxS(0)2;································································································11分

高三数学 期中试卷 第 8 页 共 14 页

952当1x时,S(x)2(x1)(x1)2≤242当且仅当(x1)(x1)29(x1)294,

2432591(1,)时取“”, (x1)2,即x424999,此时S(x)max2,∴S(x)的最大值为,············································14分 444321米时,通风窗的通风面积S取得最大值.·答:当MN与AB之间的距离为···················15分 4∴S(x)max19.(本题满分16分)

解:(1)设切点坐标为(x0,lnx0),则切线方程为ylnx0将P(0,1)代入上式,得lnx00,x01,

∴切线方程为yx1;·······························································································2分 (2)当m0时,F(x)lnxx2x,x(0,), ∴F(x)1(xx0), x0(2x1)(x1)············································································3分 ,x(0,),

x当0x1时,F(x)0,当x1时,F(x)0,

∴F(x)在(0,1)递增,在(1,)递减,·············································································5分 ∴当0a≤1时,F(x)的最大值为F(a)lnaa2a;

当a1时,F(x)的最大值为F(1)0;········································································7分 (3)f(x)g(x)x2(x2)ex可化为m(x2)exlnxx,

设h(x)(x2)exlnxx,x[,1],要证m≥-3时mh(x)对任意x[,1]均成立, 只要证h(x)max3,下证此结论成立.

12121······················································8分 x1时,x10,·

2111设u(x)ex,则u(x)ex20,∴u(x)在(,1)递增,

xx211又∵u(x)在区间[,1]上的图象是一条不间断的曲线,且u()e20,u(1)e10,

22∵h(x)(x1)(ex),∴当

1x∴x0(,1)使得u(x0)0,即ex0121,lnx0x0,····················································11分 x0当x(,x0)时,u(x)0,h(x)0;当x(x0,1)时,u(x)0,h(x)0;

12高三数学 期中试卷 第 9 页 共 14 页

∴函数h(x)在[,x0]递增,在[x0,1]递减, ∴h(x)maxh(x0)(x02)ex0lnx0x0(x02)1212····························14分 2x012x0,

x0x0∵y12212x在x(,1)递增,∴h(x0)12x01223,即h(x)max3,

x0x2∴当m≥-3时,不等式f(x)g(x)x2(x2)ex对任意x[,1]均成立.··························16分 20.(本题满分16分)

解:(1)∵a1a4a2a3,∴a46,又∵a2a5a3a4,∴a5分

123······································2a49;·

2aaan1an2(2)由nn3,两式相乘得anan1an3an4an1an22an3,

an1an4an2an3∵an0,∴anan4an22(nN*),

从而{an}的奇数项和偶数项均构成等比数列,···································································4分 设公比分别为q1,q2,则a2na2q2n12q2n1,a2n1a1q1n1q1n1,······································5分 又∵

an3an1aa2q,∴4222,即q1q2,···························································6分 =an2ana3a1q1设q1q2q,则a2npa2n1q(a2n2pa2n3),且a2npa2n10恒成立,

数列{a2npa2n1}是首项为2p,公比为q的等比数列,问题得证;····································8分 (3)法一:在(2)中令p1,则数列{a2na2n1}是首项为3,公比为q的等比数列,

3k ,q1∴S2k(a2ka2k1)(a2k2a2k3)(a2a1)3(1qk),

1q,q13k2qk1 ,q1,·····································································10分 S2k1S2ka2k3(1qk)k11q2q,q1且S11,S23,S33q,S433q,

2(S2t)(S1t)(S3t),∵数列{Snt}为等比数列,∴ 2(S3t)(S2t)(S4t),高三数学 期中试卷 第 10 页 共 14 页

22t6q(1t),(3t)(1t)(3qt),即,即 2tq3,(3qt)(3t)(33qt),t1解得(t3舍去),·························································································13

q4分

∴S2k4k122k1,S2k122k11, 从而对任意nN*有Sn2n1, 此时Snt2n,

Snt2为常数,满足{Snt}成等比数列,

Sn1tn1当n≥2时,anSnSn12n22n1,又a11,∴an2n1(nN*),

综上,存在t1使数列{Snt}为等比数列,此时an2n1,Sn2n1(nN*).······················16分 法二:由(2)知,则a2n2qn1,a2n1qn1,且S11,S23,S33q,S433q,

2(S2t)(S1t)(S3t),∵数列{Snt}为等比数列,∴ 2(S3t)(S2t)(S4t),22t6q(1t),(3t)(1t)(3qt),即,即 2tq3,(3qt)(3t)(33qt),t1解得(t3舍去),·······················································································11

q4分

∴a2n2qn122n1,a2n122n2,从而对任意nN*有an2n1,····································13分 ∴Sn2222此时Snt2n,

012n112n2n1, 12Snt2为常数,满足{Snt}成等比数列,

Sn1t综上,存在t1使数列{Snt}为等比数列,此时an2n1,Sn2n1(nN*).······················16分 21.【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,...................则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A.(几何证明选讲,本小题满分10分)

解:(1)证明 :连接OC,AC,∵AEC300,∴AOC2AEC600,

CDE高三数学 期中试卷 第 11 页 共 14 页

AFOB又OAOC,∴AOC为等边三角形,

∵CFAB,∴CF为AOC中AO边上的中线,

∴AFFO;······································································5分 (2)解:连接BE,

∵CF3,AOC是等边三角形, ∴可求得AF1,AB4,

∵AB为圆O的直径,∴AEB90o,∴AEBAFD, 又∵BAEDFA,∴AEB∽AFD,∴

ADAF, ABAE即ADAEABAF414.··················································································10分 B.(矩阵与变换,本小题满分10分) 解:矩阵A的特征多项式为f()122223, 1令f()0,解得矩阵A的特征值11,23,····························································2分

uur11当11时特征向量为1,当23时特征向量为2,·····································6分

11ur4uuruur又∵132,······························································································8分

2uur3501∴A132250.···········································································10分

314949149uruuruurC.(极坐标与参数方程,本小题满分10分)

解:(1)直线l的普通方程为x2y20;··········································································3分

a2a2a2圆C的直角坐标方程为(x)(y);·······························································6分

222(2)∵圆C任意一条直径的两个端点到直线l的距离之和为5,

aa2|55∴圆心C到直线l的距离为,即2,·······················································8分 225|解得a3或a.·······························································································10分 D.(不等式选讲,本小题满分10分) 证:∵x0,y0,xy0,

∴2x13112y2(xy) 222x2xyy(xy)高三数学 期中试卷 第 12 页 共 14 页

(xy)(xy)1123(xy)≥33,

(xy)2(xy)2∴2x1····················································································10分 ≥2y3.

x22xyy222.(本题满分10分)

解:(1)甲拿到礼物的事件为A,

在每一轮游戏中,甲留下的概率和他摸卡片的顺序无关,

13211

,

2532101······················································································3分 答:甲拿到礼物的概率为;·10····································································4分 (2)随机变量的所有可能取值是1,2,3,4.·

则P(A)1P1,

2121P2,

2551311P3,

253101321P4,

2535随机变量的概率分布列为:

 P 1 2 3 4 1 21 51 101 5·············································8分 所以E()12323.(本题满分10分)

121511····································································10分 42.105解:(1)原问题等价于ln(x1)ax≥0对任意x[0,)恒成立, x1x1aax令g(x)ln(x1),则g'(x),

(x1)2x1当a≤1时,g'(x)x1a≥0恒成立,即g(x)在[0,)上单调递增,

(x1)2∴g(x)≥g(0)0恒成立;

当a1时,令g'(x)0,则xa10,

∴g(x)在(0,a1)上单调递减,在(a1,)上单调递增, ∴g(a1)g(0)0,即存在x0使得g(x)0,不合题意;

综上所述,a的取值范围是(,1].················································································4分 (2)法一:在(1)中取a1,得ln(x1)x(x(0,)), x1高三数学 期中试卷 第 13 页 共 14 页

令x(nN*),上式即为ln(即ln(n1)lnn1nn11, )nn11,·····························································································7分 n11ln2ln1,2ln3ln21,∴ 3LLln(n1)lnn1,n1111····················································10分 Lln(n1)(nN*).

23n1111法二:注意到ln2,ln3,„„,

223111故猜想L···································································5分 ln(n1)(nN*),·

23n1上述各式相加可得

下面用数学归纳法证明该猜想成立.

证明:①当n1时,ln2,成立;·············································································6分

12111Lln(k1), 23k1x在(1)中取a1,得ln(x1)(x(0,)),

x111k2令x······································································8分 (kN*),有ln(),·

k2k1k1②假设当nk时结论成立,即那么,当nk1时,

11111k2Lln(k1)ln(k1)ln()ln(k2),也成立; 23k1k2k2k1111由①②可知,L····································································10分 ln(n1).·

23n1

高三数学 期中试卷 第 14 页 共 14 页

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务