搜索
您的当前位置:首页正文

相步进电机工作原理

来源:意榕旅游网
步进式电动机

一、前言

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 二、感应子式步进电机工作原理 (一)反应式步进电机原理

由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构:

电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A’与齿5相对齐,(A’就是A,齿5就是齿1)

2、旋转:

如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转

子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。

由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。

不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 3、力矩:

电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力F与(dФ/dθ)成正比 S 其磁通量Ф=Br*S Br为磁密,S为导磁面积 F与L*D*Br成正比L为铁芯有效长度,D为转子直径 Br=N·I/R N·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径

力矩与电机有效体积*安匝数*磁密 成正比(只考虑线性状态)因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。 (二)感应子式步进电机 1、特点:

感应子式步进电机与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。 感应子式步进电机某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C=,D=.

一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相,而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,可以作二相电机绕组串联或并联使用。 2、分类

感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。以机座号(电机外径)可分为:42BYG(BYG为感应子式步进电机代号)、57BYG、86BYG、110BYG、(国际标准),而像70BYG、90BYG、130BYG等均为国内 三、驱动控制系统组成

使用、控制步进电机必须由环形脉冲,功率放大等组成的控制系统,其方框图如下:

1、脉冲信号的产生。

脉冲信号一般由单片机或CPU产生,一般脉冲信号的占空比为左右,电机转速越高,占空比则越大。 2、信号分配

我厂生产的感应子式步进电机以二、四相电机为主,二相电机工作方式有二相四拍和二相八拍二种,具体分配如下:二相四拍为,步距角为度;二相八拍为,步距角为度。四相电机工作方式也有二种,四相四拍为AB-BC-CD-DA-AB,步距角为度;四相八拍为AB-B-BC-C-CD-D-AB,(步距角为度)。 3、功率放大

功率放大是驱动系统最为重要的部分。步进电机在一定转速下的转矩取决于它的动态平均电流而非静态电流(而样本上的电流均为静态电流)。平均电流越大电机力矩越大,要达到平均电流大这就需要驱动系统尽量克服电机的反电势。因而不同的场合采取不同的的驱动方式,到目前为止,驱动方式一般有以下几种:恒压、恒压串电阻、高低压驱动、恒流、细分数等。

为尽量提高电机的动态性能,将信号分配、功率放大组成步进电机的驱动电源。我厂生产的SH系列二相恒流斩波驱动电源与单片机及电机接线图如下: 说明:

CP 接CPU脉冲信号(负信号,低电平有效) OPTO 接CPU+5V

FREE 脱机,与CPU地线相接,驱动电源不工作 DIR 方向控制,与CPU地线相接,电机反转 VCC 直流电源正端 GND 直流电源负端 A 接电机引出线红线 接电机引出线绿线 B 接电机引出线黄线

接电机引出线蓝线 步进电机一经定型,其性能取决于电机的驱动电源。步进电机转速越高,力距越大则要求电机的电流越大,驱动电源的电压越高。电压对力矩影响如下:

4、细分驱动器

在步进电机步距角不能满足使用的条件下,可采用细分驱动器来驱动步进电机,细分驱动器的原理是通过改变相邻(A,B)电流的大小,以改变合成磁场的夹角来控制步进电机运转的。 四、步进电机的应用 (一)步进电机的选择

步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。一旦三大要素确定,步进电机的型号便确定下来了。 1、步距角的选择

电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。电机的步距角应等于或小于此角度。目前市场上步进电机的步距角一般有度/度(五相电机)、度/度(二、四相电机)、度/3度 (三相电机)等。 2、静力矩的选择

步进电机的动态力矩一下子很难确定,我们往往先确定电机的静力矩。静力矩选择的依据是电机工作的负载,而负载可分为惯性负载和摩擦负载二种。单一的惯性负载和单一的摩擦负载是不存在的。直接起动时(一般由低速)时二种负载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要考虑摩擦负载。一般情况下,静力矩应为摩擦负载的2-3倍内好,静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸)

3、电流的选择

静力矩一样的电机,由于电流参数不同,其运行特性差别很大,可依据矩频特性曲线图,判断电机的电流(参考驱动电源、及驱动电压) 4、力矩与功率换算

步进电机一般在较大范围内调速使用、其功率是变化的,一般只用力矩来衡量,力矩与功率换算如下:

P= Ω·M Ω=2π·n/60 P=2πnM/60

其P为功率单位为瓦,Ω为每秒角速度,单位为弧度,n为每分钟转速,M为力矩单位为牛顿·米

P=2πfM/400(半步工作) 其中f为每秒脉冲数(简称PPS)

(二)、应用中的注意点

1、步进电机应用于低速场合---每分钟转速不超过1000转,(度时6666PPS),最好在1000-3000PPS度)间使用,可通过减速装置使其在此间工作,此时电机工作效率高,噪音低。

2、步进电机最好不使用整步状态,整步状态时振动大。

3、由于历史原因,只有标称为12V电压的电机使用12V外,其他电机的电压值不是驱动电压伏值 ,可根据驱动器选择驱动电压(建议:57BYG采用直流24V-36V,86BYG采用直流50V,110BYG采用高于直流80V),当然12伏的电压除12V恒压驱动外也可以采用其他驱动电源, 不过要考虑温升。 4、转动惯量大的负载应选择大机座号电机。

5、电机在较高速或大惯量负载时,一般不在工作速度起动,而采用逐渐升频提速,一电机不失步,二可以减少噪音同时可以提高停止的定位精度。

6、高精度时,应通过机械减速、提高电机速度,或采用高细分数的驱动器来解决,也可以采用5相电机,不过其整个系统的价格较贵,生产厂家少,其被淘汰的说法是外行话。

7、电机不应在振动区内工作,如若必须可通过改变电压、电流或加一些阻尼的解决。

8、电机在600PPS(度)以下工作,应采用小电流、大电感、低电压来驱动。 9、应

步进电机14问 1.什么是步进电机

步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 2.步进电机分哪几种

步进电机分三种:永磁式(PM) ,反应式(VR)和混合式(HB) 永磁式步进一般为两相,转矩和体积较小,步进角一般为度 或15度; 反应式步进一般为三相,可实现大转矩输出,步进角一般为度,但噪声和振动都很大。在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为度而五相步进角一般为 度。这种步进电机的应用最为广泛。

3.什么是保持转矩(HOLDING TORQUE)

保持转矩(HOLDING TORQUE)是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说的步进电机,在没有特殊说明的情况下是指保持转矩为的步进电机。 4.什么是DETENT TORQUE

DETENT TORQUE 是指步进电机没有通电的情况下,定子锁住转子的力矩。 DETENT TORQUE 在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENT TORQUE。 5.步进电机精度为多少是否累积

一般步进电机的精度为步进角的3-5%,且不累积。 6.步进电机的外表温度允许达到多少

步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。

7.为什么步进电机的力矩会随转速的升高而下降

当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。

8.为什么步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声

步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。

9.如何克服两相混合式步进电机在低速运转时的振动和噪声

步进电机低速转动时振动和噪声大是其固有的缺点,一般可采用以下方案来克服:

A.如步进电机正好工作在共振区,可通过改变减速比等机械传动避开共振区; B.采用带有细分功能的驱动器,这是最常用的、最简便的方法; C.换成步距角更小的步进电机,如三相或五相步进电机;

D.换成交流伺服电机,几乎可以完全克服震动和噪声,但成本较高;

E.在电机轴上加磁性阻尼器,市场上已有这种产品,但机械结构改变较大。 10.细分驱动器的细分数是否能代表精度

步进电机的细分技术实质上是一种电子阻尼技术(请参考有关文献),其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。比如对于步进角为° 的两相混合式步进电机,如果细分驱动器的细分数设置为4,那么电机的运转分辨率为每个脉冲°,电机的精度能否达到或接近°,还取决于细分驱动器的细分电流控制精度等其它因素。不同厂家的细分驱动器精度可能差别很大;细分数越大精度越难控制。

11.四相混合式步进电机与驱动器的串联接法和并联接法有什么区别

四相混合式步进电机一般由两相驱动器来驱动,因此,连接时可以采用串联接法或并联接法将四相电机接成两相使用。串联接法一般在电机转速较的场合使用,此时需要的驱动器输出电流为电机相电流的倍,因而电机发热小;并联接法一般在电机转速较高的场合使用(又称高速接法),所需要的驱动器输出电流为电机相电流的倍,因而电机发热较大。

12.如何确定步进电机驱动器的直流供电电源

A.电压的确定:混合式步进电机驱动器的供电电源电压一般是一个较宽的范围(比如IM483的供电电压为12~48VDC),电源电压通常根据电机的工作转速和响应要求来选择。如果电机工作转速较高或响应要求较快,那么电压取值也高,但注意电源电压的纹波不能超过驱动器的最大输入电压,否则可能损坏驱动器。

B.电流的确定:供电电源电流一般根据驱动器的输出相电流I来确定。如果采用线性电源,电源电流一般可取I 的~倍;如果采用开关电源,电源电流一般可取I 的~倍。

13.混合式步进电机驱动器的脱机信号FREE一般在什么情况下使用

当脱机信号FREE为低电平时,驱动器输出到电机的电流被切断,电机转子处于自由状态(脱机状态)。在有些自动化设备中,如果在驱动器不断电的情况下要求直接转动电机轴(手动方式),就可以将FREE信号置低,使电机脱机,进行手动操作或调节。手动完成后,再将FREE信号置高,以继续自动控制。 14.如果用简单的方法调整两相步进电机通电后的转动方向 只需将电机与驱动器接线的A+和A-(或者B+和B-)对调即可。 关于驱动器的细分原理及一些相关说明(转载)

在国外,对于步进系统,主要采用二相混合式步进电机及相应的细分驱动器。 但在国内,广大用户对“细分”还不是特别了解,有的只是认为,细分是为了提高精

度,其实不然,细分主要是改善电机的运行性能,现说明如下:步进电机的细分控制是由驱动器精确控制步进电机的相电流来实现的,以二相电机为例,假如电机的额定相电流为3A,如果使用常规驱动器(如常用的恒流斩波方式)驱动该电机,电机每运行一步,其绕组内的电流将从0突变为3A或从3A突变到0,相电流的巨大变化,必然会引起电机运行的振动和噪音。如果使用细分驱动器,在10细分的状态下驱动该电机,电机每运行一微步,其绕组内的电流变化只有0.3A而不是3A,且电流是以正弦曲线规律变化,这样就大大的改善了电机的振动和噪音,因此,在性能上的优点才是细分的真正优点。由于细分驱动器要精确控制电机的相电流,所以对驱动器要有相当高的技术要求和工艺要求,成本亦会较高。注意,国内有一些驱动器采用“平滑”来取代细分,有的亦称为细分,但这不是真正的细分,望广大用户一定要分清两者的本质不同:

1.“平滑”并不精确控制电机的相电流,只是把电流的变化率变缓一些,所以“平

滑”并不产生微步,而细分的微步是可以用来精确定位的。

2.电机的相电流被平滑后,会引起电机力矩的下降,而细分控制不但不会引起电机力矩的下降,相反,力矩会有所增加。 俺是步进不仅新手,俺也来贴。 1.什么是步进电机

步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 2.步进电机分哪几种

步进电机分三种:永磁式(PM) ,反应式(VR)和混合式(HB) 永磁式步进一般为两相,转矩和体积较小,步进角一般为度 或15度; 反应式步进一般为三相,可实现大转矩输出,步进角一般为度,但噪声和振动都很大。在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为度而五相步进角一般为 度。这种步进电机的应用最为广泛。

3.什么是保持转矩(HOLDING TORQUE)

保持转矩(HOLDING TORQUE)是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变

化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说的步进电机,在没有特殊说明的情况下是指保持转矩为的步进电机。 4.什么是DETENT TORQUE

DETENT TORQUE 是指步进电机没有通电的情况下,定子锁住转子的力矩。 DETENT TORQUE 在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENT TORQUE。 5.步进电机精度为多少是否累积

一般步进电机的精度为步进角的3-5%,且不累积。 6.步进电机的外表温度允许达到多少

步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。

7.为什么步进电机的力矩会随转速的升高而下降

当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。

8.为什么步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声

步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。

9.如何克服两相混合式步进电机在低速运转时的振动和噪声

步进电机低速转动时振动和噪声大是其固有的缺点,一般可采用以下方案来克服:

A.如步进电机正好工作在共振区,可通过改变减速比等机械传动避开共振区; B.采用带有细分功能的驱动器,这是最常用的、最简便的方法; C.换成步距角更小的步进电机,如三相或五相步进电机;

D.换成交流伺服电机,几乎可以完全克服震动和噪声,但成本较高; E.在电机轴上加磁性阻尼器,市场上已有这种产品,但机械结构改变较大。 10.细分驱动器的细分数是否能代表精度

步进电机的细分技术实质上是一种电子阻尼技术(请参考有关文献),其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。比如对于步进角为° 的两相混合式步进电机,如果细分驱动器的细分数设置为4,那么电机的运转分辨率为每个脉冲°,电机的精度能否达到或接近°,还取决于细分驱动器的细分电流控制精度等其它因素。不同厂家的细分驱动器精度可能差别很大;细分数越大精度越难控制。

11.四相混合式步进电机与驱动器的串联接法和并联接法有什么区别

四相混合式步进电机一般由两相驱动器来驱动,因此,连接时可以采用串联接法或并联接法将四相电机接成两相使用。串联接法一般在电机转速较的场合使用,此时需要的驱动器输出电流为电机相电流的倍,因而电机发热小;并联接法一般在电机转速较高的场合使用(又称高速接法),所需要的驱动器输出电流为电机相电流的倍,因而电机发热较大。

12.如何确定步进电机驱动器的直流供电电源

A.电压的确定:混合式步进电机驱动器的供电电源电压一般是一个较宽的范围(比如IM483的供电电压为12~48VDC),电源电压通常根据电机的工作转速和响应要求来选择。如果电机工作转速较高或响应要求较快,那么电压取值也高,但注意电源电压的纹波不能超过驱动器的最大输入电压,否则可能损坏驱动器。

B.电流的确定:供电电源电流一般根据驱动器的输出相电流I来确定。如果采用线性电源,电源电流一般可取I 的~倍;如果采用开关电源,电源电流一般可取I 的~倍。

13.混合式步进电机驱动器的脱机信号FREE一般在什么情况下使用

当脱机信号FREE为低电平时,驱动器输出到电机的电流被切断,电机转子处于自由状态(脱机状态)。在有些自动化设备中,如果在驱动器不断电的情况下要求直接转动电机轴(手动方式),就可以将FREE信号置低,使电机脱机,进行手动操作或调节。手动完成后,再将FREE信号置高,以继续自动控制。 14.如果用简单的方法调整两相步进电机通电后的转动方向 只需将电机与驱动器接线的A+和A-(或者B+和B-)对调即可。

虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。

目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给用户在产品选型、使用中造成许多麻烦。签于上述情况,

我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 一、感应子式步进电机工作原理 1)、反应式步进电机原理

由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。

1、结构:

电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。

0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转:

如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。

如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。

如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。

如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。

由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。

不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。

不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 3、力矩:

电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力F与(dФ/dθ)成正比 其磁通量Ф=Br*S Br为磁密,S为导磁面积 F与L*D*Br成正比

L为铁芯有效长度,D为转子直径 Br=N·I/R

N·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径

力矩与电机有效体积*安匝数*磁密 成正比(只考虑线性状态)

因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。

(二)感应子式步进电机 1、特点:

感应子式步进电机与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。 感应子式步进电机某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.

一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相,而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,可以作二相电机绕组串联或并联使用。 2、分类

感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。以机座号(电机外径)可分为:42BYG(BYG为感应子式步进电机代号)、57BYG、86BYG、110BYG、(国际标准),而像70BYG、90BYG、130BYG等均为国内标准。 3、步进电机的静态指标术语

相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。

拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即 A-AB-B-BC-C-CD-D-DA-A.

步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=度(俗称半步)。

定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)

静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。 虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过份采用减小气隙,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。

4、步进电机动态指标及术语: 1、步距角精度:

步进电机每转过一个步距角的实际值与理论值的误差。用百分比表示:误差/步距角*100%。不同运行拍数其值不同,四拍运行时应在5%之内,八拍运行时应在15%以内。 2、失步:

电机运转时运转的步数,不等于理论上的步数。称之为失步。 3、失调角:

转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。 4、最大空载起动频率:

电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。

5、最大空载的运行频率:

电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。 6、运行矩频特性:电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。如下图所示:

其它特性还有惯频特性、起动频率特性等。

电机一旦选定,电机的静力矩确定,而动态力矩却不然,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。

其中,曲线3电流最大、或电压最高;曲线1电流最小、或电压最低,曲线与负载的交点为负载的最大速度点。

要使平均电流大,尽可能提高驱动电压,使采用小电感大电流的电机。 7、电机的共振点:

步进电机均有固定的共振区域,二、四相感应子式步进电机的共振区一般在180-250pps之间(步距角度)或在400pps左右(步距角为度),电机驱动电压越高,电机电流越大,负载越轻,电机体积越小,则共振区向上偏移,反之亦然,为使电机输出电矩大,不失步和整个系统的噪音降低,一般工作点均应偏移共振区较多。 8、电机正反转控制:

当电机绕组通电时序为AB-BC-CD-DA时为正转,通电时序为DA-CA-BC-AB时为反转。

(二)感应子式步进电机 1、特点:

感应子式步进电机与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。 感应子式步进电机某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C= ,D= .

一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相,而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,可以作二相电机绕组串联或并联使用。 2、分类

感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。以机座号(电机外径)可分为:42BYG(BYG为感应子式步进电机代号)、57BYG、86BYG、110BYG、(国际标准),而像70BYG、90BYG、130BYG等均为国内标准。

3、步进电机的静态指标术语

相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。

拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即 A-AB-B-BC-C-CD-D-DA-A.

步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=度(俗称半步)。

定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)

静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。 虽然静转矩与电磁激磁安匝数成正比,与定齿转子间的气隙有关,但过份采用减小气隙,增加激磁安匝来提高静力矩是不可取的,这样会造成电机的发热及机械噪音。

4、步进电机动态指标及术语: 1、步距角精度:

步进电机每转过一个步距角的实际值与理论值的误差。用百分比表示:误差/步距角*100%。不同运行拍数其值不同,四拍运行时应在5%之内,八拍运行时应在15%以内。 2、失步:

电机运转时运转的步数,不等于理论上的步数。称之为失步。 3、失调角:

转子齿轴线偏移定子齿轴线的角度,电机运转必存在失调角,由失调角产生的误差,采用细分驱动是不能解决的。 4、最大空载起动频率:

电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。

5、最大空载的运行频率:

电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。 6、运行矩频特性:电机在某种测试条件下测得运行中输出力矩与频率关系的曲线称为运行矩频特性,这是电机诸多动态曲线中最重要的,也是电机选择的根本依据。 其它特性还有惯频特性、起动频率特性等。

机一旦选定,电机的静力矩确定,而动态力矩却不然,电机的动态力矩取决于电机运行时的平均电流(而非静态电流),平均电流越大,电机输出力矩越大,即电机的频率特性越硬。 如下图所示:

其中,曲线3电流最大、或电压最高;曲线1电流最小、或电压最低,曲线与负载的交点为负载的最大速度点。

要使平均电流大,尽可能提高驱动电压,使采用小电感大电流的电机。 7、电机的共振点:

步进电机均有固定的共振区域,二、四相感应子式步进电机的共振区一般在180-250pps之间(步距角度)或在400pps左右(步距角为度),电机驱动电压越高,电机电流越大,负载越轻,电机体积越小,则共振区向上偏移,反之亦然,为使电机输出电矩大,不失步和整个系统的噪音降低,一般工作点均应偏移共振区较多。 8、电机正反转控制:

当电机绕组通电时序为AB-BC-CD-DA时为正转,通电时序为DA-CA-BC-AB时为反转。

三、驱动控制系统组成

使用、控制步进电机必须由环形脉冲,功率放大等组成的控制系统,其方框图如下:

1、脉冲信号的产生。

脉冲信号一般由单片机或CPU产生,一般脉冲信号的占空比为左右,电机转速越高,占空比则越大。 2、信号分配

我厂生产的感应子式步进电机以二、四相电机为主,二相电机工作方式有二相四拍和二相八拍二种,具体分配如下:二相四拍为 ,步距角为度;二相八拍为,步距角为度。四相电机工作方式也有二种,四相四拍为AB-BC-CD-DA-AB,步距角为度;四相八拍为AB-B-BC-C-CD-D-AB,(步距角为度)。 3、功率放大

功率放大是驱动系统最为重要的部分。步进电机在一定转速下的转矩取决于它的动态平均电流而非静态电流(而样本上的电流均为静态电流)。平均电流越大电机力矩越大,要达到平均电流大这就需要驱动系统尽量克服电机的反电势。因而不同的场合采取不同的的驱动方式,到目前为止,驱动方式一般有以下几种:恒压、恒压串电阻、高低压驱动、恒流、细分数等。

为尽量提高电机的动态性能,将信号分配、功率放大组成步进电机的驱动电源。我厂生产的SH系列二相恒流斩波驱动电源与单片机及电机接线图如下:

说明:

CP 接CPU脉冲信号(负信号,低电平有效) OPTO 接CPU+5V

FREE 脱机,与CPU地线相接,驱动电源不工作 DIR 方向控制,与CPU地线相接,电机反转 VCC 直流电源正端 GND 直流电源负端

步进电机一经定型,其性能取决于电机的驱动电源。步进电机转速越高,力距越大则要求电机的电流越大,驱动电源的电压越高。电压对力矩影响如下: 4、细分驱动器

在步进电机步距角不能满足使用的条件下,可采用细分驱动器来驱动步进电机,细分驱动器的原理是通过改变相邻(A,B)电流的大小,以改变合成磁场的夹角来控制步进电机运转的。 四、步进电机的应用 (一)步进电机的选择

步进电机有步距角(涉及到相数)、静转矩、及电流三大要素组成。一旦三大要素确定,步进电机的型号便确定下来了。 1、步距角的选择

电机的步距角取决于负载精度的要求,将负载的最小分辨率(当量)换算到电机轴上,每个当量电机应走多少角度(包括减速)。电机的步距角应等于或小于此角度。目前市场上步进电机的步距角一般有度/度(五相电机)、度/度(二、四相电机)、度/3度 (三相电机)等。

步进电动机的工作原理及驱动方法

关键词: 步进电动机 工业控制

步进电动机是一种将电脉冲信号转换成角位移或线位移的机电元件。步进电动机的输入量是脉冲序列,输出量则为相应的增量位移或步进运动。正常运动情况下,它每转一周具有固定的步数;做连续步进运动时,其旋转转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接受数字量的控制,所以特别适宜采用微机进行控制。

1.步进电动机的种类

目前常用的有三种步进电动机:

(1)反应式步进电动机(VR)。反应式步进电动机结构简单,生产成本低,步距角小;但动态性能差。

(2)永磁式步进电动机(PM)。永磁式步进电动机出力大,动态性能好;但步距角大。 (3)混合式步进电动机(HB)。混合式步进电动机综合了反应式、永磁式步进电动机两者的优点,它的步距角小,出力大,动态性能好,是目前性能最高的步进电动机。它有时也称作永磁感应子式步进电动机。 2.步进电动机的工作原理

图1 三相反应式步进电动机的结构示意图 1——定子 2——转子 3——定子绕组{{分页}}

图1是最常见的三相反应式步进电动机的剖面示意图。电机的定子上有六个均布的磁极,其夹角是60º。各磁极上套有线圈,按图1连成A、B、C三相绕组。转子上均布40个小齿。所以每个齿的齿距为θE=360º/40=9º,而定子每个磁极的极弧上也有5个小齿,且定子和转子的齿距和齿宽均相同。由于定子和转子的小齿数目分别是30和40,其比值是一分数,这就产生了所谓的齿错位的情况。若以A相磁极小齿和转子的小齿对齐,如图1,那么B相和C相磁极的齿就会分别和转子齿相错三分之一的齿距,即3º。因此,B、C极下的磁阻比A磁极下的磁阻大。若给B相通电,B相绕组产生定子磁场,其磁力线穿越B相磁极,并力图按磁阻最小的路径闭合,这就使转子受到反应转矩(磁阻转矩)的作用而转动,直到

B磁极上的齿与转子齿对齐,恰好转子转过3º;此时A、C磁极下的齿又分别与转子齿错开三分之一齿距。接着停止对B相绕组通电,而改为C相绕组通电,同理受反应转矩的作用,转子按顺时针方向再转过3º。依次类推,当三相绕组按A→B→C→A顺序循环通电时,转子会按顺时针方向,以每个通电脉冲转动3º的规律步进式转动起来。若改变通电顺序,按A→C→B→A顺序循环通电,则转子就按逆时针方向以每个通电脉冲转动3º的规律转动。因为每一瞬间只有一相绕组通电,并且按三种通电状态循环通电,故称为单三拍运行方式。单三拍运行时的步矩角θb为30º。三相步进电动机还有两种通电方式,它们分别是双三拍运行,即按AB→BC→CA→AB顺序循环通电的方式,以及单、双六拍运行,即按

A→AB→B→BC→C→CA→A顺序循环通电的方式。六拍运行时的步矩角将减小一半。反应式步进电动机的步距角可按下式计算:

θb=360º/NEr (1) 式中 Er——转子齿数;

N——运行拍数,N=km,m为步进电动机的绕组相数,k=1或2。 3.步进电动机的驱动方法

步进电动机不能直接接到工频交流或直流电源上工作,而必须使用专用的步进电动机驱动器,如图2所示,它由脉冲发生控制单元、功率驱动单元、保护单元等组成。图中点划线所包围的二个单元可以用微机控制来实现。驱动单元与步进电动机直接耦合,也可理解成步进电动机微机控制器的功率接口,这里予以简单介绍。

图2 步进电动机驱动控制器

1. 单电压功率驱动接口

实用电路如图3所示。在电机绕组回路中串有电阻Rs,使电机回路时间常数减小,高频时电机能产生较大的电磁转矩,还能缓解电机的低频共振现象,但它引起附加的损耗。一般情况下,简单单电压驱动线路中,Rs是不可缺少的。Rs对步进电动机单步响应的改善如图3(b)。{{分页}}

图3 单电压功率驱动接口及单步响应曲线

图4 双电压功率驱动接口

2.双电压功率驱动接口

双电压驱动的功率接口如图4所示。双电压驱动的基本思路是在较低(低频段)用较低的电压UL驱动,而在高速(高频段)时用较高的电压UH驱动。这种功率接口需要两个控制信号,Uh为高压有效控制信号,U为脉冲调宽驱动控制信号。图中,功率管TH和二极管DL构成电源转换电路。当Uh低电平,TH关断,DL正偏置,低电压UL对绕组供电。反之Uh高电平,TH导通,DL反偏,高电压UH对绕组供电。这种电路可使电机在高频段也有较大出力,而静止锁定时功耗减小。 3.高低压功率驱动接口

图5 高低压功率驱动接口

高低压功率驱动接口如图5所示。高低压驱动的设计思想是,不论电机工作频率如何,均利用高电压UH供电来提高导通相绕组的电流前沿,而在前沿过后,用低电压UL来维持绕组的电流。这一作用同样改善了驱动器的高频性能,而且不必再串联电阻Rs,消除了附加损耗。高低压驱动功率接口也有两个输入控制信号Uh和Ul,它们应保持同步,且前沿在同一时刻跳变,如图5所示。图中,高压管VTH的导通时间tl不能太大,也不能太小,太大时,电机电流过载;太小时,动态性能改善不明显。一般可取1~3ms。(当这个数值与电机的电气时间常数相当时比较合适)。{{分页}} 4.斩波恒流功率驱动接口

恒流驱动的设计思想是,设法使导通相绕组的电流不论在锁定、低频、高频工作时均保持固定数值。使电机具有恒转矩输出特性。这是目前使用较多、效果较好的一种功率接口。图6是斩波恒流功率接口原理图。图中R是一个用于电流采样的小阻值电阻,称为采样电阻。当电流不大时,VT1和VT2同时受控于走步脉冲,当电流超过恒流给定的数值,VT2被封锁,电源U被切除。由于电机绕组具有较大电感,此时靠二极管VD续流,维持绕组电流,电机靠消耗电感中的磁场能量产生出力。此时电流将按指数曲线衰减,同样电流采样值将减小。当电流小于恒流给定的数值,VT2导通,电源再次接通。如此反复,电机绕组电流就稳定在由给定电平所决定的数值上,形成小小的锯齿波,如图6所示。

图6 斩波恒流功率驱动接口

斩波恒流功率驱动接口也有两个输入控制信号,其中u1是数字脉冲,u2是模拟信号。这种功率接口的特点是:高频响应大大提高,接近恒转矩输出特性,共振现象消除,但线路较复杂。目前已有相应的集成功率模块可供采用。 5.升频升压功率驱动接口

为了进一步提高驱动系统的高频响应,可采用升频升压功率驱动接口。这种接口对绕组提供的电压与电机的运行频率成线性关系。它的主回路实际上是一个开关稳压电源,利用频率-电压变换器,将驱动脉冲的频率转换成直流电平,并用此电平去控制开关稳压电源的输入,这就构成了具有频率反馈的功率驱动接口。 6.集成功率驱动接口

目前已有多种用于小功率步进电动机的集成功率驱动接口电路可供选用。

L298芯片是一种H桥式驱动器,它设计成接受标准TTL逻辑电平信号,可用来驱动电感性负载。H桥可承受46V电压,相电流高达2.5A。L298(或XQ298,SGS298)的逻辑电路使用5V电源,功放级使用5~46V电压,下桥发射极均单独引出,以便接入电流取样电阻。L298(等)采用15脚双列直插小瓦数式封装,工业品等级。它的内部结构如图7所示。H桥驱动的主要特点是能够对电机绕组进行正、反两个方向通电。L298特别适用于对二相或四相步进电动机的驱动。{{分页}}

图7 L298原理框图

与L298类似的电路还有TER公司的3717,它是单H桥电路。SGS公司的SG3635则是单桥臂电路,IR公司的IR2130则是三相桥电路,Allegro公司则有A2916、A3953等小功率驱动模块。

图8是使用L297(环形分配器专用芯片)和L298构成的具有恒流斩波功能的步进电动机驱动系统。

图8 专用芯片构成的步进电动驱动系统

四相步进电机的原理

步进电机的工作原理

该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。

图1 四相步进电机步进示意图

开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。

当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角

是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。

单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图、b、c所示:

a. 单四拍 b. 双四拍 c八拍 图2.步进电机工作时序波形图 以下是单四拍程序源代码!

C51程序代码为:

代码一

#include <>

static unsigned int count;

static unsigned int endcount;

void delay();

void main(void)

{

count = 0;

P1_0 = 0;

P1_1 = 0;

P1_2 = 0;

P1_3 = 0;

EA = 1; 0C0C0C0C步进电机的工作原理

该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。

图1 四相步进电机步进示意图

开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相 绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。

当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。

四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。

单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图、b、c所示:

a. 单四拍 b. 双四

拍 c八拍

图2.步进电机工作时序波形图

2.基于AT89C2051的步进电机驱动器系统电路原理

步进电机驱动器系统电路原理如图3:

图3 步进电机驱动器系统电路原理图

AT89C2051将控制脉冲从P1口的~输出,经74LS14反相后进入9014,经9014放大后控制光电开关,光电隔离后,由功率管TIP122将脉冲信号进行电压和电流放大,驱动步进电机的各相绕组。使步进电机随着不同的脉冲信号分别作正转、反转、加速、减速和停止等动作。图中L1为步进电机的一相绕组。AT89C2051选用频率22MHz的晶振,选用较高晶振的目的是为了在方式2下尽量减小AT89C2051对上位机脉冲信号周期的影响。

图3中的RL1~RL4为绕组内阻,50Ω电阻是一外接电阻,起限流作用,也是一个改善回路时间常数的元件。D1~D4为续流二极管,使电机绕组产生的反电动势通过续流二极管(D1~D4)而衰减掉,从而保护了功率管TIP122不受损坏。

在50Ω外接电阻上并联一个200μF电容,可以改善注入步进电机绕组的电流脉冲前沿,提高了步进电机的高频性能。与续流二极管串联的200Ω电阻可减小回路的放电时间常数,使绕组中电流脉冲的后沿变陡,电流下降时间变小,也起到提高高频工作性能的作用。

3.软件设计

该驱动器根据拨码开关KX、KY的不同组合有三种工作方式供选择:

方式1为中断方式:(INT1)为步进脉冲输入端,为正反转脉冲输入端。上位机(PC机或单片机)与驱动器仅以2条线相连。

方式2为串行通讯方式:上位机(PC机或单片机)将控制命令发送给驱动器,驱动器根据控制命令自行完成有关控制过程。

方式3为拨码开关控制方式:通过K1~K5的不同组合,直接控制步进电机。

当上电或按下复位键KR后,AT89C2051先检测拨码开关KX、KY的状态,根据KX、KY 的不同组合,进入不同的工作方式。以下给出方式1的程序流程框图与源程序。

在程序的编制中,要特别注意步进电机在换向时的处理。为使步进电机在换向时能平滑过渡,不至于产生错步,应在每一步中设置标志位。其中20H单元的各位为步进电机正转标志位;21H单元各位为反转标志位。在正转时,不仅给正转标志位赋值,也同时给反转标志位赋值;在反转时也如此。这样,当步进电机换向时,就可以上一次的位置作为起点反向运动,避免了电机换向时产生错步。

图4 方式1程序框图

方式1源程序:

MOV 20H,#00H ;20H单元置初值,电机正转位置指针

MOV 21H,#00H ;21H单元置初值,电机反转位置指针

MOV P1,#0C0H ;P1口置初值,防止电机上电短路

MOV TMOD,#60H ;T1计数器置初值,开中断

MOV TL1,#0FFH

MOV TH1,#0FFH

SETB ET1

SETB EA

SETB TR1

SJMP $

;***********计数器1中断程序************

IT1P: JB ,FAN ;电机正、反转指针

;*************电机正转*****************

JB 00H,LOOP0

JB 01H,LOOP1

JB 02H,LOOP2

JB 03H,LOOP3

JB 04H,LOOP4

JB 05H,LOOP5

JB 06H,LOOP6

JB 07H,LOOP7

LOOP0: MOV P1,#0D0H

MOV 20H,#02H

MOV 21H,#40H

AJMP QUIT

LOOP1: MOV P1,#090H

MOV 20H,#04H

MOV 21H,#20H

AJMP QUIT

LOOP2: MOV P1,#0B0H

MOV 20H,#08H

MOV 21H,#10H

AJMP QUIT

LOOP3: MOV P1,#030H

MOV 20H,#10H

MOV 21H,#08H

AJMP QUIT

LOOP4: MOV P1,#070H

MOV 20H,#20H

MOV 21H,#04H

AJMP QUIT

LOOP5: MOV P1,#060H

MOV 20H,#40H

MOV 21H,#02H

AJMP QUIT

LOOP6: MOV P1,#0E0H

MOV 20H,#80H

MOV 21H,#01H

AJMP QUIT

LOOP7: MOV P1,#0C0H

MOV ; 20H,#01H

MOV 21H,#80H

AJMP QUIT

;***************电机反转*****************

FAN: JB 08H,LOOQ0

JB 09H,LOOQ1

JB 0AH,LOOQ2

JB 0BH,LOOQ3

JB 0CH,LOOQ4

JB 0DH,LOOQ5

JB 0EH,LOOQ6

JB 0FH,LOOQ7

LOOQ0: MOV P1,#0A0H

MOV 21H,#02H

MOV 20H,#40H

AJMP QUIT

LOOQ1: MOV P1,#0E0H

MOV 21H,#04H

MOV 20H,#20H

AJMP QUIT

LOOQ2: MOV P1,#0C0H

MOV 21H,#08H

MOV 20H,#10H

AJMP QUIT

LOOQ3: MOV P1,#0D0H

MOV 21H,#10H

MOV 20H,#08H

AJMP QUIT

LOOQ4: MOV P1,#050H

MOV 21H,#20H

MOV 20H,#04H

AJMP QUIT

LOOQ5: MOV P1,#070H

MOV 21H,#40H

MOV 20H,#02H

AJMP QUIT

LOOQ6: MOV P1,#030H

MOV 21H,#80H

MOV 20H,#01H

AJMP QUIT

LOOQ7: MOV P1,#0B0H

MOV 21H,#01H

MOV 20H,#80H

QUIT: RETI

END

4.结论

该驱动器经实验验证能驱动的步进电机。将驱动部分的电阻、电容及续流二极管的有关参数加以调整,可驱动的步进电机。该驱动器电路简单可靠,结构紧凑,对于I/O口线与单片机资源紧张的系统来说特别适用。

一)实验目的

了解步进电动机的基本结构和工作原理;

DRLab实验室的操作方法

可重组虚拟仪器和计算机控制平台

当某一相绕阻通电时,对应的磁极产生磁场,并与转子形成磁路,这时,

掌握步进电机驱动程序的设计方法;掌握步进电动机速度调节、方向控制技术;了解步进电动机的各项基本参数对电机运行的影响;熟悉二)实验仪器设备Link电机运动控制系统计算机打印机三)实验原理

和转子的小齿没有对齐,在磁场的作用下,由于磁通具有力图走磁阻最小路径

,转子将转动一定的角度,使转子与定子的齿相互对齐,由此可见,错齿是促

旋转的原因。

步进电动机又称为脉冲电机,它能将电脉冲转换为相应的角位直线位移 。

机定子绕组的通电状态每改变一次,转子转一个确定的角度,为步进电动机的

α。它与定子绕组的相数m、转子的齿数z、通电方式k有关,可用下式表示

从图1所示,进步电机以四相单四拍方式正转时,按A→B→C→D次序通电

机定子绕组通电状态的改变速度越快,其转子旋转的速度越快,即通电状态的

率越高,转子的转速越高 。

图 1进步电机四相单四拍式绕组通电方式

四相步进电动机以四相单四拍(a)、四相双四拍(b)、四相八拍(c) 方式

脉冲分配表

步进电动机的自锁功能是指若某一相一直通直流电时,则电机可以保持

置上实现停车时转子定位

运动控制实验台由运动控制卡、步进电机、直流电机、涡轮涡杆机构、

、转速测量传感器、直线位移标尺和位移测量装置构成。可完成步进电机控制

电机控制、转速测量、位移及负载效应测量、PI及PID调节等实验内容。步进

型号为42BYGH107,为4相电机。如图2所示:

四)实验内容及步骤

步进电机运行速度调节实验:运行方式选择“连续驱动”,驱动类型选择“四

拍”方式,脉冲间隔选择范围3~15ms,(由于步进电机的设计原因,当脉冲

2ms时,四相单四拍方式不能正常工作。)选择3ms,点“电机驱动”按钮,

电机工作;再选择6ms,并点“电机驱动”按钮,使步进电机旋转,观察运行速

时的速度应比前一次的速度低一半。若选择更长的时间间隔如12ms,则可观察

机的运行速度明显降低。终止电机运行请在运行方式中选择“停止保持”或“

保持”。

运行方向控制实验:运行方式选择“连续驱动”,驱动类型选择“四相单四拍

,脉冲间隔选择5ms,方向选择“正向驱动”,

“电机驱动”按钮,使步进电机正向旋转;方向选择“反向驱动”,点“电机驱

钮,使步进电机反向旋转;

步进电机的自锁实验:运行方式选择“停止保持”,其它参数不变,点“电机驱

钮。可以使步进电机某相通电,处于“自锁”状态。此时,用手转动电机的皮带

以感到转动比较困难。

步进电机的步距角演示:运行方式选择“单步驱动”,点“电机驱动”按钮。

一次“电机驱动”按钮,步进电机旋转一个角度,这个角度就是步距角。对于

台步距角为。

五)思 考 题

简述步进电机的速度调节和方向控制原理。

简述步进电机的四相八拍工作方式的优、缺点。

图1是四相单四拍方式的时序图,请画出四相双四拍方式的时序图。

增加步进电动机的通电相数,对启动转矩有什么影响

将通电频率增加会对步进电动机有什么影响

因篇幅问题不能全部显示,请点此查看更多更全内容

Top