Network-InducedConstraintsinNetworked
ControlSystems—ASurvey
LixianZhang,Member,IEEE,HuijunGao,SeniorMember,IEEE,andOkyayKaynak,Fellow,IEEE
Abstract—Networkedcontrolsystems(NCSs)have,inrecentyears,broughtmanyinnovativeimpactstocontrolsystems.How-ever,greatchallengesarealsometduetothenetwork-inducedimperfections.Suchnetwork-inducedimperfectionsarehandledasvariousconstraints,whichshouldappropriatelybeconsid-eredintheanalysisanddesignofNCSs.Inthispaper,themainmethodologiessuggestedintheliteraturetocopewithtypicalnetwork-inducedconstraints,namelytimedelays,packetlossesanddisorder,time-varyingtransmissionintervals,competitionofmultiplenodesaccessingnetworks,anddataquantizationaresur-veyed;theconstraintssuggestedintheliteratureonthefirsttwotypesofconstraintsareupdatedindifferentcategorizingways;andthoseonthelatterthreetypesofconstraintsareextended.IndexTerms—Analysisanddesignofnetworkedcontrolsystems,network-inducedconstraints,networkedcontrolsystems.
I.INTRODUCTION
whichthecomponents,i.e.,controllers,sensorsandactu-atorsarespatiallydistributedandconnectedviaacertaindigitalcommunicationnetworkThenetworkscanbeeitherthecon-trolnetworksthathavebeenaroundforaconsiderableamountoftimeforspecializedreal-timepurposessuchascontrolareanetwork(CAN),BACnet,Fieldbus,or,morerecently,thewire-lineorwirelessEthernet,evenInternet,forgeneral-purposedatacommunicationtasks.AscommentedinalmostalltheliteratureonNCSs,themotivationstoconstructsuchacontrolsystemvianetworksarethelowinstallationandmaintenancecosts,highreliability,increasedsystemflexibility,anddecreasedwiring.Suchbenefitshavegivenagreatimpetustoextensiveapplica-tionsofNCSsinmanyfields,suchasthefewthatarebrieflydiscussedhereafter.
Vehicleindustry:Inatypicalmodernautomobile,forin-stance,thetechnologyofCAN-baseddatacommunicationamongalmostalltheelectromechanicalmoduleseliminatestheproblemofextensivewiringinalimitedspace.Theinteractionsofthesubsystems,e.g.,enginecontrol,transmissioncontrol,
ManuscriptreceivedJuly30,2011;revisedDecember09,2011;acceptedJune22,2012.DateofpublicationSeptember18,2012;dateofcurrentver-sionDecember19,2012.TheworkwassupportedinpartbyNationalNat-uralScienceFoundationofChina(60904001),OutstandingYouthScienceFundofChina(60825303)and973Project(2009CB320600)inChina.Paperno.TII-11-357.
L.ZhangandH.GaoarewiththeSpaceControlandInertialTechnologyResearchCenter,HarbinInstituteofTechnology,Harbin150080,China(e-mail:lixianzhango@hit.edu.cn;hjgao@hit.edu.cn).
O.KaynakiswiththeDepartmentofElectricalandElectronicEn-gineering,BogaziciUniversity,Bebek,Istanbul80815,Turkey(e-mail:okyay.kaynak@boun.edu.tr).
Colorversionsofoneormoreofthefiguresinthispaperareavailableonlineathttp://ieeexplore.ieee.org.
DigitalObjectIdentifier10.1109/TII.2012.22190
Fig.1.TheCAN-basednetworkedcontrolsystemsinatypicalautomobile(from[2],reproducedwithpermission).
N
ETWORKEDcontrolsystems(NCSs)arecontrolsystemsin
anti-lockedbrakingsystem(ABS),andaccelerationslipregu-lation(ASR)system,arenetworked[1].AnillustrationontheuseofCANinanautomobileisgiveninFig.1[2].
Network-BasedProcessControlEngineering:Nowadays,theFieldbus,industrialEthernet,etc.,havebeenwidelyandsuccessfullyappliedinmanyprocesscontrolengineeringsys-tems,suchasthewastewatertreatmentprocess,asillustratedinFig.2[3].Inthisapplication,informationonvariousprocessvariables,e.g.,waterlevel,pHfactor,temperature,chemicaloxygendemand(COD),arecollectedbythecontroldevices(PLCs)locatedatseparatedstations,andthentransmittedviaindustrialEthernettocentralcontrolroomsforprocessingandintegratedanalysis.
Teleoperation:Generally,teleoperationistheexecutionofataskbyapairofmaster–slavemanipulatorsinwhichthelattermaybelocatedalongdistanceawayonEarthoreveninspace[4].AnillustrativeschemeofInternet-basedteleopera-tioncanbeseeninFig.3.
OtherapplicationsofNCSscanbefoundinpowersystems[5],transportationsystems[6],andcontrolsystems[7],etc.Inrecentyears,toeasethepracticalapplicationofNCSs,con-siderableeffortshavebeenspentandsomeprogresshasbeenmadeintopicssuchasthefollowing:1)modelingofNCSs;
2)stabilityandperformanceanalysis;3)networkedcontrolandestimation;
4)network-basedfaultdetectionandtolerance;5)identificationvianetworks;
AmongthevastliteratureonNCSsthatisavailabletodate,wereferthereadersespeciallytothebooks[8]–[10],surveypapers[11]–[14],specialissues[15]–[19],Ph.D.dissertations[20]–[22],andthenumerousreferencesthereintoenablethemtoseethestateoftheartinNCSs.
1551-3203/$31.00©2012IEEE
404IEEETRANSACTIONSONINDUSTRIALINFORMATICS,VOL.9,NO.1,FEBRUARY2013
Fig.2.Networkedcontrolsystemsinatypicalwastewatertreatmentplant(from[3],reproducedwithpermission).
Fig.3.AtypicalschemeofInternet-basedteleoperation.
InanNCS,thenetworkmayexistinthechannelsensor-to-controllerand/orthechannelcontroller-to-actuator,whicharealsotermedasthefeedbackchanneland/ortheforwardchannel,respectively.ThesystemcomponentsinNCSsarecommonlycallednetworknodes,e.g.,“asensornode”(itmaycorrespondtoasinglesensororacollectionofsensors).Theexistenceofthenetworkissuchthatthedataflowinapacket-basedmannerbetweenthenetworknodes.AgeneralarchitectureofNCSsisillustratedinFig.4.
Comparedwiththetraditionallypoint-to-pointanalogfeed-backcontrolsystems,insertinganetworktoacontrolloopmaycauseaseriesofproblemsthatwilldeterioratethesystemper-formanceorevendestabilizethesystem.Differentlevelsofnet-work-inducedimperfectionsincludethefollowing:1)timedelays;
2)packetlossesanddisorder;
3)time-varyingpackettransmission/samplingintervals;4)competitionofmultiplenodesaccessingnetwork;5)dataquantization;
6)clockasynchronizationamonglocalandremotenodes;7)networksecurityandsafety.
Duringthepastdecades,extensivestudiesonnetwork-in-ducedimperfectionshavebeencarriedoutbyboththecontrol
Fig.4.GeneralarchitectureofNCSs.
andthecommunicationcommunitiesassumingdifferentsce-narios,andvariousmethodologieshavebeenproposedonhowtocopewiththeimperfections.Whileessentiallyeliminatingthenetwork-inducedimperfectionscannotbeseparatedfromtheimprovementsofthecommunicationinfrastructureitself,de-velopingappropriatecontroltheoriesandapproachesinNCSstoovercometheseimperfectionsisofgreatnecessityandsig-nificance.Manysystematicresultsinthisregardhaveunfoldedwithrespecttothesourcesandthemodelingoftheseimperfec-tionsandthedifferentapproachesforhandlingthem.
ReviewsontheadvancesmadeinNCSsnevercease.Somesummarieshavebeengivenindifferentphases,suchasthesurveysbyTipsuwanandChowin2003[12]ontime-delayproblemsinNCSs,andYangin2006[13],Hespanhaetal.in2007[14]onadditionaltypesofimperfectionsinNCSs,suchaspacketlosses,time-varyingsamplingintervals,andcompeti-tionofmultiplepackettransmissionsand,morerecentlyGuptaandChowin2010[11]onotherissuesofNCSs,suchasnet-worksecurityandotherrealisticconsiderations.
Inthissurvey,weshallfocusonnetworkimperfectionsandreviewtherelatedstudies,payingspecialattentiontothosecar-riedoutsincethepublishingdatesofthesurveysreferredto.Itisworthnoticingthat,foraparticularNCS,thedifferenttypesofimperfectionslistedabovemaynotoccursimultaneouslyinpractice,andtheeffectsofsomeimperfectionsincertainnet-worksmaybeminor,e.g.,thetimedelaycanbeignoredinareal-timenetwork,andthequantizationerrorsarenegligibleinhighbandwidthEthernet.Weattempttopresentalltheimpor-tantresultsonalltheaspectsherebutnotemphasizetheirap-plicabilityortheirlimitationsifanysincetheencounteredsce-nariovaries.Whilecoveringallthecontributionsisimpossible,wedevoteourselvestoidentifyingexplicitresearchlinesandhelpingcategorizethemethodologies.Thesurveyisorganizedasfollows.First,SectionIIgivestheoverviewofeachtypeofnetwork-inducedimperfection.Regardingtheimperfectionsasnetwork-inducedconstraints,SectionIIIpresentsthemainsurveyofthemethodologiesintheanalysisanddesignofNCSs.
ZHANGetal.:NETWORK-INDUCEDCONSTRAINTSINNETWORKEDCONTROLSYSTEMS—ASURVEY405
SectionIVprovidestheconclusionandliststheexpectedfuturelinesofresearch.
II.CONSTRAINTSCAUSEDBYNETWORK-INDUCED
IMPERFECTIONSTONCSS
Thenetwork-inducedimperfectionslistedabovecanbeviewedasconstraintsintheanalysisanddesignofNCSs.Inthissection,weshallanalyzethesourceofsuchnetwork-in-ducedconstraints,presenttheirimpacts,andintroducethemainmethodologiessuggestedinliteratureforhandlingthem.
Timedelays:ThedelaysinaNCSarecomposedofthecom-putationaldelaysineachcomponentofthesystemduetothecertainprocessingspeedofthedigitaldevices,thenetworkac-cessdelay,i.e.,thetimeaqueuednetworkpackethastowaitbe-forebeingsentout,andthetransmissiondelaythroughthenet-workmedium.Generally,inNCSs,thecomputationaldelayisnegligiblecomparedwiththeothertwoclassesofdelaysthatarecommonlycalledthenetwork-induceddelays.Asshowninthestudiesontraditionaltime-delaysystems,thedelaywillcausepoorperformanceoreveninstabilityoftheclosed-loopsystem.DifferentwaysofmodelingthedelaysinNCSleadtodifferentresultsofanalysisandsynthesiswithdifferentconservatism,whichmayyetbeneededindifferentscenariosinpractice.Packetlossesanddisorder:Duetonetworktrafficcongestionandpacketstransmissionfailures,packetlossesareinevitableinnetworksespeciallyinawirelessnetwork[23].Anexces-sivelylongpropagationdelayofapacketcanbealsoviewedasapacketlost.Severeconsecutivepacketlossesamounttothedisconnectionofanetwork.Therefore,dealingwithpacketlossesinNCSsisanewchallengethatisneverencounteredinpoint-to-pointcontrolsystems.Howtodeterminetheaccept-ablelowerboundonthepackettransmissionrateisamajorconcerninthearea.Itistobenotedthatthestudiescarriedoutonthisconstraintaresignificantnotonlyforthosenonac-knowledgementprotocolslikeuserdatagramprotocol(UDP),butalsoforthereliabletransmissionprotocolsliketransmissioncontrolprotocol(TCP).Thepacketdisorderphenomena,whichmeansthattheindicesofthepacketstransmittedovernetworksaremixed,canhappenifthenetwork-induceddelaysaremorethanonesampling/transmissioninterval.Whileastraightwayofsolvingtheprobleminmostofstudiesistodiscardtheoldpacketsifthelatestpackethasalreadyarrivedatthereceiver,wewillbereviewingtherelativelyfewerreferencesaddressingtheproblem,aswellasprovidingourextraviewpointstotheproblem.
Time-varyingtransmission/samplingintervals:AsNCSsbelongtothespectrumofdigitalcontrol,theanalogsignalsofplantoutputsneedbesampledatsensornodesbeforetheyareencodedintodigitalsignalsandpackagedintothepacketstransmittedovernetworks.Usually,constantsamplinginNCSscannotbeensured,andthetime-varyingsamplingphenomenaoccurnotonlyduetothefactorstypicalinallpoint-to-pointdigitalcontrolsystems(e.g.,clockaccuracy),butalsototheschedulingofthepackettransmissionsinthecontextofmul-tiplesensornodes.Likewise,iftherearemultiplepacketstobetransmittedatcontrollernodes,thetransmissionintervalswillbeverylikelytobetimevarying.Infact,thetimebetweentwosuccessivetransmission/samplingcanbeveryuncertainandsignificantlylarge;consequently,thesystemstabilityand/orperformancewillbecompromised.Itisstraightforwardthatthefastertheinformationcommunicates,thebettertheperformancethatthesystemcanachieve;amajorresearchlinewithrespecttothistypeofnetwork-inducedconstraintisthereforetofindtheso-calledmaximumallowabletransferinterval(MATI).Althoughtherearesomeworksaddressingthecontrolproblemsofmanycomplexdynamicsystemsundertime-varyingsampling,theproblembecomesmoretypicalanddifficultinNCSswhenothertypesofnetwork-inducedconstraintscoexist.
Competitionofmultiplenodesaccessingnetwork:Com-petitionofmultiplenodesaccessingthenetworkisatypicalnetwork-inducedphenomenonoccurringinthecontextofmultiplepacketstransmission.ActuallymostNCSscomprisemultiplenetworknodes,andeachofthenodesmaycorrespondtoacollectionofsensors,actuators,orcontrollers.Besides,inmanyapplicationswherethesensorsandtheactuatorsaredistributedoveralargephysicalarea,itisalsoimpossibletoputallthemeasurementsorcontrolinputdataintoonenetworkpacket.Althoughsomeresearcherssupposethescenarioofonepackettransmissionandfocusontheafore-introducednet-work-inducedconstraintstofacilitatetheanalysisanddesignintheory,themultiplepacketstransmissionarefarmorepracticalasnowadaysthescaleofNCSsrapidlygrows.Itisthereforevaluabletosolvetheproblemofthecontentionofnodes,whichisalsodefinedasaschedulingprobleminNCSsliterature.Withinthetopic,theanalysisanddesignofappropriatepro-tocolsdeterminingwhichnodesaccessanetworkwhenandhowisamajorconcern.Inparticular,asintroducedintheconstraintoftime-varyingtransmissionintervals,thecompeti-tionofnodesdirectlygivesrisetotime-varyingtransmissionsofthemeasuredoutput.Wewillthuspayspecialattentiontothosereferencesaddressingthetightrelationsbetweenthetwoconstraints.
Dataquantization:Dataquantizationisacommonphenom-enoninalldigitalcontrolsystems,andthushasbeenaclassicaltopicinconventionaldigitalcontroltheoryevenbeforethepop-ularityofNCSs.Quantizationmeansthatproceduressuchasthetransformationfromanalogsignalstodigitalsignals,thecom-puter-basedrealizationofadesignedcontroller(e.g.,thequan-tizationofsomecoefficientsrelatedtocontrollergains),andthetruncationofwordscausedbycalculationsincertaincontrolal-gorithms.Ithasbeenwellrecognizedindigitalcontrolsystemsthatthequantizationmainlyresultsfromthefinitewordlength,andthequantizationerrorwillaffecttheclosed-loopsystemsta-bilityand/orperformance.InanNCS,thequantizationnaturallyexistsduetotheessenceofdigitalcontrol.Weregarditasatyp-icalnetwork-inducedconstraintinthissurveysinceitisinsepa-rablefromthelimitednetworkbandwidth.QuiteafewopinionsinNCSliteratureinsistonthatthequantizationeffectcanbeig-noredsinceenoughnumberofbitsineachtransmittedpacketcanbeguaranteedbythecurrentnetworktechnologies.How-ever,theincreasinglyexpandedinvestigationsonthequantiza-tionprobleminNCSsarestillusefulinthescenariowherethequantizationimpactisverynegative.
Inadditiontotheabovefivecategoriesoftypicalconstraints,theconstraintsofclockasynchronizationandnetworksecurityshouldalsobeconsideredinthepracticalconstructionandop-erationofanNCS.However,thesetwoconstraintsdonotgen-erallyfallintothescopeofcontrol-orientedinvestigationsonNCSs.Thus,thestateofartonthemwillnotbepursuedin
406IEEETRANSACTIONSONINDUSTRIALINFORMATICS,VOL.9,NO.1,FEBRUARY2013
thissurvey.Efficientsolutionsfortheclocksynchronizationandnetworksecurityproblemscanbefoundin[26]and[27],respectively.
III.MAINSURVEYONMETHODOLOGIES
FOR
NETWORK-INDUCEDCONSTRAINTS
Inthissection,themethodologiesusedforthehandlingofthefirstfiveconstraintsintroducedinSectionIIwillbesurveyed.Indiscussionsforeachconstraint,weshallfirstreviewtherefer-encesfocusingonit,thenthosereferencesthatsimultaneouslyaddressitandsomeoftheotherconstraints.A.TimeDelays
Generallyspeaking,thenetwork-induceddelaysarecausedbymainlytworeasons—thetransmissiondistanceandthenet-worktrafficcongestion.Thetransmissiondistanceisanobviousfactor.Longerdistancesgiverisetoalongertransmissiontimeunderthesameconditions(networkbandwidth,protocols,etc.).Therefore,ifonebroadenstheconceptofNCSstoincludetheparadigmssuchasInternet-basedremotecontrolandteleoper-ation,thesituationofdelaysmorethanonesamplingintervalwillbemorefrequentlyencountered.Thus,remotecontroloverInternetofthoseplantshavingastrictreal-timerequirementisinappropriate.Ontheotherhand,thedelayalsocomesfromthenetworktrafficcongestionduetothelimitedbandwidthofthecommunicationchannels.Itmeansevenforashorttransmis-siondistance,thedelaymaybeveryuncertain,andprobablymorethanonesamplinginterval,especiallywhenthenetworkissharedwithothercontrolloopsorotherdataexchangetasks.Therefore,atthestageofdesigningNCSsarchitectures,con-trolstrategies,andnetworkprotocols,thenetwork-inducedde-laysshouldbeconcretelycharacterizedaccordingtotheprac-ticalscenarios.
ThecharactersofthedelaysinNCSs,oncethespecificnet-worksareselected,canbesummarizedandcategorizedintothreepairs:
1)constantversustime-varyingdelay;2)deterministicversusstochasticdelays;
3)delaysmallerthanonesamplingintervalandotherwise.Suchclassificationscanbejustifiedindiverseapplicationsusingdifferentnetworks.Forinstance,untilrecently,theassumptionofconstantdelaywassupposedtoholdinCANprotocolorincircumstanceswhenbuffersareusedatnet-worknodes(thenonequivalentdelaysareincreasedtobethesame).Nowadays,moreandmorenetworkprotocols(suchasEthernet)cannotensureaconstantdelay.Thus,thestudiescopingwithtime-varyingdelaysaremoreprevalent,evenifthesamplingintervalinthecontrolledplantsorprocessesislargerthanthedelayintroducedbythenetwork.Forthetime-varyingdelays,twodivisionscanbefoundintheliterature,i.e.,thenondeterministicallyvaryingorstochasticallyvarying.Intheformer,thevariationofdelaysisnotknownaprioributtheinstantaneousvalueisavailabletodesignersinrealtime.Thelatterimpliesthatthevariationofthedelaysisassociatedwithsomestatisticaldescriptions,eitherthecaseofthecurrentdelaybeingindependentofthepreviousones,orthecaseofsomecorrelationbetweenthecurrentdelayandthepreviousones.Asforthethirdclassification,oneneedstonotethatalthoughnetworktechniquesareincreasinglyupdated,itisstillverylikelyforsomeNCSstopossessdelaysmorethanonesampling
interval,say,thoseNCSsconstructedviathenetworkseasilysubjecttohighnetworkloads.Formoredetailsonthesourcesofnetwork-induceddelaysandtheclassificationsofthemindifferentcharacters,wereferthereadersto[21],[28]–[30],andthereferencestherein.
Differentdelays,togetherwithspecificplants,callfordif-ferentcontrolstrategiesinNCSs.TipsuwanandChow[12]summarizethetypicalmethodologiesusedinliteratureupto2003inmodeling,analysis,andsynthesisofNCSsinvolvedwithdelays,includingtheLQGapproach,thehybridsystemapproach,andtheperturbationapproach,etc.ThesurveyofHespanhaetal.[14]complementsthiswork,byfocusingontheadvancesmadefrom2003to2007,suchastheapproachofmodelingNCSsbydelayeddifferentialequations(DDEs),theswitchedsystemsapproach,etc.In[13],additionalap-proachesforthedelayissuearereviewed,includingthetwoMarkovchainsmodelingapproachbyZhangetal.[25]forbothfeedbackandforwardchannels,etc.Althoughthesesurveyscoveralmostallofthemethodologiesfornetwork-induceddelayssuggestedbeforetheirpublicationsdates,itshouldberealizedthat,inthecurrentliterature,agrowingnumberoftheirreferencesarebeingcontinuouslyupdated.
Inthispaper,byconsideringtheadvancesreportedsince2007,weclassifythemethodologiesfordealingwithtime-varyingdelaysintotwoframeworks,withtheobjectivebeingtoenablethefutureresearcherstoclassifytheirwork.Weshalldefinethefirstframeworkasrobustnessframework,whichmeansthatthecontroldesignisrobustovertime-varyingdelays.AtypicalapproachintheframeworkistoregardanNCSasatraditionalinput-delaysystem,e.g.,inlinearcases,asfollows:
whereisthestate-feedbackcontrollergain,and
arethetime-varyingdelayinthefeedbackchannelandforward
channel,respectively,with
.istheinitialcondition.
Themodelcaneitherconsidertheforwardchannelorthefeedbackchannelonly,orlumpsthedelaysinbothchannelsintoone(themanipulationcanbefrequentlyseenintheliterature
that
).SubsequentstepsintheapproacharetoconstructanappropriateLyapunov–Krasovskiifunctionalandderivetheconditionsofsystemstability,performance,con-trollerdesign,orfilterdesign,dependingontheproblemstobehandled.Thebasiclinesoftheapproacharethesameasthoseusedforconventionaltime-delaysystems.Typicalworksinthisregardinclude[31]and[32].Noticethatinthesetreatments,theso-calledtime-stampinformationexistinginthepacketsisnotused.Thiscanbeseenfromsomeworkswithrespecttocontrollerdesignthatthecontrollergainisindependentofthetime-delayvalues.Forotherapproachesintheframework,wequotethefuzzy-model-basedapproachwherethefuzzyrulesarebasedonthesizeofnetwork-induceddelays.Therefore,ifthedesigntakesallpossibledelaysinagivenfinitesetintoac-count,thenthedesignedcontrollerswillberobustoverthevari-ationsofthedelaysdespitewhatsizetherealdelayis.Atypicalworkinthisrespectcanbeseenin[33],whereitisassumedthat
ZHANGetal.:NETWORK-INDUCEDCONSTRAINTSINNETWORKEDCONTROLSYSTEMS—ASURVEY407
TABLEI
TYPICALREFERENCESWITHRESPECTTONETWORK-INDUCEDDELAYS
hasdifferentvalues,andthe
numberoffuzzyrulesisalso.Therefore,theNCSisregardedastheblendingofthelocalmodelswiththefollowingrules.
Rule
:IFis,THENtheNCSmodelis
whereandarethediscretizedsystemmatrices.TheglobalmodeloftheNCScanbeobtainedasfollows:
whereisthemembershipfunction,andisthefuzzystate-feedbackcontrollergain.Asimilarwayofmodelingthedelaysbyfuzzysetscanbealsofoundin[34],wherethefuzzyrulesarebasedonthesystemoutputerrorbutinherentlycorrelatedwiththedelays.Insummary,wecharacterizethosemethodologiesthatdonotusethedelaysizeinformationintherobustnessframework.Therunningmodeiscommonlytimedrivenatsensornodes,andeithertimedrivenoreventdrivenatcontroller(oractuator)nodes.Whiletheanalysisanddesignintheframeworkissimpler,itisrelativelyconservativeignoringthespecialtiesofNCSs.Infact,wecanidentifythreeattributesofNCSscomparedwiththeconventionaldelaysystemsasstatedbelow.Theycanleadtoanotherframeworkofadaptationtodelays,whichwewilladdressafterwards.
1)ThefirstspecialtyofNCSsisthatdataovernetworksaretransmittedinpackets,which,takingEthernetforexample,arecapableofpackaginglargeamountofdatasuchasasequenceofcontrolcommands.
2)AnotherdifferencebetweenNCSsandconventionaldelaysystemsisthetime-stamptechniqueintheformer.Becauseofthis,thereceiversitecanexactlyknowhowlongthetransmissionofthecurrentnetworkpackethasexpired.3)Theactuatorsiteisprovidedwithreasonableselectionin-telligenceifthenetworkaccessfunctioncanberealized,i.e.,theactuatorcanbeassumedtobesmart.
Thepointsabovewillenabletherealizationsoftheap-proachesbelongingtothesecondframework,whichweshalldefineastheadaptationframework.Inwhatfollows,twoapproachesintheframeworkwillbediscussed.
ThefirstoneistomodelanNCSasastochasticornondeter-ministicswitchedsystem,withthecontrollergaindependingonthesizeofdelays.Inthisapproach,thesmartactuatorreceivesasetofcontrollergainsandselectsoneaccordingtothecurrentdelaysize.Theearlyworksthatusethestochasticswitchedsys-temsapproachinclude[35]byXiaoetal.,whereanaugmentedclosed-loopsystemisestablishedbyconsideringalldelaysinaboundedset,andtheresultingsystemisaMarkovjumplinearsystem.Zhangetal.[25]extendtheideaandusetwoMarkov
chainstomodelthedelaysinbothfeedbackandforwardchan-nels.There,thediscretizedcontrolledplantisconsideredas
Thecontrolinputcanbeobtainedas
ThedelaysandaresubjecttoMarkovchainwith
where,andand.
Notethatin[25],thedesignedcontrollergaindependsonthecurrentfeedbackchanneldelayandthepreviousforwardchanneldelay.Yet,thefirstspecialityofNCSslistedaboveen-ablesasetofcontrolcommandstobesentfromthecontrollersite,bywhichthecontrolcommandcanbeselectedatthesmartactuatoraccordingtothecurrentforwardchanneldelay.Inad-ditiontothestochasticdescriptionofdelayvariations,nondeter-ministicdescriptionscanbeconsideredwithintheframework,i.e.,assumingthetransitionsprobabilitiesarecompletelyun-knownandthevariationsofthetimedelaysarestatedependentortimedependent.Thelatterscenariocanbehandledbyusingthewell-knowndwelltimeoraveragedwelltimeswitchingtechniques.In[40]and[41],theauthorsassumethatthenet-workaccessdelaysarethemaindelayinthesystem.Thereg-ulationproblem,stabilityanalysis,anddisturbanceattenuationarestudied.
Asthesecondtypicalapproachintheadaptationframework,werefertopredictivecontrol,whichisbecomingmoreandmorepopularinNCSsnowadays.Indata-basedormodel-basedpre-dictivecontrol,wecanobtainafinitenumberoffuturecontrolcommandsbesidesthecurrentone.Thus,fortheNCSsusingthepredictivecontrolapproach,someofthesequenceofcon-trolcommandsreceivedatthesmartactuatorwillbeappliedtotheplant,dependinguponthepracticaltransmissiondelayandthroughappropriatebufferingandselectionlogics.Theideacanbetracedbackto[36]fortheteleoperationofprestabilizedcon-strainednonlinearsystems.ItisalsothebasisofmorerecentNCSconfigurationsforLTIplantsdescribedin[37]and[38]andthenonlinearplantsconsideredin[24],tonameafew.Theideain[36]isalsoapplicabletotheproblemofnetwork-inducedpacketlosses,andweshallreviewthosereferencesinthenextsubsection.
Althoughtheadaptationframeworkfullyconsidersthespe-cialtiesofNCSs,whichcanreducetheconservatismintheanal-ysisandthedesignofthesystem,therobustnessframeworkismoreapplicabletosomecases,e.g.,whenthetimedelaysareapproximatelyconstant,thepacketsizeiscompressedtosavebandwidth(onlineselectionisimpossible).
TableIliststhereferencesaddressingtheconstraintofnet-work-induceddelayinthetwoframeworks.B.PacketLossesandDisorder
Thereferencesfornetwork-induceddelaysissueareclassi-fiedaccordingtowhetherthemethodologyisdependentonthe
408IEEETRANSACTIONSONINDUSTRIALINFORMATICS,VOL.9,NO.1,FEBRUARY2013
Fig.5.Severaltypicalimplementationschemesofcontrolinputsatreceiversitestohandlepacketlossesanddisorder.In(a),describestherandompacketlossessubjecttoBernoullidistribution.Thecontrollergainsmaybedesignedofflinein(b),butthecontrollergainsareswitchedandselectedonline.In(c),thecontrolcommandswillbereplacedbytheonespredictedinlatestsuccessfullytransmittedpacket.In(d),adeadlineshouldbesetforthearrivalofthepastpacketforthecontrollertoincludethedelayedsystemstateforperformancebenefitsifany.Notethattheoperationsin(a)–(d)shouldbeclockdriven.
delayinformationonlineornot.ThesamelineofthinkingisalsoapplicabletothecontextofpacketlossesprobleminNCSs.Theobservationsonthedifferenceofcountingthepacketlossesonlineorofflinetodevelopcontrolalgorithmshaveguidedusincategorizingthereferencesintotwoframeworks.Belowweshallfirstreviewthereferencesaddressingthepacketlosses,thenthosethatconsiderbothnetwork-induceddelaysandpacketlosses.Wedeferthereviewofthestudiescombiningdelays,packetlosses,andothertypesofconstraintstolatersubsections.
OneframeworkfortheanalysisanddesignofNCSswithpacketlossesistheofflineframework,wherethecontrollerisde-signeddespiteanysituationofrealpacketlosses.Forinstance,givenanupperboundofconsecutivepacketlosses,thesuf-ficientconditionsderivedofflineinYueetal.[42]ensuretheexistenceofastabilizingcontroller.Theuniquecontrollergainisefficientwhateverthesituationofrealpacketlossesis,aslongasthenumberofconsecutivepacketlossesislessthan.Sim-ilartreatmentscanbefoundin[43].Intheapproach,thecon-troller(oractuator)doesnotneedabuffertostorethepreviousmeasurement(orcontrolinput)anddoesnotneedtojudgeifapacketislostornotonlineandthereforecanbeeventdriven.Anotherapproachintheframeworkistointroducesomestatis-ticsoftherandompacketlosses.In[44],thepacketlossesaremodeledasalinearfunctionofastochasticvariablesatisfyingBernoullirandombinarydistribution.Intheapproach,thesta-bilityofthecorrespondingclosed-loopsystemisdescribedinastochasticsense.Specifically,considerthediscrete-timeNCS
Thus,wehave.Furthermore,introduce
with.Then,anotherBernoulliprocess
onlywhenand,andwehave
otherwise.Therefore
theclosed-loopsystemisgivenby
thepacketdropoutsinbothfeedbackchannelandforwardchannelcanbemodeledviaastochasticprocess,thatis
whereandareindependentBernoulliprocesses.
modelsthepacketlossphenomenonfortheTheprocess
fortheforwardchannel.Also,feedbackchannel,and
anddenotethesuccessandfailure
inthepackettransmission,respectively,whichalsoholdsfor
.Itisassumedthatandobeythefol-lowingprobabilitydistribution:
Thecontroldesignisthencarriedoutbyusingtheexpectation
ofthestochasticvariable.Anothertypicalworkalongthislineis[45].Takingaprobabilityapproachtomodelpacketlossescanalsobeseeninanearlierwork[30],wherethetransmissionrateisproposedtoregardthenetworkwithpacketlossesasaswitchthatclosesatacertainrate.Afurtherexampleisthere-centwork[46],wherethecontrollerdesigntoleratesalargedropprobabilitytoensurethesystemstabilityinthemean-squaresense.Intheapproach,therunningmodeatreceiversshouldbeclockdriven,andtheplantoutput(orcontrolinput)isassumedtobezero[55]orheldatthepreviousvalue[30](byzero-order-holder(ZOH))duringtheperiodsofpacketlosses.Theregener-allyexistsatradeoffbetweenmaximizingthenumberofconsec-utivepacketlosses,maximizingtheallowableprobabilityofpacketlosses,orloweringthetransmissionrateandincreasingthestabilitymarginsand/orsystemperformance.TheschemeoftheapproachisillustratedinFig.5(a).Itcanbeseenthatthecontrollersobtainedofflineareactuallyrobustoverthepacketlosses.
Thesecondframeworkthatwedefinehereisthatthecon-trolinputtoplantsisimplementedonlineaccordingtothesit-uationwhetherapacketislostornot,eventhoughthecon-trollergainsarecomputedoffline.Torealizethis,theintelli-genceofcheckingandcomparingtheindicesofpacketshavetobeequippedwiththeactuator,andtheintelligencerequiretherunningmodeofreceiverstobetimedriven.Atypicalap-proachintheframeworkistoextendtheBernoulliprocessesde-scriptionofthepacketlossesandfurthermodelthecorrelationbetweenpacketlossandnopacketlossasatwo-dimensionalMarkovchain,andthereforethecorrespondingclosed-loopsys-temsasaMarkovjumpsystem[6],[35].Althoughinthesystemthegainsofthetwocontrollerscanbeobtainedoffline,thecon-trolinputswillbeimplementedonlinedependingonwhether
ZHANGetal.:NETWORK-INDUCEDCONSTRAINTSINNETWORKEDCONTROLSYSTEMS—ASURVEY409
apacketislostornot.Aswecommentedinthelastsubsec-tion,theapproachofusingtheMarkovjumpsystemscanbere-placedbynondeterministicswitchedsystemssuchasdescribedin[41].Inthisapproach,thepreviousacceptedmeasuresorcon-trolinputswillbecontinuouslyusedifthecurrentpacketislost.TheschemeisillustratedinFig.5(b).Anothertypicalapproachintheframeworkispredictivecontrolmethodology.Thenat-uralpropertyofpredictivecontrolisthatitcanpredictafinitehorizonoffuturecontrolinputsateachtimeinstant.Thus,ifsomeconsecutivepackets(butwithinthehorizon)afterasuc-cessfulpackettransmissionarelost,thecontrolinputstotheplantcanbesuccessivelyreplacedbythecorrespondingonespredictedinthatsuccessfullyusedpacket.Theideanecessitatesabufferwithmorethanonestorageunit(thelengthisthepredic-tionhorizon)andtheactuatorsitetobeequippedwithselectionintelligence.Fig.5(c)illustratestheapproach.Therepresenta-tiveworksinthislinecanbefoundin[47].Specifically,consideradiscretizednonlinearMIMOplant:
wheretheplantinputs,theplantstates
,andtheuncertaindisturbancebelongstoacompactset,
Thepacketdropoutismodeledbyin
ifthepacketislostatinstant
otherwise.
arecomputedbyThepredictivecontrollercommands
minimizingaperformanceindexateachsampletime:Consideringthepacketlossescase,thecontrolinputis
where
...
.........
...
with
Itcanalsobewrittenvia
if
ifif...ifand,where
and
and
...
Notethatalthoughthepredictedcontrolinputsinasuccess-fullytransmittedpacketarebasedontheplantinopen-loop,
studieshaveshownthatimplementingcontrolinputsinsuchawaywillingeneralresultinabetterperformancethantheap-proachwhereonlythelastusedcontrolinputiskeptandusedinthepresenceoflaterpacketlosses.Itcanbeconcludedfromthetwoabove-reviewedapproachesthatthecontrolinputtothe
plantisselectedfinallyattheactuatorsiteaccordingtowhethertherealpackettransmissionsucceedornot,andthereforeitisonlineandcanbeviewedanadaptationoverpacketlosses.Thestudiesonthepacketdisorderproblemaresporadicsinceinmostliteraturewhatisknownaspastpacketsrejectionlogiciscommonlyemployed,whichmeansthattheolderpacketswillbediscardedifthemostrecentpacketarrivesatreceivers.Thislogiccanbeeasilyrealizedbyembeddingsomeintelligenceatthecontrollersand/ortheactuatorsforcomparison,checking,andselection.Bythelogic,thepacketdisordercanbeviewedaspacketlossesintheanalysisanddesign.However,itshouldbenotedthatthediscardisahumanmadebehavioratreceiversites,whichessentiallydiffersfromtherealpacketlosses.Intheformer,theinformationcarriedinthepastpacketsstillcomesalthoughitisnotfresh.Therefore,akeypointinthepacketdis-orderproblemshouldbewhethertheinformationisusefultothecontroldesign,andifpositive,thepastpacketsrejectionlogicisbetterifitisnotused.In[56],Richardlistshowtousethede-layedsystemstatesinthecontroldesignasanopenproblemintime-delaysystems.Someworkshavealsoshownthattheincor-porationofthepaststateswillimprovethesystemperformancetosomeextent,e.g.,[57].Therefore,if,insomeapplications,someimprovementinsystemperformanceisseriouslyrequired,thepastsystemstateatthecontrollersite,orthepastcontrolin-putsattheactuatorsite,arebetterifused.Toenablethis,anap-propriatetimelinewithinonecontrolperiodshouldbeavailabletomarkthearrivalsofthepastpacketsatthereceivers,i.e.,theyshouldbeclockdriven.AnillustrationisshowninFig.5(d).Iftheuseofthepastinformationdoesnotresultinanappreciableincreaseinperformanceoriftheclock-drivenschemeislimited,thepacketdisorderproblemhastobesolvedsimplythroughthepastpacketsrejectionlogic.Furtherdiscussionsonpacketdis-ordercanbefoundin[48].
Thetypicalworksthatsimultaneouslyaddressbothnetwork-induceddelaysandpacketlossesare[49]–[].In[50],LiandChow,etal.consideranevent-drivencontroller(thegainscanbecomputedoffline)andaclock-drivenactuatorinthesystem.Assumingdifferentscenariosofbothtimedelaysandpacketlossesattheactuatornodes,theclosed-loopsystemismodeledasaswitchedsystem.Thecontrollergainsarethenoptimizedtoensureacertainperformanceofthesystem,andthecontrolcommandsareselectedonlineattheactuatornodeaccordingtotherealsituationofdelaysandpacketlosses.Amongthelit-eraturethatadoptpredictivecontrolmethodologies,Liuetal.[58]considersbothtimedelayandpacketlossesinboththefeedbackandtheforwardchannelsandmodelstheclosed-loopsystemasaswitchedsystem.Thestabilityanalysisofthesys-temsiscarriedoutbyconstructingacommonLyapunovfunc-tion.Thecontrolcommandsareimplementedonlineattheac-tuatornode.Otherexamplestoliteraturethatusethepredictivecontrolapproachforhandlingbothnetwork-inducedconstraintsare[23]an[59].AnotherworkthatconsidersonlineselectionofcontrolcommandsfortheNCSswithbothdelaysandpacketlossesis[52],wherecleartimelinesaresetatthesmartactuatorforonlinechecking,etc.Ontheotherhand,in[49],theauthorsconsiderofflinecontroldesignforNCSswithbothdelaysandpacketlosses,auniquestate-feedbackcontrollergainisused,whichisrobustovertheboundeddelaysandpacketlosses.ByincludingaspecialZOHlogicattheactuatornode,XiongandLam[]mergethetwoconstraintsandmodelthesystemasan
410IEEETRANSACTIONSONINDUSTRIALINFORMATICS,VOL.9,NO.1,FEBRUARY2013
TABLEII
TYPICALREFERENCESWITHRESPECTTOPACKETLOSSESANDDISORDER
TABLEIII
TYPICALREFERENCESWITHRESPECTTOTIME-VARYINGTRANSMISSIONINTERVALS
inputdelaysystem.Sufficientconditionscontainingtheupperboundoftheinputdelayarederivedsuchthatthesystemissta-bilizedbyanofflinestate-feedbackcontroller.In[51],theauthorproposestwoarchitecturesforoptimalstateestimationofNCSssubjecttobothrandomdelayandpacketlosses.Theestimatorwithconstantgains,anditsimprovedonewithasmartsensorcapableofdatapreprocessing,areobtained.Theproblemofnet-workedidentificationproblemforlinearsystemsisstudiedby[53],whereofflineidentificationalgorithmsaredevelopedcon-sideringNCSswithbothtime-varyingdelaysandpacketlosses.InTableII,wetabulatethetypicalreferencesthataddressonpacketdropoutsanddisorderandalsolistthosesimultaneouslyaddressingbothnetwork-induceddelaysandpacketlosses.Thereferencesthatconsideringadditionaltypesofnetwork-inducedimperfectionswillbepresentedinSectionIII-C(TableIII).C.Time-VaryingSamplingTimes
Inclassicalsampled-datacontrolsystems,thetime-varyingsamplingproblemhasbeenamajortopicofstudyforafewdecades.Inrecentyears,theinterestinthistopichasgrown,motivatedbytheincreasinguseofNCSs,wherethesampledplantoutputsaretransmittedatinstantsthatmayvarysignif-icantlyduetocontentionofmultiplepackets.Here,weshallfirstreviewsomeresultsontime-varyingsamplingprobleminclassicaldigitalcontrolsystems,thenthosethatconsidertheprobleminNCSsenvironment,andfinallytheworksthatsimul-taneouslyaddressothertypesofnetwork-inducedconstraints.Motivationstostudytime-varyingsamplingintervalsindig-italfeedbackcontrolcanbefoundin[60]–[62]andtheclassicaltextbooksonthesubject.In[60],ageneralnonlinearclosed-loopdigitalcontrolsystemwithtime-varyingsamplingiscon-sideredas
Inthemodel,denotesthesamplingpoint,and
meansthetime-varyingsamplinginterval.Thetime-varyingsamplinginstantsareclassifiedintotwocases:fixedornotfixed.Thelattercaseimpliesthatthesamplinginstantsmayvarywithtime,systemstates,orbecontrolledbyanexternalsupervisor.Forbothcases,sufficientconditionsensuringthestabilityof
theclosed-loopsystemareobtained,whereitisrequiredthatthetime-varyingsamplingintervalsshouldbeupperbounded.Inaddition,theinputdelayapproachwasconsideredin[62],wherebysetting
thesampled-datacontrolsystemswithtime-varyingsamplingareequivalentlytransformedtoaninputdelaysystem,
TheLMI-basedcriteriaofthestabilityandcontrolfortheunderlyingsystemsareaccordinglyderived,whichconsistoftheupperbound(canbeoptimized)ofthetime-varyingsam-plingintervals.Othertypicalworksthatconsidertime-varyingsamplingcanbefoundin[71]anditsreferences.
InthecontextofNCSs,thesamplingintervalsare(prefer-ably)termedastransmissionintervals.Withouttheinvolvementofanyoftheothernetwork-inducedimperfections,Zhang[63]proposestheconceptofthetime-varyingtransmissionintervalsexplicitlyandstudiesthestabilityofthecorrespondingNCSs.BasedonaLyapunov-likefunctionwhichcanincreaseduringthetransmissionintervalsbutdecreasesatthetransmissionin-stants,thesufficientconditionscontainingtheupperboundofthetransmissionintervalsareobtained.Anumericalalgorithmisalsodevelopedtofindthebound.Furtherdetailsontheap-proachcanbefoundin[30].Theproblemoftime-varyingtrans-missioninstantsisstudiedinamodel-basedNCSsarchitec-turethatwasproposedin[]and[65].Aimingatreductionintheuseofthenetworkbandwidthinthecontroloflinearsystemsovernetworksfromsensortocontroller,MontestruqueandAntsaklis[]includeanapproximatemodeloftheplantatthecontrollersite,wherethetransmissionintervalsareas-sumedtobeconstant.Inthesetting,thecontrolinputiscal-culated,basedonthestateofthemodelratherthantheoneofplant,andatthesamplinginstantsthestateofmodelisupdatedbythetrueplantstatetransmittedoverthenetwork.Theau-thorsexpandtheirworkin[65],andtwocasesofvariationswithstochasticandnon-stochasticprocessdescriptionsarestudied.ByLyapunovtechniques,thestabilityanalysisofthesystemsarefirstcarriedoutwithoutstochasticknowledgeofthetrans-missiontimesbutwithalowerandanupperboundontrans-missionintervals.Further,assumingthatthetransmissiontimesareindependentandidenticallydistributed(i.i.d.),orarecor-relatedbyaMarkovchain,thestabilityanalysisinalmostsuresenseormean-squaresenseisconducted,respectively.Compar-isonsshowthatthestochasticknowledgeavailsthefindingofthelargerallowablemaximaltransmissioninterval(MATI).Weomittheformulashereandreferthereadersto[14]forthere-viewofthemethodologieswithinthemodel-basedarchitecture.Forthosereferencesthataddresstime-varyingsam-pling/transmissionintervalsandothertypesofnetwork-in-ducedconstraints,wecite[66]–[70]asrepresentativeworks.In[67],thetime-varyingsamplingintervalandadelaylessthanonesamplingintervalarebothconsideredandtime-varyingobserversandstate-feedbackcontrollersaredesignedbasedonLMIgriddingtechniques.HetelandDaffouzetal.[66]considerthesampled-datacontrolsystemswithtime-varyingsamplingintervalsandtime-varyingdelayswhichmaybelargerthanonesamplinginterval.Theoriginalsystemcanbetransformedtoan
ZHANGetal.:NETWORK-INDUCEDCONSTRAINTSINNETWORKEDCONTROLSYSTEMS—ASURVEY411
TABLEIV
TYPICALREFERENCESWITHRESPECTTOSCHEDULINGOFNCSS
event-baseddiscrete-timemodel,uponwhichthestabilizabilityofthesystemisachievedbyfindingacontrolforaswitchedpolytopicsystemwithanadditivenormboundeduncertainty.WouwandNaghshtabrizietal.[68]considerbothtime-varyingsamplingintervalsandtime-varyingdelays(mayalsoexceedonesamplinginterval)andstudythetrackingcontrolproblemforthecorrespondingsystem.In[69],Cloostermanetal.studyNCSswithtime-varyingsamplingintervals,time-varyingdelays,andconsecutivepacketlossesbyassumingthattheyarebounded.Also,basedonmodel-basedNCSsarchitecture,Polushin,Liuetal.[70]furtherconsidernonlinearsystems,time-varyingsamplingintervals,andunknowntime-varyingdelaysinbothfeedbackchannelandforwardchannel,packetlosses,andclockasynchronizationconstraints.Aspecificprotocolisproposedthereforthesystemtodealwiththeconstraints.Itisworthnotingthattherearequiteanumberofreferencesconsideringthesimultaneousexistenceofbothcompetitionofnodesandtime-varyingsamplingintervalsinNCSs,sincethelatterconstraintismainlycausedbytheformer.TightrelationsexistbetweentheMATIandcertainnetworkprotocolstocopewithcompetitionofnetworknodes.WeshallelaborateontherelationsinSectionIII-D.
TableIIIliststhetypicalreferencesaddressingtime-varyingsamplingintervalsinclassicaldigitalcontroltheories,thestudiesontheprobleminNCSs,andthosereferencessi-multaneouslyconsideringothertypesofnetwork-inducedimperfections(thecasewithcompetitionofnodeswillbeshowninTableIV).
D.CompetitionofNodesAccessingNetwork
InNCSs,thenetworkmaybealsosharedbyothercontrolloopsordatacommunicationtasks.Thecompetitionofnetworknodesaccessingnetworksisunavoidable.Infact,evenforthescenarioofonlyonepackettransmissioninthecontrolloop,i.e.,thenetworknodesareonlyonesensor,oneactuatorandonecontroller,thecompetitionmayoccurbetweenthesensornodereportingthemeasuresandtheactuatornodeexecutingthecontrolinputswhenthefeedbackandtheforwardchan-nelsarebothnetworked.Withoutanyschedulingpolicy,theresultingnetworkcongestion,whichessentiallyleadstothoseunanticipatedphenomenasuchasnetworkaccessingdelaysandpacketlosses,maybeveryserious.Howtoorchestratethetrans-missionsofthemultiplepackets,i.e.,theschedulingprotocol,shouldbedesignedgracefullyaswellasthosecontrolmethod-ologiesovercomingtheimpactsofothernetwork-inducedim-perfections.Notethatthecongestionproblemmaybepartiallysolvedbyresortingtotheinformationtheoreticaltools;how-ever,ithasbeenwellrecognized,(e.g.,in[28])thatthebene-fitsarenotnotable.ItisthereforemoresignificantfromcontrolperspectivestoequipthenodesofanNCSwithschedulersandcalculatethedeadlinesforpackettransmissionintervals.Here,
weshallreviewtherepresentativeworksinthisregardfirstandthereferencesconsideringtheschedulingprobleminthesimul-taneouspresenceofothertypesofnetwork-inducedconstraints.Weareonlyconcernedwiththesituationofmultiplenodesinacontrolloopconstructedoveracertainnetwork.
Firstofall,thecompetitionofmultiplenodesaccessingnet-workscanbeillustratedinFig.6,wheretwosensornodesofplantoutputandonecontrollernodeofcontrolinputaccessthenetworkalternatelyorinsomedynamicway,1andonlyonenodeisallowedtotransmititspacketpertransmission.Itcanbede-ducedfromFig.6that,iftheprotocoldeterminingwhichnodesaccessnetworkisdifferent,thentheerrorsbetweentheoriginalsignals(eithercontrolinputand/ormeasuredoutput)
andtheirnetworkedversionswillbe
different.Theerrors
canbecallednetwork-inducederrorandtightlyrelatetothestabilityandperformance
oftheclosed-loopsystem.InFig.3,
arethetransmis-sioninstantsand
arethetransmissiondelays.Bythedenotations,theMATIisdefinedas
andthemaximumallowabledelaybound(MADB)isdefinedas
.Therefore,differentdeadlinesofthepacket
transmissionintervals(i.e.,MATI)arerequiredfordifferentprotocols.Earlierworksalongtheresearchlinecanbetypicallyfoundin[28].Intheworks,withoutconsideringnetwork-in-duceddelays
,thetwoschedulingstrategies,i.e.,thetry-once-discard(TOD)andthetoken-ring-typesched-uling,werestudied.Theformerisdynamicwithamaximum-error-first(MEF)schedulingpolicy,implyingthatthenodewiththegreatestweightederrorfromitslastreportedvaluewillbegrantedaccesstonetwork.Thetoken-ring-typescheduling,alsocalledround-robin(RR)scheduling,isastaticone,bywhicheachnodeaccessesthenetworkalternatelyinafixedorder.Forbothstaticanddynamicscheduling,thedifferentMATIboundsarerigorouslycalculated,respectively,ensuringthatthesystemisgloballyexponentialstable.Notethatthecontrolledplantin[28]isconsideredtobelinear,andthestabilizingcontrollerisdesignedaprioriwithoutthenetworkincludedintotheloop.Alinearizedmodelofunstablebatchreactor(hasbecomeabenchmarkalongthisresearchline)wasusedtoverifythere-sults.Consideringnonlinearplantswithexternaldisturbances,NesicandTeelfurtherextendedthestaticanddynamicproto-colsstudiedin[28]tothemoregeneralclassofuniformlyglob-allyexponentiallystable(UGES)protocols.Theinput–outputandtheinput-statestabilityanalysisarecarriedoutin[72]and[73],respectively,andtheboundofMATIensuringthesystemstabilityisimproved.In[74],thelargerMATIboundisfur-therobtainedwithsimpleprooffortheinput–outputstabilityproblem.In[75],theproblemisexplicitlyconsideredforwire-lesschannels.Notethatalltheworksin[72]–[75]assumethatastabilizingcontrollerintheabsenceofnetworksisdesignablefortheplant.In[76],theco-designoftheschedulingprotocolandcontrollerwasstudiedforlinearplants.ByLMItechniques,
1Note
thatthedynamicschedulingmaybetime-dependentorstate-depen-dent,orgovernedbyexternalfactors.
412IEEETRANSACTIONSONINDUSTRIALINFORMATICS,VOL.9,NO.1,FEBRUARY2013
Fig.6.Illustrationofcompetitionofthreenodes(twosensornodesandonecontrollernode)accessingnetwork.(a)Thealternatemanner.(b)Somedynamicmanner.isthetransmissiondelayaftertransmissioninstant.
thedynamicoutputfeedbackcontrollerisdesignedsuchthatthesystemisquadraticallystablewithalargerMATIboundusingthecommunicationprotocolbelongingtotheTODprotocols.Consideringagroupoflineartime-invariantplantscon-trolledoverasharednetwork,i.e.,multiplecontrolloops,DaiandLinetal.[82]studiedtheschedulingandcontrolcodesignproblemoftheunderlyingNCSsinthepresenceofuncertaintimedelaysbyusingswitchedsystemsapproach.In[77],theschedulingproblemandtime-delayphenomenaarebothtakenintoaccount;theLMI-basedconditions,togetherwiththeso-calledearliestdeadlinefirst(EDF)algorithm,ensurethesystemstabilityforanytime-delayboundedbyMADB.Basedon[72]andanalysiswithrespecttotherealEthernetandEthernet-likeprotocols,TabbaraandNesic[79]furtherconsideredthestochasticschedulingprotocolsandstochasticpacketdropouts.Detailedcomparisonsbetweentheproposedstochasticprotocolsandthedeterministicprotocols,e.g.,theUGESprotocolsstudiedin[72],aregiven,assumingtherandompacketsoccur.In[78],viaProfibustokenpassingpro-tocol,theQoS-basedremotecontrolofanNCSisinvestigatedsimultaneouslytakingtherandombutboundednetworkdelays(affectedbythecertainprotocolparameters)intoaccount.In[80],thenetwork-inducedconstraints,time-varyingsampling,
),packetlosses,time-varyingdelays(assuming
andthecompetitionofnodesaccessingnetworksareconsid-ered.AhybridsystemframeworkfortheunderlyingNCSsisestablishedbyintroducingaseriesofdefinitions,includinghybridtimedomain,andhybridtrajectory,andseveralstabilityanalysesarecarriedout,suchasUGAS,UGES,USPAS,stability.In[81],theswitchedsystemsapproachisusedtomodelthesystemwiththeprotocolastheswitchingfunction.TheTODprotocolandRRprotocolisgeneralizedasaquadraticprotocolandaperiodicprotocol,respectively.ThestabilityproblemoftheNCSinlinearcontextisinvestigatedbyusingtechniquesofconvexoverapproximationandLMIs.
ThetypicalreferenceswithrespecttostudiesontheissuesofschedulingofNCSsareshowninTableIV.E.Quantization
Thediscussionsonquantizationproblemscanbefoundintextbooksoncomputer/digitalcontroltheories,e.g.,[83].Theimpactofquantization,similartononlinearitiesinthesystem,willleadthecontrolledoutputtobehaviorssuchaslimitcircle,dead-zone,andchaos.Thecontrollaws,developedbyassuming
thatthedatatransmissionrequiredbythesystemcanbeper-formedwithinfiniteprecision,maynotbevalidinthepresenceofsignalquantization.Therefore,thereisaneedfordevelopingtoolsforanalysisanddesignofquantizedfeedbacksystems,andmanyimportantresultshavebeenreported.
Amongtheseresults,therearemainlytwoapproaches.Thefirstoneconsidersmemorylessfeedbackquantizers,whicharealsotermedasstaticquantizationpolicies,e.g.,[86]–[].Con-sideralineardiscrete-timesystemwithastate-feedbackcon-trollergain
whereisthequantizedcontrolinputandisthequantizer.Itispresumedinsuchstaticpoliciesthatdataquan-tizationattimeisdependentonthedataattimeonly,whichleadstorelativelysimplestructuresforthecoding/decodingschemes.ThefirstmathematicaltreatmentofcontrolsystemswithuniformquantizedfeedbackwasgiveninDelchamps[86],followingwhichthepropositionthataboundonthenumberofquantizationintervalsisneededtostabilizealinearsystemwasgivenin[87].EliaandMitter[88]consideredtheproblemofquadraticstabilizationfordiscrete-timesingle-inputsingle-output(SISO)lineartime-invariantsystems;itisproventhatforaquadraticallystabilizablesystem,thequantizerneedstobelogarithmic.Followingthiswork,FuandXie[]usedthesectorboundapproachtoquantizedfeedbackcontrol,gaveacomprehensivestudyonfeedbackcontrolsystemswithlogarithmicquantizers,andpresentedcompleteresultsforbothSISOandmultiple-inputmultiple-output(MIMO)lineardiscrete-timesystems.Inaddition,controlperformanceissues,
control,weretreatedincludingguaranteedcostcontroland
inaunifiedframework.
Thesecondapproachusesaclassofdynamic(ortime-varying)quantizersthatdynamicallyscalesthequan-tizationlevelsaccordingtothelocationofthestate.TheapproachwasproposedbyBrockettandLiberzonin[84]and[85].Supposethatalineardiscrete-timesystem,withastate-feedbackcontrollergain,
ZHANGetal.:NETWORK-INDUCEDCONSTRAINTSINNETWORKEDCONTROLSYSTEMS—ASURVEY413
whereisthequantizedcontrolinputandisthe
dynamicalquantizerdependingonafunctionoftime.Aseriesofworksarecarriedouttodifferentscenariossuchasthetreatmentofbothinputandoutputquantizationin[85],con-sideringexogenousdisturbancesinthequantizedcontrolsys-temsin[96],andthenonlinearsystemsmodelsin[97].Assum-marizedbyNesicandLiberzonin[95],regardingthequanti-zationalgorithmsassomeprotocolsaswell,thequantizationcanbeclassifiedastwotypes—the“box”protocols[97]andthe“zoom”protocols[96]—bywhichaunifiedframeworkisbuiltin[95]forthedesignofNCSswithsimultaneousexistenceoftheschedulingofnetworknodesandthequantizationofsystemstate.
Inadditiontotheadvancesinthefieldofquantizedcontrolitself,thenetwork-basedcontrolalsostimulatestherenascenceofstudiesonquantization.AlthoughthequantizationeffectsbecomemoreandmorenegligibleinmanyNCSs,thestudieswillbeespeciallyhelpfultothesituationwhereonlyasmallnumberofbits(shorterwordlength)canberealizedorthesizeofthetransmittedpacketsispreferablyreducedforadesiredallocationofnetworkbandwidth.Suchexpectationsmotivatedthestudiesonthesimultaneousexistenceofquantizationphe-nomenaandothernetwork-inducedimperfections.
Thetypicalworksaddressingbothdelaysandquantizationcanbefoundin[90]and[91].UsingtheRazumikhinapproachandsmall-gainarguments,in[90],aninput-to-statestabilizingfeedbackcontrolisdesignedinthepresenceofconstantdelayandquantization(dynamic)suchthatthesystemstateremainboundedandeventuallyenterasmallerregionthantheinitialregion.FridmanandDambrine[91]consideredatime-varyingdelayandstaticquantizationandusedtheLyapunov–Krasovskiifunctionmethod,bywhichtheLMI-basedconditionsforthecontrollersdesignareobtainedsuchthatthesystemstatealsoconvergestoaboundedregion.Thesaturationproblemisalsoaddressedin[91].
ThestabilityanalysisofNCSstakingbothpacketdropoutsandfinite-levelstaticquantizationofcontrolsignalsintoac-countisconducted,ineitherastochasticsetting[92]orade-terministicsetting[93].Theworkreportedin[93]isbasedon
theprimaryresultsobtainedin[47]andemploysaweaker
tostabilitynotion.Thetradeoffbetweenpacketdropoutsandquantization,andthetradeoffbetweenthedisturbanceattenua-tionandthemaximumnumberofconsecutivepacketdropoutsandthestepsizeofthequantizer,areestablishedin[92]and[93],respectively.
Complementingtheworkreportedin[31],TianandYueetal.[94]simultaneouslyconsiderthenetwork-induceddelaysofbothsensortocontrollerandcontrollertoactuator,andthequan-tizationofbothcontrolandstatesignals,packetsdropoutsinthesystemmodel.LMItechniquesareusedforthesolutionsofoutputfeedbackcontrolthere.GaoandChen[43]alsoconsid-eredthequantization,packetdropout,anddelayissuestogether,
andinvestigatedtheproblemof
trackingcontrolforcon-tinuous-timeNCSs.There,thequantizationproblemishandledusinganlogarithmicquantizerbasedon[].
Basedonthework[72]forschedulingissueofNCSsandtheworksforquantizedfeedbackcontrol[85],[96],[97],aunifiedframeworkforstudyingtheproblemsofschedulingandquan-tizationinNCSsisproposedbyNesicandLiberzonin[95]afterexposingtheinherentsimilaritiesoftreatingscheduling
TABLEV
TYPICALREFERENCESWITHRESPECTTOQUANTIZATION
problemofNCSsandquantizedcontrolproblem.Theproto-colsincludingRRandTODprotocolsin[72]arerevised,re-spectively,totheversionwithquantizationofeither“box”or“zoom”type.Themaindesignstepsthereconsistofthedesignofastabilizingcontrollerwithoutconsideringquantizationandtimescheduling,thedesignoftheMATIensuringthestabilityofthesystemsclosedoveranetworkwithstatequantization.TheMATIiscomputedbyseveralprotocol-dependentparam-etersindicatinghowtheschedulingprotocolsandquantizationstrategiesareselected.
TableVliststherepresentativereferencesaddressingthequantizedcontrolproblemsandco-analysisandco-designofquantizationandothertypesofconstraintsinNCSs.
IV.CONCLUSIONANDFUTUREWORKS
Inthispaper,thestudiesseenintheliteratureonfivetypesofnetwork-inducedconstraintsaremainlysurveyed,includingtimedelays,packetlossesanddisorder,time-varyingtransmis-sionintervals,competitionofmultiplenodeaccessingnetworks,anddataquantization.SectionIIprovidesanoverviewofthesourceofeachnetwork-inducedconstraint,theirnegativeim-pacts,andthecorrespondingresearchlinesinhandlingthem.InSectionIII-A,weclassifythevastreferencesuptodateontimedelaysintotwoframeworks,therobustnessframework,andtheadaptationframework,whichmeansthatthecontroldesignspecificsarerobustoveroradaptivetothedelaysvariations,respectively.SimilarthinkingalsogiverisetocategorizingthereferenceswithrespecttopacketlossesintotwoframeworksinSectionIII-B,theonlineandofflineones.Inaddition,onthepacketdisorderproblem,weproposedanapproachthatdiffersfromthecommonlyusedpastpacketsrejectionlogic.Thewaysofsortingthereferencesonthefirsttwonetwork-inducedconstraintsdistinguishoursurveyfromtheexistingones.Moreexplicitly,wecomplementtheprevioussurveysonthelatterthreetypesofconstraintsinSectionsIII-C–III-E,respectively.Weareawarethatitishardlypossibletocoverallthecontri-butionsinthearea;therefore,ouremphasisisplacedonthecategorizationsofthevastliterature.Theapplicabilityorthelimitationsofthedevelopedapproacheshavenotthoroughlybeencommentedon.Accordingtothecategorizationandthesummarizedresearchlines,onecanresorttoapossiblesolutionthatiscapableofcopingwiththenetwork-inducedconstraintsoncethenetworkisselected.
Despitediverseresults,therearestillnumerouspointsthatshouldbefurtherconsideredinfutureworks.Wehighlightsomeofthemasfollows.
1)Forstudiesusingstochasticprocessestomodelthecon-straints,suchastheMarkovchainfortime-varyingde-laysortime-varyingtransmissionintervals,Bernoullidis-tributionfortime-varyingtransmissionintervalsorpacket
414IEEETRANSACTIONSONINDUSTRIALINFORMATICS,VOL.9,NO.1,FEBRUARY2013
losses,thestatisticsknowledge,e.g.,theusedprobabili-tiesaregenerallyassumedtobecertainorexactlyknown.FurtherinvestigationsonthemodeledNCSsbyuncertainorpartiallyunknownstatisticsknowledge,cf.[98],willbemorepractical.
2)Forthoseapproachescontainingsomeboundedparame-tersthatcancharacterizethenetwork-inducedconstraints,suchastheMADB,MATI,maximalconsecutivepacketlosses,quantizationdensity,anaturalextensiontogoonistofindthebiggerallowableboundforfurtherconser-vatismreductionintheconcernofsystemstabilityandper-formance(whichhasactuallybeenthemainresearchlineinmanyapproaches).
3)Whileitisnotalwaysnecessarytotakeallthenetwork-inducedconstraintsintoaccountintheanalysisandde-signofNCSs(sometechniquesarenotcoupled),itmustbementionedthatthecomprehensivestudiescombingalltheconstraintsarenotsufficientyet,especiallyforap-plyingthetechniquesdevelopedinthesituationofonepackettransmissiontothesituationofmultiplepacketstransmission.Forinstance,ifonesimultaneouslyconsidersthetime-varyingdelaysandthecompetitionofmultiplenodes,theanalysisandsynthesisofNCSswillbemorechallenging,especiallythetime-varyingdelaysarelargerthanonetransmissioninterval.
REFERENCES
[1]K.Johansson,M.Törngren,andL.Nielsen,I.D.Hristu-Varsakelisand
W.S.Levine,Eds.,“Vehicleapplicationsofcontrollerareanetwork,”inHandbookofNetworkedandEmbeddedControlSyst.,Boston,MA,Birkhaüser,2005.
[2]IntroductionofControlAreaNetwork(CAN)DiagnosticsinAA1car
AutoDiagnosisandAutoRepairHelpHomepage[Online].Available:http://www.aa1car.com/library/can_systems.htm
[3]IntroductionofMoxa’sIndustrialEthernet’sApplicationinWastewater
TreatmentPlants[Online].Available:http://www.moxa.com/indus-trial_n_ethernet/water_wastewater.htm
[4]P.ArcaraandC.Melchiorri,“Controlschemesforteleoperationwith
timedelay:Acomparativestudy,”Robot.AutonomousSyst.,vol.38,no.1,pp.49–,2002.
[5]S.Wang,X.Meng,andT.Chen,“Wide-areacontrolofpowersystems
throughdelayednetworkcommunication,”IEEETrans.ControlSyst.Technol.,vol.20,no.2,pp.495–503,2012.
[6]P.SeilerandR.Sengupta,“An
approachtonetworkedcontrol,”IEEETrans.Autom.Control,vol.50,no.3,pp.356–3,2005.
[7]P.Martí,A.Camacho,M.Velasco,andM.E.M.B.Gaid,“Runtime
allocationofoptionalcontroljobstoasetofcan-basednetworkedcon-trolsystems,”IEEETrans.Ind.Informat.,vol.6,no.4,pp.503–520,2010.
[8]A.Bemporad,M.Johansson,andM.Heemels,NetworkedControlSys-tems.Berlin,Germany:Springer,2010.
[9]D.Hristu-VarsakelisandW.Levine,HandbookofNetworkedandEm-beddedControlSystems.Boston,MA,Birkhaüser:,2005.
[10]V.Saligrama,NetworkedSensingInformationandControl.New
York:Springer,2008.
[11]R.GuptaandM.Chow,“Networkedcontrolsystem:Overviewand
researchtrends,”IEEETrans.Ind.Electron.,vol.57,no.7,pp.2527–2535,2010.
[12]Y.TipsuwanandM.Chow,“Controlmethodologiesinnetworkedcon-trolsystems,”ControlEng.Practice,vol.11,no.10,pp.1099–1111,2003.
[13]T.Yang,“Networkedcontrolsystem:Abriefsurvey,”IETControl
TheoryAppl.,vol.153,no.4,pp.403–412,2006.
[14]J.Hespanha,P.Naghshtabrizi,andY.Xu,“Asurveyofrecentresults
innetworkedcontrolsystems,”Proc.IEEE,vol.95,no.1,pp.138–162,2007.
[15]P.AntsaklisandJ.Baillieul,“Specialissueonnetworkedcontrolsys-tems,”IEEETrans.Autom.Control,vol.49,no.9,pp.1421–1597,2004.
[16]P.AntsaklisandJ.Baillieul,“Specialissueontechnologyofnetworked
controlsystems,”Proc.IEEE,vol.95,no.1,pp.5–8,2007.
[17]L.Bushnell,“Specialsectiononnetworksandcontrol,”IEEEControl
Syst.Mag.,vol.21,no.1,pp.22–99,2001.
[18]M.Chow,“Specialsectionondistributednetworked-basedcontrolsys-temsandapplications,”IEEETrans.Ind.Electron.,vol.51,no.6,pp.1126–1279,2004.
[19]N.El-FarraandP.Mhaskar,“SpecialIssueonControlofNetworked
andComplexProcessSystems,”Comput.Chem.Eng.,vol.32,no.9,pp.1963–2168,2008.
[20]F.Lian,“Analysis,design,modeling,andcontrolofnetworkedcontrol
systems,”Ph.D.dissertation,Mech.Eng.Dept.,Univ.ofMichigan,AnnArbor,MI,2001.
[21]J.Nilsson,“Real-timecontrolsystemswithdelays,”Ph.D.dissertation,
AutomaticControlDept.,LundInst.ofTechnol.,Lund,Sweden,1998.[22]P.Naghshtabrizi,“Delayimpulsivesystems:aframeworkformodeling
networkedcontrolsystems,”Ph.D.dissertation,Electr.andComput.Eng.Dept.,Univ.ofCalifornia,SantaBarbara,CA,2007.
[23]A.Ulusoy,O.Gurbuz,andA.Onat,“Wirelessmodel-basedpredictive
networkedcontrolsystemovercooperativewirelessnetwork,”IEEETrans.Ind.Informat.,vol.7,no.1,pp.41–51,2011.
[24]G.PinandT.Parisini,“Networkedpredictivecontrolofuncertaincon-strainednonlinearsystemsrecursivefeasibilityandinput-to-statesta-bilityanalysis,”IEEETrans.Autom.Control,vol.56,no.1,pp.72–87,2011.
[25]L.Zhang,Y.Shi,T.Chen,andB.Huang,“Anewmethodforstabiliza-tionofnetworkedcontrolsystemswithrandomdelays,”IEEETrans.Autom.Control,vol.50,no.8,pp.1177–1181,2005.
[26]S.Johannessen,“Timesynchronizationinalocalareanetwork,”IEEE
ControlSyst.Mag.,vol.24,no.2,pp.61–69,2004.
[27]D.Dzung,M.Naedele,T.V.Hoff,andM.Crevatin,“Securityfor
industrialcommunicationsystems,”Proc.IEEE,vol.93,no.6,pp.1152–1177,2005.
[28]G.WalshandH.Ye,“Schedulingofnetworkedcontrolsystems,”IEEE
ControlSyst.Mag.,vol.21,no.1,pp.57–65,2001.
[29]F.Lian,J.Moyne,andD.Tilbury,“Performanceevaluationofcon-trolnetworks:Ethernet,controlnet,anddevicenet,”IEEEControlSyst.Mag.,vol.21,no.1,pp.66–83,2001.
[30]W.Zhang,M.Branicky,andS.Phillips,“Stabilityofnetworkedcontrol
systems,”IEEEControlSyst.Mag.,vol.21,no.1,pp.84–99,2001.
[31]D.Yue,Q.Han,andJ.Lam,“Network-basedrobust
controlofsystemswithuncertainty,”Automatica,vol.41,no.6,pp.999–1007,2005.
[32]M.Cloosterman,N.v.d.Wouw,andW.Heemels,“Stabilityof
networkedcontrolsystemswithuncertaintime-varyingdelays,”IEEETrans.Autom.Control,vol.,no.7,pp.1575–1580,2009.
[33]Y.Zheng,H.Fang,andH.Wang,“Takagi-sugenofuzzy-model-based
faultdetectionfornetworkedcontrolsystemswithMarkovdelays,”IEEETrans.Syst.,Man,Cybern.B,Cybern.,vol.36,no.4,pp.924–929,2006.
[34]N.Almutairi,M.Chow,andY.Tipsuwan,“Network-basedcontrolled
DCmotorwithfuzzycompensation,”inProc.27thAnnu.Conf.IEEEInd.Electron.Soc.(IECON),Denver,CO,2001,vol.3,pp.1844–1849.[35]L.Xiao,A.Hassibi,andJ.How,“Controlwithrandomcommunica-tiondelaysviaadiscrete-timejumpsystemapproach,”inProc.Amer.ControlConf.,Chicago,IL,2000,pp.2199–2204.
[36]A.Bemporad,“Predictivecontrolofteleoperatedconstrainedsystems
withunboundedcommunicationdelays,”inProc.IEEEConf.DecisionControl,Tampa,FL,1998,pp.2133–2138.
[37]A.Casavola,E.Mosca,andM.Papini,“Predictiveteleoperationof
constraineddynamicsystemsviainternet-likechannels,”IEEETrans.ControlSyst.Technol.,vol.14,no.4,pp.681–694,2006.
[38]P.TangandC.deSilva,“Compensationfortransmissiondelaysinan
Ethernet-basedcontrolnetworkusingvariable-horizonpredictivecon-trol,”IEEETrans.ControlSyst.Technol.,vol.14,no.4,pp.707–718,2006.
[39]Y.Zhao,G.Liu,andD.Rees,“Improvedpredictivecontrolapproach
tonetworkedcontrolsystems,”IETControlTheoryAppl.,vol.2,no.8,pp.675–681,2008.
[40]H.LinandP.Antsaklis,“Robustregulationofpolytopicuncertain
linearhybridsystemswithnetworkedcontrolsystemapplications,”inContemporaryIssuesinSystemsStabilityandControlwithApplica-tions.Cambridge,MA:Birkhaüser,2003,pp.83–108.
ZHANGetal.:NETWORK-INDUCEDCONSTRAINTSINNETWORKEDCONTROLSYSTEMS—ASURVEY415
[41]H.LinandP.Antsaklis,“Stabilityandpersistentdisturbanceatten-uationpropertiesforaclassofnetworkedcontrolsystems:Switchedsystemapproach,”Int.J.Control,vol.78,no.18,pp.1447–1458,2005.[42]D.Yue,Q.Han,andC.Peng,“Statefeedbackcontrollerdesignofnet-workedcontrolsystems,”IEEETrans.CircuitsSyst.II,Exp.Briefs,vol.51,no.11,pp.0–4,2004.
[43]H.GaoandT.Chen,“Network-based
outputtrackingcontrol,”IEEETrans.Autom.Control,vol.53,no.3,pp.655–667,2008.
[44]B.Sinopoli,L.Schenato,M.Franceschetti,K.Poolla,M.Jordan,andS.
Sastry,“Kalmanfilteringwithintermittentobservations,”IEEETrans.Autom.Control,vol.49,no.9,pp.1453–14,2004.
[45]Z.Wang,F.Yang,D.Ho,andX.Liu,“Robust
controlfornet-workedsystemswithrandompacketlosses,”IEEETrans.Syst.,Man,Cybern.B,Cybern.,vol.37,no.4,pp.916–924,2007.
[46]N.EliaandJ.Eisenbeis,“Limitationsoflinearcontroloverpacketdrop
networks,”IEEETrans.Autom.Control,vol.56,no.4,pp.826–841,2011.
[47]D.QuevedoandD.Nesic,“Input-to-statestabilityofpacketizedpre-dictivecontroloverunreliablenetworksaffectedbypacket-dropouts,”IEEETrans.Autom.Control,vol.56,no.2,pp.370–375,2011.
[48]Y.Zhao,G.Liu,andD.Rees,“Activelycompensatingfordatapacket
disorderinnetworkedcontrolsystems,”IEEETrans.CircuitsSyst.II,Exp.Briefs,vol.57,no.11,pp.913–917,2010.
[49]M.Garcia-RiveraandA.Barreiro,“Analysisofnetworkedcontrolsys-temswithdropsandvariabledelays,”Automatica,vol.43,no.12,pp.20–2059,2007.
[50]H.Li,M.Chow,andZ.Sun,“Optimalstabilizinggainselectionfor
networkedcontrolsystemswithtimedelaysandpacketlosses,”IEEETrans.ControlSyst.Technol.,vol.17,no.5,pp.11–1162,2009.[51]L.Schenato,“Optimalestimationinnetworkedcontrolsystemssubject
torandomdelayandpacketdrop,”IEEETrans.Autom.Control,vol.53,no.5,pp.1311–1317,2008.
[52]Y.TianandD.Levy,“Compensationforcontrolpacketdropoutinnet-workedcontrolsystems,”Inform.Sci.,vol.178,no.5,pp.1263–1278,2008.
[53]J.Wang,W.Zheng,andT.Chen,“Identificationoflineardynamic
systemsoperatinginanetworkedenvironment,”Automatica,vol.45,no.12,pp.2763–2772,2009.
[]J.XiongandJ.Lam,“Stabilizationofnetworkedcontrolsystemswith
alogicZOH,”IEEETrans.Autom.Control,vol.,no.2,pp.358–363,2009.
[55]L.ZhangandD.Hristu-Varsakelis,“Communicationandcontrol
co-designfornetworkedcontrolsystems,”Automatica,vol.42,no.6,pp.953–958,2006.
[56]J.Richard,“Time-delaysystems:anoverviewofsomerecentadvances
andopenproblems,”Automatica,vol.39,no.10,pp.1667–1694,2003.[57]Y.Moon,P.Park,W.Kwon,andY.S.Lee,“Delay-dependentrobust
stabilizationofuncertainstate-delayedsystems,”Int.J.Control,vol.74,no.14,pp.1447–1455,2001.
[58]G.Liu,Y.Xia,J.Chen,D.Rees,andW.Hu,“Wirelessmodel-based
predictivenetworkedcontrolsystemovercooperativewirelessnet-work,”IEEETrans.Ind.Electron.,vol.,no.3,pp.1282–1297,2007.[59]A.Ulusoy,O.Gurbuz,andA.Onat,“Wirelessmodel-basedpredictive
networkedcontrolsystemovercooperativewirelessnetwork,”IEEETrans.Ind.Informat.,vol.7,no.1,pp.41–51,2011.
[60]B.HuandA.Michel,“Stabilityanalysisofdigitalfeedbackcontrol
systemswithtime-varyingsamplingperiods,”Automatica,vol.36,no.6,pp.7–905,2000.
[61]B.Wittenmark,J.Nilsson,andM.Torngren,“Timingproblemsinreal-timecontrolsystems,”inProc.Amer.ControlConf.,Seattle,Wash-ington,1995,pp.2000–2004.
[62]E.Fridman,A.Seuret,andJ.Richard,“Robustsampled-datastabiliza-tionoflinearsystems:Aninputdelayapproach,”Automatica,vol.40,no.8,pp.1441–1446,2004.
[63]W.ZhangandM.Branicky,“Stabilityofnetworkedcontrolsystems
withtime-varyingtransmissionperiod,”inProc.Annu.AllertonConf.Commun.ControlComput.,Urbana,IL,2001,vol.39,pp.1205–1214.[]L.MontestruqueandP.Antsaklis,“Onthemodel-basedcontrolofnet-workedsystems,”Automatica,vol.39,no.10,pp.1837–1843,2003.[65]L.MontestruqueandP.Antsaklis,“Stabilityofmodel-basednet-workedcontrolsystemswithtime-varyingtransmissiontimes,”IEEETrans.Autom.Control,vol.49,no.9,pp.1562–1572,2004.
[66]L.Hetel,J.Daffouz,andC.Iung,“AnalysisandcontrolofLTIand
switchedsystemsindigitalloopsviaanevent-basedmodelling,”Int.J.Control,vol.81,no.7,pp.1125–1138,2008.[67]A.Sala,“Computercontrolundertime-varyingsamplingperiod:An
LMIgriddingapproach,”Automatica,vol.41,no.12,pp.2077–2082,2005.
[68]N.V.D.Wouw,P.Naghshtabrizi,M.Cloosterman,andJ.Hes-panha,“Trackingcontrolforsampled-datasystemswithuncertaintime-varyingsamplingintervalsanddelays,”Int.J.RobustNonlinearControl,vol.20,no.4,pp.387–411,2009.
[69]M.Cloosterman,L.Hetel,N.vacdeWouw,W.Heemels,J.Daafouz,
andH.Nijmeijer,“Controllersynthesisfornetworkedcontrolsys-tems,”Automatica,vol.46,no.10,pp.1584–1594,2010.
[70]I.Polushin,P.Liu,andC.Lung,“Onthemodel-basedapproachto
nonlinearnetworkedcontrolsystems,”Automatica,vol.44,no.9,pp.2409–2414,2008.
[71]Y.Suh,“Stabilityandstabilizationofnonuniformsamplingsystems,”
Automatica,vol.44,no.12,pp.3222–3226,2008.
[72]D.NesicandA.Teel,“Input-outputstabilitypropertiesofnetworked
controlsystems,”IEEETrans.Autom.Control,vol.49,no.10,pp.1650–1667,2004.
[73]D.NesicandA.Teel,“Input-to-statestabilityofnetworkedcontrol
systems,”Automatica,vol.40,no.12,pp.2121–2128,2004.
[74]D.Carnevale,A.Teel,andD.Nesic,“ALyapunovproofofanim-provedmaximumallowabletransferintervalfornetworkedcontrolsys-tems,”IEEETrans.Autom.Control,vol.52,no.5,pp.2–7,2007.[75]M.Tabbara,D.Nesic,andA.Teel,“Stabilityofwirelessandwireline
networkedcontrolsystems,”IEEETrans.Autom.Control,vol.52,no.9,pp.1615–1630,2007.
[76]D.DacicandD.Nesic,“Quadraticstabilizationoflinearnetworked
controlsystemsviasimultaneousprotocolandcontrollerdesign,”Au-tomatica,vol.43,no.7,pp.1145–1155,2007.
[77]D.Kim,D.Choi,andP.Mohapatra,“Real-timeschedulingmethodfor
networkeddiscretecontrolsystems,”ControlEng.Practice,vol.17,no.5,pp.5–570,2009.
[78]K.Lee,S.Lee,andM.Lee,“QOS-basedremotecontrolofnetworked
controlsystemsviaProfibustokenpassingprotocol,”IEEETrans.Ind.Electron.,vol.1,no.3,pp.183–191,2005.
[79]M.TabbaraandD.Nesic,“Input-outputstabilityofnetworkedcontrol
systemswithstochasticprotocolsandchannels,”IEEETrans.Autom.Control,vol.53,no.5,pp.1160–1175,2008.
[80]W.Heemels,A.Teel,N.vandeWouw,andD.Nesic,“Networked
controlsystemswithcommunicationconstraints:Tradeoffsbetweentransmissionintervals,delaysandperformance,”IEEETrans.Autom.Control,vol.55,no.8,pp.1781–1796,2010.
[81]M.Donkers,L.Hetel,W.Heemels,N.vandeWouw,andM.Stein-buch,“Stabilityanalysisofnetworkedcontrolsystemsusingaswitchedlinearsystemsapproach,”IEEETrans.Autom.Control,vol.56,no.9,pp.2101–2115,2011.
[82]S.Dai,H.Lin,andS.Ge,“Scheduling-and-controlcodesignforacol-lectionofnetworkedcontrolsystemswithuncertaindelays,”IEEETrans.ControlSyst.Technol.,vol.18,no.1,pp.66–78,2010.
[83]K.AstromandB.Wittenmark,Computer-ControlledSystems:Theory
andDesign.EnglewoodCliffs,NJ:Prentice-Hall,1990.
[84]R.BrockettandD.Liberzon,“Quantizedfeedbackstabilizationof
linearsystems,”IEEETrans.Autom.Control,vol.45,no.7,pp.1279–12,2000.
[85]D.Liberzon,“Hybridfeedbackstabilizationofsystemswithquantized
signals,”Automatica,vol.39,no.9,pp.13–15,2003.
[86]D.Delchamps,“Stabilizingalinearsystemwithquantizedstatefeed-back,”IEEETrans.Autom.Control,vol.35,no.8,pp.916–924,1990.[87]W.WongandR.Brockett,“Systemswithfinitecommunicationband-widthconstraints.II.stabilizationwithlimitedinformationfeedback,”IEEETrans.Autom.Control,vol.44,no.5,pp.1049–1053,1999.[88]N.EliaandS.Mitter,“Stabilizationoflinearsystemswithlimitedin-formation,”IEEETrans.Autom.Control,vol.46,no.9,pp.1384–1400,2001.
[]M.FuandL.Xie,“Thesectorboundapproachtoquantizedfeedback
control,”IEEETrans.Autom.Control,vol.50,no.11,pp.1698–1711,2005.
[90]D.Liberzon,“Quantization,timedelays,andnonlinearstabilization,”
IEEETrans.Autom.Control,vol.51,no.7,pp.1190–1195,2006.[91]E.FridmanandM.Dambrine,“Controlunderquantization,satura-tionanddelay:AnLMIapproach,”Automatica,vol.45,no.10,pp.2258–22,2009.
[92]K.Tsumura,H.Ishii,andH.Hoshina,“Tradeoffsbetweenquantization
andpacketlossinnetworkedcontroloflinearsystems,”Automatica,vol.45,no.12,pp.2963–2970,2009.
416IEEETRANSACTIONSONINDUSTRIALINFORMATICS,VOL.9,NO.1,FEBRUARY2013
[93]Y.Ishido,K.Takaba,andD.Quevedo,“Stabilityanalysisofnetworked
controlsystemssubjecttopacket-dropoutsandfinite-levelquantiza-tion,”Syst.ControlLett.,vol.60,no.5,pp.325–332,2011.
[94]E.Tian,D.Yue,andC.Peng,“Quantizedoutputfeedbackcontrol
fornetworkedcontrolsystems,”Inform.Sci.,vol.178,no.12,pp.2734–2749,2008.
[95]D.NesicandD.Liberzon,“Aunifiedframeworkfordesignandanal-ysisofnetworkedandquantizedcontrolsystems,”IEEETrans.Autom.Control,vol.,no.4,pp.732–747,2009.
[96]D.LiberzonandD.Nesic,“Input-to-statestabilizationoflinearsys-temswithquantizedstatemeasurements,”IEEETrans.Autom.Con-trol,vol.52,no.5,pp.767–781,2007.
[97]D.LiberzonandJ.Hespanha,“Stabilizationofnonlinearsystemswith
limitedinformationfeedback,”IEEETrans.Autom.Control,vol.50,no.6,pp.910–915,2005.
[98]L.ZhangandJ.Lam,“AnalysisandsynthesisofMarkovjumplinear
systemswithtime-varyingdelaysandpartiallyknowntransitionprob-abilities,”IEEETrans.Autom.Control,vol.53,no.10,pp.2458–24,2008.
LixianZhang(M’10)receivedthePh.D.degreeincontrolscienceandengineeringfromtheHarbinIn-stituteofTechnology,Harbin,China,in2006.
FromJanuary2007toSeptember2008,heworkedasaPostdoctoralFellowintheDepartmentofMechanicalEngineeringatEcolePolytechniquedeMontreal,QC,Canada.HewasaSino-BritishFellowshipTrustVisitorinTheUniversityoffromJuly2009toOctober2009.InJanuary2009,hejoinedtheHarbinInstituteofTechnology,China,whereheiscurrentlyanAssociateProfessor
inResearchInstituteofIntelligentControlandSystems.SinceFebruary2012,hehasbeenavisitingscholarattheProcessSystemsEngineeringLaboratory,MassachusettsInstituteofTechnology(MIT),Cambridge.Hisresearchin-terestsincludenondeterministicandstochasticswitchedsystems,networkedcontrolsystemsandtheirapplications.
Dr.ZhangservesasanAssociatedEditorforvariouspeer-reviewedjournals,includingtheIEEETRANSACTIONSONSYSTEMSMANANDCYBERNETICS—PARTB:CYBERNETICS.
HuijunGao(SM’09)receivedthePh.D.degreeincontrolscienceandengineeringfromtheHarbinIn-stituteofTechnology,Harbin,China,in2005.
HewasaResearchAssociatewiththeDepartmentofMechanicalEngineering,TheUniversityof,fromNovember2003toAugust2004.FromOctober2005toOctober2007,heconductedhispostdoctoralresearchwiththeDepartmentofElectricalandComputerEngineering,UniversityofAlberta,AB,Canada.SinceNovember2004,hehasbeenwiththeHarbinInstituteofTechnology,
whereheiscurrentlyaProfessorandDirectoroftheResearchInstituteofIntelligentControlandSystems.Hisresearchinterestsincludenetwork-basedcontrol,robustcontrol/filtertheory,time-delaysystems,andtheirengineeringapplications.
Dr.GaoisanAssociateEditorforsuchpublicationsasAutomatica,theIEEETRANSACTIONSONINDUSTRIALELECTRONICS,theIEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTB:CYBERNETICS,theIEEETRANSACTIONSONFUZZYSYSTEMS,theIEEETRANSACTIONSONCIRCUITSANDSYSTEMS—PARTI,andtheIEEETRANSACTIONSONCONTROLSYSTEMSTECHNOLOGY.
OkyayKaynak(SM’90–F’03)receivedthePh.D.degreeintheDepartmentofElectronicandElectricalEngineeringfromtheUniversityofBirmingham,Birmingham,U.K.,in1972.
From1972to1979,heheldvariouspositionswithintheindustry.In1979,hejoinedtheDe-partmentofElectricalandElectronicsEngineeringBogaziciUniversity,Istanbul,Turkey,whereheiscurrentlyaFullProfessor.HehasservedastheChairmanoftheComputerEngineeringandtheElectricalandElectronicEngineeringDepartments
andastheDirectoroftheBiomedicalEngineeringInstitute,BogaziciUniver-sity.Currently,heistheUNESCOChaironMechatronicsandtheDirectoroftheMechatronicsResearchandApplicationCenter.HehasheldVisitingProfessor/ScholarpositionsatvariousinstitutionsinJapan,Germany,theUnitedStates,andSingapore.Hiscurrentresearchinterestsareinthefieldsofintelligentcontrolandmechatronics.Hehasauthoredthreebooksandeditedfivebooksandauthoredorcoauthoredmorethan300papersthathaveappearedinvariousjournalsandconferenceproceedings.
Dr.KaynakisservingorhasservedontheEditorialorAdvisoryBoardsofanumberofscholarlyjournals.Currently,heisaCo-Editor-in-ChiefoftheIEEETRANSACTIONSONINDUSTRIALELECTRONICSandanAssociateEditoroftheIEEESENSORSJOURNALandtheIEEE/ASMETRANSACTIONSONMECHATRONICS.Heisactiveininternationallyorganizations,hasservedonmanycommitteesoftheIEEE,andwasthePresidentoftheIEEEIndustrialElectronicsSocietyduring2002–2003andVice-President(forConferences)ofComputationalIntelligenceSocietyduring2004–2005.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务