Collagen-embedded hydroxylapatite–beta-tricalcium phosphate–silicon dioxide bonesubstitute granules assist rapid vascularization and promote cell growth
This article has been downloaded from IOPscience. Please scroll down to see the full text article.2010 Biomed. Mater. 5 025004
(http://iopscience.iop.org/1748-605X/5/2/025004)
View the table of contents for this issue, or go to the journal homepage for more
Download details:
IP Address: 162.105.247.124
The article was downloaded on 06/03/2011 at 07:38
Please note that terms and conditions apply.
IOPPUBLISHING
Biomed.Mater.5(2010)025004(11pp)
BIOMEDICALMATERIALS
doi:10.1088/1748-6041/5/2/025004
Collagen-embeddedhydroxylapatite–beta-tricalciumphosphate–silicondioxidebonesubstitutegranulesassistrapidvascularizationandpromotecellgrowth
ShahramMGhanaati1,3,4,BenjaminWThimm1,2,4,RonaldEUnger1,CarinaOrth1,ThomasKohler2,MikeBarbeck1,RalphM¨uller2andCJamesKirkpatrick1
12
InstituteofPathology,JohannesGutenberg-UniversityMainz,Langenbeckstr.1,55101Mainz,GermanyInstituteforBiomechanics,ETHZ¨urich,Wolfgang-Pauli-Str.10,8093Z¨urich,Switzerland
E-mail:ghanaati@uni-mainz.de
Received28December2009
Acceptedforpublication29January2010Published8March2010
Onlineatstacks.iop.org/BMM/5/025004
Abstract
Inthepresentstudyweassessedthebiocompatibilityinvitroandinvivoofalow-temperaturesol–gel-manufacturedSiO2-basedbonegraftsubstitute.Humanprimaryosteoblastsandtheosteoblasticcellline,MG63,culturedontheSiO2biomatrixinmonocultureretainedtheirosteoblasticmorphologyandcellularfunctionalityinvitro.TheeffectofthebiomaterialinvivoanditsvascularizationpotentialwastestedsubcutaneouslyinWistarratsand
demonstratedbothrapidvascularizationandgoodintegrationwithintheperi-implanttissue.Scaffolddegradationwasprogressiveduringthefirstmonthafterimplantation,with
tartrate-resistantacidphosphatase-positivemacrophagesbeingpresentandpromotingscaffolddegradationfromanearlystage.Thismanuscriptdescribessuccessfulosteoblasticgrowthpromotioninvitroandapromisingbiomaterialintegrationandvasculogenesisinvivoforapossibletherapeuticapplicationofthisbiomatrixinfutureclinicalstudies.(Somefiguresinthisarticleareincolouronlyintheelectronicversion)
1.Introduction
Autologousbonegraftingisstillconsideredtobethegoldstandardfornon-unionbonedefects[1].However,theincreasedriskofasecondsurgicaloperation[2,3]combinedwithcomplicationssuchasinfectionsandseverelypersistingpainnecessitatesasearchforalternativestrategies.Thedevelopmentofsyntheticallyderivedbonesubstitutematerialshasbeenpromotedtoavoidtheabove-mentionedcomplicationsassociatedwithbonetissueharvestingfromthepatient[4].Syntheticbonesubstitutematerialssofarextendfromallogenicandxenogenicbonegraftstoalloplasticmaterials[5–7].Alloplastsandxenoplastslackosteoinduction
34
Authortowhomanycorrespondenceshouldbeaddressed.Co-firstauthors.
andosteogenesisbyhostboneandfurthermorecarryariskofpathogentransmissionaswellasagraft-versus-hostreaction[4,8].Amongalloplasticbonesubstitutematerials,hydroxylapatites(HA)andbeta-tricalciumphosphates(ß-TCPs)arecurrentlythemostfrequentlyusedmaterials[9].Botharebiocompatibleandosteoconductiveandsupportregenerativebonegrowth[10].ß-TCPs,morepreciselyapatites,seemtobethenaturalchoicebecausetheyarenaturalconstituentsofboneinvivoandhavedemonstratedencouragingresultsinanimalstudies[11].ß-TCPs,however,undergoafastdegradation,whichitselfmayresultinconnectivetissueinfluxwithintheimplantationbed.Asaresult,thisinfluxmayinhibitadequateosteoblastfunctionality.Ontheotherhand,HA-basedscaffoldsareknowntobemorestablebutundergoslowdegradation.This
1
©2010IOPPublishingLtdPrintedintheUK
1748-6041/10/025004+11$30.00
Biomed.Mater.5(2010)025004SMGhanaatietal
(A)(B)
R
Figure1.Micro-computedtomography(μCT)3DimageofaspecimenofBONITmatrix-collagenscaffold(5mm3)showing
RRandcollagenBONITmatrixgranulesingray(B)anditsinterspersedcollagenmeshofthesamespecimeninyellow(A).BONITmatrix
havebeenmadevisibleforμCTmeasurementbyOsO4staining.
canhavenegativeinfluencesondenovoboneformationwithintheimplantationbed,asmacrophagesmaydifferentiateintomultinucleatedgiantcellsinordertofacilitatethedegradationofthebonesubstitute.Inturn,theencapsulatedbiomaterialmaybeconsideredasaforeignbody.Thismaychangetheinflammatorymilieuwithintheimplantationbedandenhancetheproductionofpro-inflammatorycytokines[12–15].Underthesecircumstances,thesurvivalofpre-culturedcellsisnotguaranteed.
Ideally,asyntheticbonebiomaterialshouldbedegradableandshouldcontaincomponentswhichatthesametimeinhibitarapiddegradationinvivo.Thebiomaterialused
R
inourstudy,BONITmatrix-collagen,abiphasiccalciumphosphatemixture(60%hydroxylapatiteand40%β-TCP)with13%SiO2,isproducedbyasol–gelprocedurewhichcreatesananoporousSiO2–calciumphosphatecompound,interconnectedbycollagenfibers(figure1).TheSiO2processedinthisscaffoldhasbeenproventoassistosteoblastcellproliferation,andthecollagenfibernetworkinterconnectingtheß-TCP/SiO2granulesisusedtoyieldarigid,fleece-likemold[16].Promisingresultshavebeenshowninlong-terminvivodentalinvestigationsforpure
R
BONITmatrix[17].Inarecentstudy,wewereabletoshowsuccessfulinvitrohumanendothelialcell(EC)adhesion
R
andgrowthimportantforvascularizationofBONITmatrix-collagen[18].However,asuitablebonesubstitutematerialshouldalsoenableprimarybonecellstogrowanddeveloptheirfunctionalityonitssurfacewhileinhibitinganegativeinflammatoryresponseduringitsdegradation.
R
MostinvivostudiesonpureBONITmatrixhaveexhibitedinsitucompatibilityinhumanandanimaldentalapplications[19–21].Thus,theaimofthisstudywastodeterminewhetherthisnovelcalciumphosphate/SiO2–xerogelcollagencompositeaffectshumanosteoblastcell(HOB)morphology/functioninvitroanditsbiocompatibilityinvivo.Forsuccessfulbiomaterial-basedbonetissueengineering,biomaterialsshouldserveassuitablescaffoldsforosteoblaststounfoldtheirfunctionalityinproducingbonematrix.Atthesametime,thebonesubstitutesshouldbewellvascularizedinordertoundergorapiddegradation.
Thegoalofthisprojectwastotestthebonesubstitution
R
material,BONITmatrix-collagen,inaninvitrostudyon
2
itsosteoblasticcellgrowthpotentialandgeneexpression.
Aninvivoexaminationinparallelexaminedindetailthebiomaterialwithrespecttoitsbiocompatibility,degradability,vascularizationandbioactivity.Theinvivostudywasplannedtobeexecutedinanothertissueratherthanboneinordertoexcludeeffectsofresidualboneontheinvivobiomaterialintegrationanddegradation.
2.Materialsandmethods
2.1.Scaffolds
R
BONITmatrixisafullysynthetic,highlyporousbiomaterialwhichisbasedonabiphasicmixtureof87%calciumphosphates(60%hydroxylapatite(∅90nm)/40%β-tricalciumphosphate(∅400nm))and13%SiO2interconnectedviaa1%freeze-driedcollagensolutionresultinginamacro-andmicroporouscollagenmesh(yellow
R
fibersshowninfigure1).ThenanoporousBONITmatrixgranules(∅0.6mm,graygranulesinfigure1)areproducedviaanon-sinteringsol–gelprocedure(nanoporosityshowninmoredetailbyGerberetal[22]).Inthisprocess,calciumphosphateisputintoaSiO2solbasedonalkoxidesandisthenstirredhomogeneously.Duringgeltransformation,SiO2formsananoporousscaffoldwhichinterconnectsthecalciumphosphatecrystalsinalooseway.Dryingat200◦Cevaporatesthesolventandcreatesporesinthemicro-andnanoporousrange.Thescaffoldhasaporosityof60–80%withalowdensity(0.9gcm−3),achlorideconcentrationof39mgkg−1andisfurtherdescribedelsewhereinmoredetail[19,23].
2.2.Micro-computedtomography
R
A5mmcubicpieceofplainBONITmatrix-collagenwascontraststainedin1%OsO4for2daysanddriedatroomtemperaturefor3daysforthe3Dvisualizationof
R
-collagen.Themicro-tomographicimagingBONITmatrix
system(μCT40,ScancoMedicalAG,Br¨uttisellen,Switzerland)usedinthisstudyisequippedwitha5μmfocalspotx-raytubeasasource.Atwo-dimensionalcharge-coupleddevice,coupledtoathinscintillatorasadetector,permitsacquisitionof100tomographicimagesinparallel.Thex-ray
Biomed.Mater.5(2010)025004SMGhanaatietal
tubewasoperatedat70kVpand114μAwithanintegrationtimesetto200msandallprojectionframeswererecordedfivetimesandthenaveraged.Thescanwasperformedatanisotropic,nominalresolutionof6μm(highresolution
R
granulesweresegmentedbyamode).TheBONITmatrix
globalthresholdingprocedure[24]withathresholdvaluesetto10%ofthemaximumgrayscalevalue(figure1).2.3.Cellsandinvitrogrowthconditions
Thehumanosteoblast-likecellline,MG63(ATCCCRL-1427),derivedfromanosteosarcoma,wasused.ThecellswereculturedinEMEM(Sigma-Aldrich,Steinbach,Germany)+10%fetalcalfserum(LifeTechnologies,Karlsruhe,Germany)+2mMglutamaxI(LifeTechnologies)+1%(100UmL−1penicillinand100mgmL−1streptomycin)andincubatedat37◦Cina95%humidifiedairwith5%CO2atmosphere.Isolatedprimaryosteoblastsfromjawboneextractionswereusedinthisstudy.Primaryhumanosteoblasts(HOS)wereculturedinDMEM+10%fetalcalfserum+1%(100UmL−1penicillin+100μgmL−1streptomycin)+2mMglutamine/ascorbicacid+100nMdexamethasone.HOSwereuseduntilthesecondpassage.
R
2.4.PreparationandcellcultureonBONITmatrix-collagenRBONITmatrix-collagenscaffoldswerepreparedforcell
R
-collagenintopiecesofculturebycuttingBONITmatrix
3
approximately0.5cmcubes,andthesewereplacedintheindividualwellsofa24-wellplate.Thescaffoldsweresterilizedin70%ethanolfor15minfollowedbythreerinsesinsterilephosphatebufferedsaline(PBS)for5mineach.Thematriceswerecoatedwithpooledhumanbloodserumfor1hat37◦CandwashedinPBSoncemore[18].ConfluentHOSwereremovedfromcellcultureflasksbytrypsinization,and1.5mLofmediumcontaining0.5×105cellswasaddedperscaffoldina48-wellplate.Thecultureplatewasincubatedfor24hat37◦Candthescaffoldswerethentransferredtoanew12-wellplatecontaining3mLfreshculturemedium.Mediumwaschangedevery2–3days.Inallcases,controlswerecarriedoutwiththesamecellsgrownoncellculturepolystyrene.Allexperimentswererepeatedwithatleastthreedifferentprimarycelldonorsandwiththecelllineatleastthreetimes.
incubatedin1%osmiumtetroxidefor1h,dehydratedinincreasingconcentrationsofacetone,criticallypointdriedandsputter-coatedwithgold.
2.6.MolecularanalysisofosteoblastgeneexpressionOsteoblast-specificgeneexpressionexaminationwascarried
R-outaftera10dayincubationperiodofcellsonBONITmatrixcollagenscaffoldsbymeansofthesemi-quantitativepolymerasechainreaction(RT-PCR)technique.Thegenesunderanalysiswerealkalinephosphatase,collagen-I,osteocalcin,osteonectin,osteopontin,TGF-β1,FGF-2andthehousekeepinggeneβ-actinasanendogenouscontrol.
R
TotalRNAwasisolatedfromosteoblastsonBONITmatrix-collagenusingtheRNeasyMiniKit(Qiagen,Hilden,Germany).Cell-seededscaffoldswereplaceddirectlyintolysisbuffer.AfterRNAextraction,RNAconcentrationwasdeterminedbymeansofaNanoDropmicrospectrophotometer(NanoDropTechnologies,Rockland,Delaware,USA)and1μgRNAwasreversetranscribedintocDNA(OmniscriptRTKit,Qiagen).cDNAamplificationwascarriedoutbyusingtheTaqDNAPolymeraseKit(Qiagen)togetherwithgene-specificprimersandtheirspecificamplificationconditionsasshownintable1.Denaturationat94◦Cfor2minwasinitiallycarriedout,followedby35cycles(30cyclesforosteonectin,40cyclesforosteocalcin)at94◦Cfor30s,annealingfor30s(variesfortherespectivegenes)and30schainelongationat72◦Cfollowedbyafinalextensionof10minat72◦C.ThePCRproductswereseparatedbyagarosegel(1%)electrophoresisin1×TBEbuffer(Sigma-Aldrich)andstainedwithethidiumbromide.
2.7.Relativequantificationofalkalinephosphatasegeneexpressionbyreal-timePCR
Forreal-timeRT-PCRmeasurements,theAppliedBiosystems7300Real-TimePCRSystem(AppleraDeutschlandGmbH,Darmstadt,Germany)wasused.StandardcyclingconditionsfortheQiagenQuantiTectSYBRGreenKit(QiagenGmbH,Hilden,Germany)wereused,thatis,aninitialdenaturationandenzymeactivationphaseat95◦Cfor15min,followedby40cyclesat94◦Cfor15s,annealingat55◦Cfor30sand35schainelongationat72◦C.Thefollowingreal-timeprimerwaschosenforalkalinephosphatase(ALP)geneexpressionquantification(HsALPL1SGQuantiTectPrimerAssay(200),Kat.-Nr.:QT00012957).Thereactioncompositionwasasfollows:12.5μLof2×QuantiTectTMSYBRsGreenPCRMix,2.5μLof10×QuantiTectTMSYBRsGreenPrimerAssay,5μLofRNase-freewaterand5μLofcDNAprediluted1:100withRNase-freewater.TheanalysiswasassessedintriplicateandthespecificityofthePCRwasprovenbyitsdissociationcurves.TherelativequantificationofgeneexpressionwasassessedbyusingtheAppliedBiosystemsSequenceDetectionSoftwarev.1.2.2.Forreal-timePCRmeasurements,glyceraldehyde-3-phosphatedehydrogenase(GAPDH)wasusedasanendogenouscontrol.
3
2.5.Osteoblastimaging
R-Formorphologicalstudies,osteoblastsonBONITmatrixcollagenwerevisualizedbyCalcein-AMstainingwithsubsequentCLSMimagingandfixationforscanningelectron
R-microscopy(SEM).Briefly,cell-seededBONITmatrixcollagenscaffoldswereplacedinmediumcontaining0.1μMcalcein-acetoxymethylester(MoBiTec,G¨ottingen,Germany)
◦
andincubatedfor5minat37C.EndogenousesteraseshydrolyzecalceinAMtothestronglygreenfluorescentcalceinwhichisretainedandspreadinthecytoplasm.ThestainedcellscouldthenbeexaminedbyCLSM(LeicaTCSNT,Wetzlar,Germany).ForSEM,sampleswerefixedwith2.5%glutaraldehydein0.1Msodiumcacodylatebufferfor30min,
Biomed.Mater.5(2010)025004SMGhanaatietal
Table1.SpecificRT-PCRprimersandconditionsofamplification.
Gene(GenBankaccessionno)β-actin(AB004047)Osteonectin(NM003118)Osteocalcin(NM199173)Osteopontin(NM001040060)Alkalinephosphatase(NM000478)Collagen-I(NM000088)TGF-β1(NM000660)FGF-2(NM002006)
Annealingsize(bp)574304302348476600198236
Temperature(◦C)6556645655565556
Primerpairsequences
5-AGCATTTGCGGTGGACGATGGAG-35-GACCTGACTGACTACCTCATGA-35-TGCCTGATGAGACAGAGGTG-35-AAGTGGCAGGAAGAGTCGAA-35-CATGAGAGCCCTCACA-35-AGAGCGACACCCTAGAC-35-CCAAGTAAGTCCAACGAAAG-35-GGTGATGTCCTCGTCTGTA-35-CTGGTAGGCGATGTCCTTA-35-ACGTGGCTAAGAATGTCATC-35-TGACGAGACCAAGAACTG-35-CCATCCAAACCACTGAAACC-35-ACCAACTATTGCTTCAGCTC-35-TTATGCTGGTTGTACAGG-3
5-CTGCCCAGTTCGTTTCAG-3
5-GAAGAGCGACCCTCACATCAAG-3
2.8.Animals
AllexperimentswereperformedwiththeapprovaloftheCommitteeontheUseofLiveAnimalsinTeachingandResearch,Rhineland-Palatinate,Germany.Forthesestudies,femaleWistarrats(6-to8-weekold,90–120gbodyweight,CharlesRiverLaboratories,Sulzfeld,Germany)wereusedandhousedonepercage,keptwithwateradlibitum,withanartificiallight–darkregime,andfedwithregularmousepellets(LaboratoryRodentChow,Altromin,Germany)attheLaboratoryAnimalUnitoftheInstituteofPathology,JohannesGutenbergUniversity,Mainz,Germany.2.9.Subcutaneousimplantationmodel
R-ForassessmentofthetissuereactiontoBONITmatrixcollagen,16animalswererandomlyassignedtofourgroups(n=4animals)foreachofthefollowingtimepoints:3,10,15and30days.Anesthesia(10mLketamine[50mgmL−1]with1.6mLxylazine[2%],wasadministeredbyintraperitonealinjection.Theskinoftherostralportion
R-oftheinterscapularregionwasshaved,andBONITmatrix
2
collagenspecimenswithasizeof10×10mmwereimplantedinthesubscapularregionundersterileconditions,followingapreviouslydescribedmethod[25].Allanimalssurvivedtheindicatedtimeperiodswithoutanycomplications.
paraffin.Fromeachsegment,threeconsecutive3–4μmthicksectionsweredeparaffinizedandrehydrated.ThesesectionswerestainedwithMayer’shematoxylinandeosin(H&E)andexaminedtoestablishwhichsegmentcontainedthemostrepresentativeviewofthematerials.Thiswasselectedforqualitativehistopathologicalevaluation.Fromthecorrespondinghistologicalblock,threeconsecutivesectionswerepreparedforfurtherhistochemicalanalysisofconnectivetissueingrowth.
2.11.HistochemistryforconnectivetissueingrowthTheremainingthreeslideswerepreparedtovisualizeconnectivetissueingrowthwithintheimplantationbedusinghistochemicalstainingproceduresforAzan,Movat’spentachromeandSiriusred[26,27].Thesestainsarecommonlyusedforthedetectionofreticularandcollagenfibers.Azanstainindicatescollagenandreticularfibersblue.Siriusredhighlightscollagenfibersinred.Movat’spentachromestainscollagengreen.AllchemicalswerepurchasedfromSigma-Aldrichandusedwithoutfurtherpurification.
2.12.MorphologicalevaluationoftheinflammatoryresponseHistopathologicalevaluationwasconductedusingaNikonECLIPSE80imicroscope(Nikon,Japan)bytwoindependentexaminers(SG,CO)experiencedinhistomorphologicalanalysis,whowereblindedtotheexperimentalprotocol.Thehistologicalslidesoftheimplantationbed,aswellasoftheorgans,wereassessedqualitativelyforthefollowingcharacteristicfeatures:fibroticcapsulesaroundthebiomaterials,fibrosis,hemorrhage,necrosis,vascularization,neutrophils,lymphocytes,plasmacells,macrophages,giantcellsandscaffolddegradation.MicrophotographsweretakenusingaNikonDS-Fi1/Digitalcameraandadigitalsightcontrolunit(Nikon,Japan).
4
2.10.HistologicalpreparationoftheimplantationbedTheanimalswereeuthanizedbyanoverdoseofketamineandxylazinattheindicatedtimepoint.Immediatelyaftersacrifice,theimplantationbedwasexplantedtogetherwiththesurroundingperi-implantationtissueandfixedin4%bufferedformalinfor24hpriortohistologicalandhistochemicalanalyses.Thefixedtissuewascutintosevensegmentsofidenticaldimensionscoveringthemarginsandcenteroftheimplantationbed.Theyweredehydratedinaseriesofalcohols,transferredtoxyleneandembeddedin
Biomed.Mater.5(2010)025004SMGhanaatietal
(A)(B)(C)
(D)(E)(F)
Figure2.Confocallaserscanningmicroscopyimagesofcalcein-AM-stainedMG63(A)–(C)andhumanprimaryosteoblasts(D)–(F)on
R
-collagenscaffoldsafter3days(A),(D),7days(B),(E)and10days(C),(F).Theimagesshowthehumanserum-coatedBONITmatrix
excellentosteoblastadhesionandprogressivecolonizationoftheentirescaffold.Thelong-termcultures(C),(D),(E)demonstratesheet-likecellulargrowthonthebiomaterial.
2.13.Histomorphometry
ThehistomorphometricanalysiswasperformedusingthesoftwareNIS-Elements(Nikon,Tokyo,Japan)accordingtothemanufacturer’sinstructions.Briefly,imageswereobtainedwithaDS-Fi1/DigitalcameraconnectedtoanEclipse80ihistologicalmicroscope(Nikon,Tokyo,Japan),equippedwithanautomaticscanningtable(Prior,USA).Atotalscan(onelargeimageassembledfrom100–120imagesoftheregionofinterest,containingthebiomaterialanditscorrespondingperi-implanttissue)wastakenbyusinga100×magnificationandaresolutionof2500×1200pixels.Foreachanimal,theslidethatwasstainedwithH&Ewastakentodetectthehostvascularizationofthescaffold.UsingtheNIS-Elements‘annotationsandmeasurements’tool,thebloodvesselsoftheimplantationbedweremarkedseparatelybythe‘area’tool.Thetotalnumberofvesselsandtheirtotalareaoneachslideweredetermined.Thenumberofvesselspermm2wascalculatedfromthetotalvesselnumberfoundwithintheimplantationbed.Foreachtimepoint,ameannumberofvesselspermm2wasdetermined.Thetotalareaofvesselswasdeterminedandcalculatedasapercentageofthetotalareaoftheimplantationbed.Foreachtimepoint,ameanpercentageofvesselsarea/totalareawasdetermined.2.14.Statisticalanalysis
Quantitativedataarepresentedasmean±standarddeviation(SD)andaone-wayunivariateanalysisofvariance(ANOVA)followedbyLSDposthocassessmentwasappliedtocomparegroupsusingtheSPSS16.0.1software(SPSSInc.,Chicago,IL).DifferenceswereconsideredsignificantifP-valueswere
5
lessthan0.05(∗P<0.05),andhighlysignificantifP-valueswerelessthan0.01(∗∗P<0.01).TheSigmaPlot11.0software(SigmaPlot,SystatSoftwareInc.,Erkrath,Germany)wasusedforplottinggraphs.
3.Results
3.1.Invitroresults
Primaryhumanosteoblastsandthehumanosteosarcomacellline,MG63,wereaddedtohumanbloodserum-R
-collagenscaffoldstodeterminethecoatedBONITmatrix
cellbehavioronthebiomaterial.Previousexperimentswith
R
-collagenhaveshownendothelialcellsonBONITmatrix
thathumanbloodserumcoatingoptimizedendothelialcelladhesionandproliferationinshort-andlong-terminvestigationsonthisbiomaterial.Therefore,thiscoatingmethodwasalsousedinthisstudy[18].CellproliferationofHOSandMG63asshownbythetotalpopulationofcalcein-AM-stainedcellsrevealedexcellentgrowthandextensivecellspreadingafter10daysofcellcultivation(figure2).Osteoblastproliferationappearedtobemarkedsothatsinglecellscouldnotbedistinguishedafter10days.
SEMmicrographsrevealedregularcelladhesionandspreadingofindividualcells1dayafterseeding(figures3(A)and(D)),whichwascomparabletoosteoblastsgrownontissueculturepolystyrene.Duringthefollowing10days,regularcellgrowthandmorphologyofbothHOSandMG63on
R
-collagenweremaintained,withcellsshowingBONITmatrix
aflattened,spreadmorphologyandincreasinglyconfluentcellcoverage(figures3(B)and(E)).Completecoveragewasreachedafter10days(figures3(C)and(F)).
Biomed.Mater.5(2010)025004SMGhanaatietal
(A)(B)(C)
(D)(E)(F)
R
Figure3.ScanningelectronmicroscopeimagesofosteoblasticcellsonBONITmatrix-collagenscaffolds:(A)–(C)MG63and(D)–(E)
Rprimaryosteoblastsonhumanserum-coatedBONITmatrix-collagenafter1day(A),(D),7days(B),(E)and10daysofculture(C),(F).
Theultrastructuralimagesconfirmthetime-dependentformationofosteoblasticsheetsonthebiomaterial,withincreasinglossofindividualcelldemarcation,especiallyin(C),(E)and(F).
HOS,althoughMG63showednovisiblealkalinephosphatase(ALP)andosteopontinexpression(figure4).MorepreciseexaminationoftheimportantcalcificationfactorALPinMG63byreal-timePCRmeasurementshowedthatthelowlevel-expressedALPwasinfactsignificantlyup-regulatedindirectcomparisontoMG63grownontissueculturepolystyrene(2.71-foldALPincrease,SD±1.38,n=5pergroup,P<0.05).3.2.Invivoresults
R-Onday3oftheinvivoscaffoldapplication,BONITmatrixcollagenimplantationresultedinafibrin-rich,peri-implantationtissuereactionwithathincelllayeraroundeachgranule(figure5(A)).Predominantly,macrophagesandfibroblastswithfewgranulocytescouldbeobservedinthiscelllayer(figure6(A)).Thenumberofthesecellsincreasedbetweenday3andday10(figures5(B)and6(B))andresultedinacell-richandwell-vascularizedconnectivetissueatday15afterimplantation(figures5(C)and6(C)).Thevascularizationoftheimplantationbedsignificantlyincreasedbetweenday3andday10with8vesselsmm−2andremainedinaplateau-likeconditionwith10vesselsmm−2uptoday15(figure7(A)).However,thetotalvesselareaunderwentasignificantthree-foldincreasebetweenday10andday15(figure7(B)).Betweenday15andday30,theconnectivetissuepenetratedthroughthegranules(figures5(D)and6(D))andvesselnumberaswellastheirpercentalcontributiontothevascularizationoftheimplantationbedsignificantlyincreased(figures7(A)and
R-(B)).Withintheobservedstudytimepoints,BONITmatrixcollagenunderwentcell-mediateddegradation,startingfromthegranuleperipherytowarditscenterandresultingingranule
Figure4.RT-PCRanalysisofosteoblasticgeneexpressionon
R
-collagenscaffolds.misamolecularserum-coatedBONITmatrix
basepair(bp)sizemarker,nisthenegativewatercontrolwithoutcDNAtemplate.Primaryosteoblastsgivethefullrangeofexpressedmarkergenes,whereasthepermanentcellline,MG63,failstoshowvisibletranscriptionofalkalinephosphataseandosteopontin.
RT-PCRanalysisofHOSandMG63culturedon
R
-collagenfor10dayswasperformedforBONITmatrix
osteoblast-specificgenes,suchasalkalinephosphatase,collagen-I,osteocalcin,osteonectin,osteopontin,TGF-β1andFGF-2(figure4).HOSshowedregularexpressionofallgenesofinterest10daysafterseeding,withcellsbeing
R
-collagen.inthestateoftotalconfluenceonBONITmatrix
GeneexpressionofMG63cellswassimilarcomparedto
6
Biomed.Mater.5(2010)025004SMGhanaatietal
(A)(B)
(C)(D)
RR
Figure5.TissueintegrationanddissolutionofBONITmatrix-collagen(BM)attheobservedtimeperiodof30days.(H&E,100×magnification)(A=day3;B=day10;C=day15andD=day30afterimplantation).Scalebar=10μm.
dissolution.Macrophagesandafewmulti-nucleatedgiant
R
cellswereinvolvedinBONITmatrix-collagendegradationandexpressedpredominantlyTRAP(tartrate-resistantacidphosphatase)(figure6(E)).
4.Discussion
Theaimofthisstudywastodeterminewhetherthisnovelcalciumphosphate/SiO2–xerogelcollagencompositeaffectsHOBmorphology/functioninvitroanditsbiocompatibilityinvivo.ThisincludedexaminingtheadherenceandspreadingofprimaryHOBsandtheosteoblast-likecellline,MG63,to
R
studytheabilityofBONITmatrix-collagentoserveasanappropriatesubstrateforosteoblasts.Furthermore,expressionofspecificosteoblasticgeneswasexaminedatthetranscriptionlevel.Ontheotherhand,aninvivostudyofupto30daystestedthescaffoldbiocompatibilityregardingvascularizationanddegradationdeterminedhistologically.Thetissueresponsetothebiomaterialwascharacterizedbyquantifyingvascularstructuresinandaroundtheimplantaswellasdemonstratingphagocyticcellactivityinvolvedinscaffolddegradation.
PreviousstudieswithhumanprimarymicrovascularandmacrovascularECsshowedastrongaffinityofECforhuman
R
bloodserum-coatedBONITmatrix-collagenscaffoldswithsuccessfulcellgrowth[18].Withoutserumcoating,cellsgenerallydetachedwithinashorttime,eventuallyleavingnocellsonthescaffoldsurface.Thisphenomenonhasoftenbeenobservedandindicatesthatcellsgenerallyneedanappropriatematrixtoadhereto[28].Althoughmanyotherbiomaterialsareoftencoatedwithfibronectin,collagen,
7
gelatinorlaminin[29–31],noneoftheseextracellularmatrix(ECM)proteinsweresufficienttoinducesuccessfuladhesion
R
-collagen.andproliferationofanyECtypeonBONITmatrix
Tocreatehomologousgrowthconditionsinourinvitrostudy,
R
-collagenwascoatedwithhumanbloodserumBONITmatrix
inthisstudyaswell.Coatingwithhumanbloodserumactually
R-mimicsthenaturalcoatingprocesswhenBONITmatrixcollagenisimplantedintothebody.Mixingofthebiomaterialwithhostbloodbeforeimplantationisroutinelypracticedby
R
already[19].surgeonsforBONITmatrix
R
BONITmatrixisproducedviaasol–gelprocesswithsilicaasanadjuvant.Asoneofthefirstbonesubstitution
R
hascombinedtheprofitablematerials,BONITmatrix
propertiesofcalciumphosphatesandbioglasseswithinaSiO2networkasanexcellentstartingpointfortheformationofautogenousapatite[32].Unlikesilicateglassesorquartz,solublesilicateinducesbone-likeapatite[33].AccordingtoLehninger,siliconisascribedanosteoinductivefunctionwhichcouldstimulateneo-osteogenesisadditionally[34].Indeed,silicatesubstitutionforphosphateionsinhydroxylapatitehasbeenshowntoenhanceosteoblastcellactivity,boneappositionduringosseousintegrationandanincreasedboneremodelingatthebone/hydroxylapatiteinterface[35–37].On
R
,ithasbeendiscoveredthatSiO2promotesBONITmatrix
osteoblasticdifferentiationofhumanmesenchymalstemcellswithoutosteogenicdifferentiationadditivesasshownbyincreasedALPactivityandexpressionofosteogenicgenes
R
byBecker[38].MoredetailedstudiesonBONITmatrix
etalverifiedanupregulatedmRNAprofileofdifferentiationmarkerssuchasosteocalcin,osteopontinandcollagen-Iinthe
Biomed.Mater.5(2010)025004SMGhanaatietal
(A)(B)
(C)(D)
(E)
Figure6.Tissueintegrationdemonstratingthehighvessel(redarrowheads)densityandincreasedvessellumenareawithintheconnective
RR
tissuearoundBONITmatrix-collagen(BM)granulesandTRAP-positivemacrophages(blackarrowheads)involvedinbiomaterial
degradation(400×magnification)(A=day3;B=day10;C&E=day15andD=day30afterimplantation);(A)H&E-staining;(B)–(D)Movat’spentachromestaining;(E)tartrate-resistantacidphosphatasestaining).Scalebar=20μm.
osteoblasticcelllineMG63[39].AlthoughMG63arenativelylowintheexpressionoftheimportantcalcificationfactoralkalinephosphatase,wecouldshowsimilar,statisticallysignificantresultsfortheexpressionofALPwithinMG63on
R
-collagencomparedtoMG63grownontissueBONITmatrix
culturepolystyrenefor10days.Thelatterresultdemonstrates
R
-collagenonMG63.astimulatingeffectofBONITmatrix
R
-collagenOsteoblastsgrowingonBONITmatrix
exhibitednormalcellmorphologyafterseeding,asvisualizedbyCLSMandSEM.SimilarosteoblasticmorphologywasshownbyJonesetalonabioactiveglassscaffold[40].RT-PCRanalysisshowedregularexpressionofosteoblast-specificgenesofinterestinprimaryosteoblasts,mostimportantlyalkalinephosphataseandcollagen-I,bothbeingimportantformatrixmineralizationandbonestrength.Alkalinephosphataseandcollagen-Irepresenttwoparameterstypicallyusedasmarkersofosteoblasticdifferentiation.
8
TGF-β1andFGF-2,stronglyexpressedinbothHOSandMG63,representtwoabundantgrowthfactorsandstimulatorsforosteogenesisinhumanbone.TGF-β1andFGF-2influencenormalskeletaldevelopmentbyplayingacriticalroleininducingmesenchymalcelldifferentiationtoeitherchondrocytesorosteoblasts.Generally,osteoblastdifferentiationispromoted,withcorrespondingmatrixformationandmineralization[41,42].
MG63showedsimilarresultsintheoverallgeneexpressionpatterncomparedtoHOS.Theabilitytoexpressosteopontin,atransformation-associatedcelladhesionphosphoprotein,wasnotactivatedinMG63.MG63cellsarerepresentativesofearlyundifferentiatedosteoblastsandconstituteasubclassofosteoblastswhichexpressosteopontinlaterintheosteoblastdevelopmentalsequence[43,44].Osteocalcin,alsoexpressedinbothcelltypes,representsatypicalproteinwhichbindstothemineralphaseofbone.
Biomed.Mater.5(2010)025004SMGhanaatietal
(A)
(B)
Figure7.Histomorphometricmeasurements:(A)numberof
vesselspermm2and(B)distributionofvesselscalculatedfromthetotalareaoftheimplantationbed(in%)(∗∗P<0.01).
Theglycoprotein,osteonectin,isanotherveryabundantnon-collagenousproteinofdevelopingbonewhichhasahighaffinityforbindingcalcium,hydroxyapatite,collagenandthrombospondin[45–48]andisthereforeimportantforlinking
R
upwithBONITmatrix-collagen.
Theexpressionofthesemultipleproteinsisinducedduringosteoblasticdifferentiationinastepwisefashion,suggestiveofseveralregulatoryfactors.ItisassumedthatalkalinephosphataseandtypeIcollagenappearearlyduringthecommitmenttotheosteoblasticphenotype,whereasosteopontinandosteocalcinareexpressedlaterduringosteoblasticdifferentiation[41,49].Asallofthesegenesare
R
expressedinprimaryosteoblastsonBONITmatrix-collagen,thissuggeststhatthecellsonthescaffoldarepresentina
R
laterstateofdifferentiationandBONITmatrix-collagenfullysupportsosteoblasticgeneexpression.
Invivo,theimplantationofabiomaterialinducesaninflammatoryresponsewhichisspecificforthebiomaterial[12–15,50].Thisinflammatoryresponseisgenerallydependentonparticlesizeandparticlemorphologyandactivates,besidesothercascades,therecruitmentofmononuclearcells[50–57].Itisknownthatmultinucleatedgiantcellsareformedfrommacrophageswhenmononuclearcellscannotcontributetobiomaterialdegradation[52,58–61].Thefusionofmultiplemononuclearcellsintogiantcellsdemonstratestheeffortofthehosttissuetoadapttothespecificcharacteristicsofthebiomaterialparticleasaforeignbody[12,14,58].Consequently,theformationofmultinucleatedgiantcellsismaterialdependent[12].
9
Theinvivopartofthestudyshowedthatpredominantlymacrophagesandonlyafewmultinucleatedgiantcells
R
wereinvolvedintheBONITmatrix-collagendegradationprocessatalltimes.Theseresultshighlighttheability
R
ofBONITmatrix-collagen,asyntheticallyderivedbonesubstitute,toundergodegradationwithouttheinvolvementofmultinucleatedgiantcells.Tore-emphasizethis,multinucleatedgiantcellsdonotnecessarilyhavetobeinvolvedinthedegradationprocessofsyntheticallyderivedbonesubstitutes.Obviously,biomaterialslike
R
BONITmatrix-collagencanbedevelopedwhichcanundergotheobserveddissolutionintonumeroussmallparticlesenablingtissueingrowthbetweentheparticles.Accordingly,
R
BONITmatrix-collagencanbeconsideredasextremelybiocompatible,asitiswelltoleratedbythehostwithoutthenecessityofanexacerbatedinflammatoryresponse(i.e.theformationofmultinucleatedgiantcells)foritsdegradation.
However,thepresenceofmultinucleatedgiantcellsandespeciallytartrate-resistantacidphosphatase(TRAP)-positivemultinucleatedgiantcells,knownasosteoclast-likecells,mightindicatethebioactivityofthebonesubstitutegranuleanditsstabilitysimilartoboneultrastructure[62,63].Whenconsideringthegenerationofmultinucleatedgiantcells,especiallyofTRAP-positive,osteoclast-likecellsasanindicatorofthestabilityofabiomaterial,and,inthe
R
caseofaninductionofosteoclast-likecells,BONITmatrix-collagenwouldhavebeenstableandpotentiallyabletoserveasaplaceholderforlongerthan15daysasobservedinthisstudy.
Sufficientvascularizationiscrucialtoeverysuccessfulbiomaterialintegration.Thefastdegradationofthisbiomaterialresultedintheinfluxofavessel-richconnectivetissuewithcontinuousvascularizationwithintheimplantationbed.Theseresultshighlighttheabilityofthisbonesubstitutetocontributetotheregenerationofthedefectbyinducinganactivegranulationtissue,withitsvascularizationincreasingovertheobservedtimeperiod.Theincreaseofvesseldiametersreflectsthematurityofthenewlyformedconnectivetissue.Thesefindingsalsoindicatethatforastablevascularizationoftheimplantationbed,boththeincreaseinvesselnumbersandthematurityofthevesselswithintheimplantationbedareimportant.
5.Conclusion
ThiscombinedinvitroandinvivostudydemonstratedthattheobservedSiO2-basedcalciumphosphate–collagenbonesubstitutematerialexhibitssufficientpropertiestobeconsideredasabiocompatiblebiomaterialforcell-basedtissueengineering.Theinvitroresultsshowedthatthephysico-chemicalcharacteristicsofthismaterialallowmesenchymalcellssuchasosteoblaststosurviveanddeploytheirtypicalcharacteristicsbyexpressingosteoblast-specificgenes.Theinvivopartofthisstudyrevealedthatbiomaterialdegradationisexecutedmainlybymononuclearcells.Itsfastdegradationresultedinavessel-richconnectivetissue,inwhichnotonlythevesselnumberbutalsothevesseldiameterincreasedinthecourseoftime.
Biomed.Mater.5(2010)025004SMGhanaatietal
Acknowledgments
ThisworkwassupportedbyaBMBFgrantno0313405C.TheauthorsthankDOTGmbH,Rostock,Germany,fortheir
R
generoussupplyofBONITmatrix-collagenscaffolds.ThanksalsogotoMrsASartoris,MrsBPavic,MrBBondarandMrRTsaryk,fortechnicalassistance.TheyarealsogratefultoMsMM¨ullerandMsKMolterfortheirdocumentationofthescanningelectronmicroscopemicrographs.
[19]
[20]
[21]
References
[1]AsahinaI,SetoI,OdaM,MarukawaE,ImranulA
andEnomotoS1999BoneEngineering(Toronto:EmSquared)p526
[2]YoungerEMandChapmanMW1989Morbidityatbone
graftdonorsitesJ.Orthop.Trauma3192–5
[3]ArringtonE,SmithW,ChambersH,BucknellAand
DavinoN1996ComplicationsofiliaccrestbonegraftharvestingClin.Orthop.Relat.Res.329300–9
[4]MischCandDietshF1993Bone-graftingmaterialsinimplant
dentistryImplant.Dent.2158–67
[5]KasperkC,EwersR,SimonsBandKasperkR1988
Algae-derived(phycogene)hydroxylapatite.Acomparativehistologicalstudy[correctedandissuedwithoriginalpaging]Int.J.OralMaxillofac.Surg.17319–24
[6]NystromE,LegrellPE,ForssellAandKahnbergK1995
Combineduseofbonegraftsandimplantsintheseverelyresorbedmaxilla.PostoperativeevaluationbycomputedtomographyInt.J.OralMaxillofac.Surg.2420–5[7]ParikhS2002Bonegraftsubstitutes:past,present,future
J.Postgrad.Med.48142–8
[8]ErbeE,MarxJ,ClineffTandBellincampiL2001Potentialof
anultraporousbeta-tricalciumphosphatesyntheticcancellousbonevoidfillerandbonemarrowaspiratecompositegraftEur.SpineJ.10(Suppl2)S141–6[9]McAndrewM,GormanPandLangeT1988Tricalcium
phosphateasabonegraftsubstituteintrauma:preliminaryreportJ.Orthop.Trauma2333–9
[10]MetsgerD,DriskellTandPaulsrudJ1982Tricalcium
phosphateceramic—aresorbableboneimplant:reviewandcurrentstatusJ.Am.Dent.Assoc.1051035–8
[11]YoshikawaHandMyouiA2005Bonetissueengineeringwith
poroushydroxyapatiteceramicsJ.Artif.Organs8131–6
[12]AndersonJM,RodriguezAandChangDT2008Foreign
bodyreactiontobiomaterialsSemin.Immunol.2086–100
[13]WilsonCJ,CleggRE,LeavesleyDIandPearcyMJ2005
Mediationofbiomaterial–cellinteractionsbyadsorbedproteins:areviewTissueEng111–18
[14]HuWJ,EatonJW,UgarovaTPandTangL2001Molecular
basisofbiomaterial-mediatedforeignbodyreactionsBlood981231–8
[15]JenneyCRandAndersonJM2000Adsorbedserumproteins
responsibleforsurfacedependenthumanmacrophagebehaviorJ.Biomed.Mater.Res.49435–47
[16]vonWilmowskyCetal2008Effectsofbioactiveglassand
beta-TCPcontainingthree-dimensionallasersinteredpolyetheretherketonecompositesonosteoblastsinvitroJ.Biomed.Mater.Res.A87896–902
[17]Bienengr¨aberV,GerberT,TrykovaT,KundtGandHenkelK
2004EineinnovativimSol-Gel-Prozeßhergestellte,hochpor¨oseSiliziumoxidkeramikzum
Knochenersatz-In-VivoLangzeitergebnisseMater.-Wiss.Werkst.Tech.35234–9
[18]ThimmB,UngerR,NeumannHandKirkpatrickC2008
Biocompatibilitystudiesofendothelialcellsonanovel
10[22]
[23]
[24][25]
[26][27][28]
[29][30]
[31]
[32][33]
[34][35]
[36]
calciumphosphate/SiO2–xerogelcompositeforbonetissueengineeringBiomed.Mater.315007
HoppM,RogaschewskiS,KrahlTandBiffarR2005
KlinischeErfahrungenundmaterialkundlicheAspektebeiderAnwendungeinesneuenxerogenen
AugmentationsmaterialsImplantologie13301–15TraykovaT,B¨ottcherR,NeumannH,HenkelK,Bienengr¨aberVandGerberT2004Silica/calcium
phosphatesol–gelderivedbonegraftingmaterial—fromanimalteststofirstclinicalexperienceKeyEng.Mater.254–56679–82
HenkelK,GerberT,DietrichWandBienengr¨aberV2004Novelcalciumphosphateformulaforfillingbonedefects.Initialinvivolong-termresultsMundKieferGesichtschir8277–81
GerberT,KnoblichB,TraykovaT,Holzh¨uterG,D¨orflingPandHenkelK2001Entwicklung,invitroundinvivotestseineshochpor¨osenKnochenersatzmaterialsOsteologie10175–83
HenkelK,GerberT,DietrichW,KundtGandBienengr¨aberV2004Sol–gelderivedcalciumphosphateceramicsintreatingbonedefects—abreakthroughtoartificialbonesubstitutes?AnanimalstudyOsteologie1357–64R¨uegseggerP,KollerBandM¨ullerR1996A
microtomographicsystemforthenondestructiveevaluationofbonearchitectureCalcif.TissueInt.5824–9FuchsS,GhanaatiS,OrthC,BarbeckM,KolbeM,HofmannA,EblenkampM,GomesM,ReisRandKirkpatrickC2009Contributionofoutgrowth
endothelialcellsfromhumanperipheralbloodoninvivovascularizationofbonetissueengineeredconstructsbasedonstarchpolycaprolactonescaffoldsBiomaterials30526–34
MovatH1955Demonstrationofallconnectivetissueelementsinasinglesection;pentachromestainsAMAArch.Pathol.60289–95
SweatF,PuchtlerHandRosenthalS1964SiriusredF3baasastainforconnectivetissueArch.Pathol.7869–72
ChuC,LuA,LiszkowskiMandSipehiaR1999EnhancedgrowthofanimalandhumanendothelialcellsonbiodegradablepolymersBiochim.Biophys.Acta1472479–85
AndersonJ,PriceT,HansonSandHarkerL1987Invitroendothelializationofsmall-calibervasculargraftsSurgery101577–86
UngerR,HuangQ,PetersK,ProtzerD,PaulD
andKirkpatrickC2005Growthofhumancellsonpolyethersulfone(PES)hollowfibermembranesBiomaterials261877–84
KaehlerJ,ZillaP,FasolR,DeutschMandKadletzM1989PrecoatingsubstrateandsurfaceconfigurationdetermineadherenceandspreadingofseededendothelialcellsonpolytetrafluoroethylenegraftsJ.Vasc.Surg.9535–41B¨ottcherR,NeumannH-GandBienengr¨aberV2004
BONITmatrixalsoptimalerKnochenersatzIndustryReportDentalTribuneGermanEdition19
LiP,OhtsukiC,KokuboT,NakanishiK,SogaNand
deGrootK1994Theroleofhydratedsilica,titania,andaluminaininducingapatiteonimplantsJ.Biomed.Mater.Res.287–15
LehningerA1987PrinzipienderBiochemie(Berlin:deGruyter)pp298–301
PorterA,PatelN,SkepperJ,BestSandBonfieldW2003Comparisonofinvivodissolutionprocessesin
hydroxyapatiteandsilicon-substitutedhydroxyapatitebioceramicsBiomaterials244609–20
PatelN,BestS,BonfieldW,GibsonI,HingK,DamienEandRevellP2002Acomparativestudyontheinvivobehaviorofhydroxyapatiteandsiliconsubstituted
Biomed.Mater.5(2010)025004SMGhanaatietal
[37][38][39]
[40]
hydroxyapatitegranulesJ.Mater.Sci.Mater.Med.131199–206
GibsonI,BestSandBonfieldW1999Chemical
characterizationofsilicon-substitutedhydroxyapatiteJ.Biomed.Mater.Res.44422–8M¨ullerPetal2008Calciumphosphatesurfacespromote
osteogenicdifferentiationofmesenchymalstemcellsJ.CellMol.Med.12281–91BeckerP,TellerM,L¨uthenF,NebeB,BuhlnheimU,RychlyJandNeumannH2004BONITmatrix—bone
regenerationmaterialfordentalapplicationBIOmaterialien10–1
JonesJ,TsigkouO,CoatesE,StevensM,PolakJandHenchL2007Extracellularmatrixformationandmineralizationon[51]
[52][53][54]
inflammatorygeneexpressionbygiantcellsduringtheforeignbodyreactionJ.Biomed.Mater.Res.A83879–86ZhuXD,ZhangHJ,FanHS,LiWandZhangXD2009EffectofphasecompositionandmicrostructureofcalciumphosphateceramicparticlesonproteinadsorptionActaBiomater.(PMID:19857608)
SunJS,TsuangYH,ChangWH,LiJ,LiuHCandLinFH1997EffectofhydroxyapatiteparticlesizeonmyoblastsandfibroblastsBiomaterials18683–90
DumitriuS2001PolymericBiomaterials,RevisedandExpanded(BocaRaton,FL:CRCPress)pp430–2GhanaatiS,OrthC,DeisingerU,DetschR,BoomsP,UngerR,ZieglerGandKirkpatrickC2008The
compositionofbonesubstitutematerialsinfluencestheiraphosphate-freeporousbioactiveglassscaffoldusingprimaryhumanosteoblast(HOB)cellsBiomaterials281653–63
[41]KanaanRandKanaanL2006Transforminggrowthfactorbeta1,boneconnectionMed.Sci.Monit.12RA164–9[42]MarieP,DebiaisFandHayE2002RegulationofhumancranialosteoblastphenotypebyFGF-2,FGFR-2andBMP-2signalingHistol.Histopathol.17877–85[43]CarmelietG,NysGandBouillonR1997MicrogravityreducesthedifferentiationofhumanosteoblasticMG-63cellsJ.BoneMiner.Res.12786–94
[44]
SteinGandLian/J1993MolecularmechanismsmediatingproliferationdifferentiationinterrelationshipsduringprogressivedevelopmentoftheosteoblastphenotypeEndocr.Rev.14424–42
[45]RombergR,WernessP,LollarP,RiggsBandMannK1985IsolationandcharacterizationofnativeadultosteonectinJ.Biol.Chem.2602728–36
[46]
ClezardinP,MalavalL,EhrenspergerA,DelmasP,
DechavanneMandMcGregorJ1988ComplexformationofhumanthrombospondinwithosteonectinEur.J.Biochem.175275–84
[47]TermineJ1988Non-collagenproteinsinboneCibaFoundSymp.136178–202
[48]TermineJ,KleinmanH,WhitsonS,ConnK,McGarveyMandMartinG1981Osteonectin,abone-specificproteinlinkingmineraltocollagenCell2699–105
[49]RodanGandNodaM1991GeneexpressioninosteoblasticcellsCrit.Rev.Eukaryot.GeneExpr.185–98[50]
LuttikhuizenDT,DankersPY,HarmsenMCand
vanLuynMJ2007Materialdependentdifferencesin
bioactivityinvivoBIOmaterialien990
[55]
GhanaatiS,OrthC,HoffmannC,BarbeckM,UngerR,
SaderR,PetersFandKirkpatrickC2009Influenceofsize,structureandporosityonthebiologicalresponseof
b-tricalciumphosphatebiomaterialsinasubcutaneousratimplantmodelJ.RegenerativeMed.4182–3
[56]GhanaatiS,OrthCandKirkpatrickC2008Themorphologyofb-TCP-basedbiomaterialsinfluencestheirbioactivityinvivoTissueEng.A14917–8
[57]XiaZandTriffittJT2006AreviewonmacrophageresponsestobiomaterialsBiomed.Mater.1R1–9
[58]CannonGJandSwansonJA1992ThemacrophagecapacityforphagocytosisJ.CellSci.101Pt4907–13
[59]
JaySM,SkokosEA,ZengJ,KnoxKandKyriakidesTR2009MacrophagefusionleadingtoforeignbodygiantcellformationpersistsunderphagocyticstimulationbymicrospheresinvitroandinvivoinmousemodelsJ.Biomed.Mater.Res.A(PMID:19536825)
[60]
ShenM,GarciaI,MaierRVandHorbettTA2004Effectsofadsorbedproteinsandsurfacechemistryonforeignbodygiantcellformation,tumornecrosisfactoralphareleaseandprocoagulantactivityofmonocytesJ.Biomed.Mater.Res.A70533–41
[61]RatnerB1997BiomaterialsScience:AnIntroductiontoMaterialsinMedicine(Amsterdam:Elsevier)pp170–3[62]DeGrootK1980BioceramicsconsistingofcalciumphosphatesaltsBiomaterials147–50
[63]
XuW,HolzhuterG,SorgH,WolterD,LenzS,GerberTandVollmarB2009Earlymatrixchangeofa
nanostructuredbonegraftingsubstituteintheratJ.Biomed.Mater.Res.B91692–9
11
因篇幅问题不能全部显示,请点此查看更多更全内容