您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页IPCTM-650实验方法手册

IPCTM-650实验方法手册

来源:意榕旅游网
IPCTM-650实验方法手册

IPC TM-650实验方法手册

IPC TM-650 Test Methods Manual IPC Member Testing Laboratories List

Section 1.0Reporting and Measurement Analysis Methods Section 2.1Visual Test Methods Section 2.2Dimensional Test Methods Section 2.3Chemical Test Methods Section 2.4Mechanical Test Methods Section 2.5Electrical Test Methods Section 2.6Environmental Test Methods

SECTION 1.0 - Reporting and Measurement Analysis Methods

1.1Introduction 1.2Calibration

1.3Ambient Conditions 1.4Reporting, General 1.5Reporting, Format 1.6Numerical Reporting

1.7Reporting, Invalid Test Results

1.8Measurement Precision Estimation for Binary Data - 1/03 Measurement Precision Calculator-Binary Data Measurement Precision Calculator Users Guide (for use with test method 1.8)

1.9 Measurement Precision Estimation for V ariables Data- 1/03

Measurement Precision Calculator-V ariable Data Measurement Precision Calculator Users Guide (for use with test method 1.9)

SECTION 2.1 - VISUAL TEST METHODS 2.1.1D Microsectioning - 3/98

2.1.1.1Microsectioning, Ceramic Substrate - 12/87

2.1.1.2Microsectioning - Semi or Automatic Technique Microsection Equipment (Alternate) - 7/93

2.1.2A Pinhole Evaluation, Dye Penetration Method - 3/76 2.1.3A Plated-Through Hole Structure Evaluation - 8/76 2.1.5A Surface Examination, Unclad and Metal Clad Material - 12/82

2.1.6B Thickness of Glass Fabric - 12/94 2.1.6.1Weight of Fabric Reinforcements - 12/94 2.1.7C Thread Count of Glass Fabric - 12/94 2.1.7.1Thread Count, Organic Fibers - 12/87 2.1.8B Workmanship - 12/94

2.1.9Surface Scratch Examination Metal Clad Foil - 5/86 2.1.10A Visual Inspection for Undissolved Dicyandiamide - 12/94

2.1.13A Inspection for Inclusions and V oids in Flexible Printed Wiring Materials - 5/98

SECTION 2.2 - DIMENSIONAL TEST METHODS 2.2.1A Mechanical Dimensional V erification - 8/97 2.2.2B Optical Dimensional Verification - 8/97

2.2.4C Dimensional Stability, Flexible Dielectric Materials - 5/98 2.2.5A Dimensional Inspections Using Mircosections - 8/97

2.2.6A Hole Size Measurement, Drilled - 8/97 2.2.7A Hole Size Measurement, Plated - 5/86 2.2.8Location of Holes - 4/73

2.2.10A Hole Location and Conductor Location - 12/83 2.2.12A Thickness of Copper by Weight- 3/76

2.2.12.1Overall Thickness and Profile Factor of Copper Foils

Treated and Untreated - 9/87

2.2.12.2Weight and Thickness of Copper Foils with Releasable Carriers - 7/

2.2.12.3Weight and Thickness Determination of Copper Foils With Etchable Carriers - 7/

2.2.1

3.1A Thickness, Plating in Holes, Microhm Method - 1/83 2.2.14Solder Powder Particle Size Distribution - Screen Method for Types 1-4 - 1/95

2.2.14.1Solder Powder Particle Size Distribution - Measuring Microscope Method - 1/95

2.2.14.2Solder Powder Particle Size Distribution - Optical Image Analyzer Method--1/95

2.2.14.3Determination of Maximum Solder Powder Particle Size - 1/95 2.2.15Cable Dimensions (Flat Cable) - 6/79

2.2.16Artwork Master Evaluation by Use of a Drilled Panel - 12/87

2.2.16.1Artwork Master Evaluation by Overlay - 12/87 2.2.17Surface Roughness and Profile of Metallic Foils (Contacting Stylus Technique)- 3/90

2.2.17A Surface Roughness and Profile of Metallic Foils (Contacting Stylus Technique) - 2/01

2.2.18Determination of Thickness of Laminates by Mechanical Measurement - 12/94

2.2.18.1Determination of Thickness of Metallic Clad Laminates, Cross-sectional - 12/94

2.2.19Measuring Hole Pattern Location-12/87

2.2.19.1Length, Width and Perpendicularity of Laminate and Prepreg Panels - 12/94 2.2.20Solder Paste Metal Content by Weight - 1/95

2.2.21Planarity of Dielectrics for High Density

Interconnection (HDI) Microvia Technology - 11-98

SECTION 2.3 - CHEMICAL TEST METHODS

2.3.1Chemical Processing, Suitable Processing Material- 4/73 2.3.1.1B Chemical Cleaning of Metal Clad Laminates- 5/86 2.3.2F Chemical Resistance Of Flexible Printed Wiring Materials - 5/98 2.3.3A Chemical Resistance of Insulating Materials- 2/78

2.3.4B Chemical Resistance, Marking Paints and Inks - 8/97 2.3.4.2A Chemical Resistance of Laminates, Prepreg and Coated Foil Products, by Solvent Exposure - 12/94

2.3.4.3Chemical Resistance of Core Materials to Methylene Chloride- 5/86 2.3.5B Density, Insulating Material - 8/97

2.3.6A Etching, Ammonium Persulfate Method - 7/75 2.3.7A Etching, Ferric Chloride Method - 7/75 2.3.7.1A Cupric Chloride Etching Method - 12/94 2.3.7.2A Alkaline Etching Method - 12/94

2.3.8A Flammability, Flexible Insulating Materials- 12/82 2.3.8.1Flammability of Flexible Printed Wiring- 12/88 2.3.9D Flammability of Prepreg and Thin Laminate - 8/97 2.3.10B Flammability of Laminate - 12/94

2.3.10.1Flammability of Soldermask on Printed Wiring Laminate- 8/98 2.3.11Glass Fabric Construction- 4/73

2.3.13Determination of Acid V alue of Liquid Solder Flux- Potentiometric and Visual Titration Methods- 1/95

2.3.14Print, Etch, and Plate Test- 4/73 2.3.15C Purity, Copper Foil or Plating - 8/97

2.3.16B Resin Content of Prepreg, by Burn-off - 12/94 2.3.16.1C Resin Content of Prepeg, by Treated Weight--12/94 2.3.16.2Treated Weight of Prepreg - 12/94

2.3.17D Resin Flow Percent of Prepreg - 8/97

2.3.17.1B Resin Flow of Adhesive Coated Films and Unsupported Adhesive Films - 5/98 2.3.17.2B Resin Flow of \"No Flow\" Prepreg - 8/97

2.3.18A Gel Time, Prepreg Materials - 4/86 2.3.19C V olatile Content of Prepreg - 12/94 2.3.21Plating Quality, Hull Cell Method - 8/97 2.3.22Copper Protective Coating Quality - 2-78

2.3.23B Cure (Permanency) Thermally Cured Solder Mask - 2/88

2.3.23.1A Cure (Permanency) UV Initiated Dry Film Solder Mask - 2/88 2.3.24Porosity of Gold Plating- 2/78

2.3.24.1Porosity Testing of Gold Electrodeposited on a Nickel Plated Copper Substrate Electrographic Method - 10/85

2.3.24.2A Porosity of Metallic Coatings on Copper-Based Alloys and Nickel (Nitric Acid V apor Test) - 8/97

2.3.25B Detection and Measurement of Ionizable Surface Contaminants - 8/97---Supersedes 2.3.26 and 2.3.26.1

2.3.25C Detection and Measurement of Ionizable Surface Contaminants by Resistivity of Solvent Extract - 2/01

2.3.25.1Ionic Cleanliness Testing of Bare PWBs 2.3.26A Superseded by Test Method 2.3.25 2.3.26.1Superseded by Test Method 2.3.25

2.3.26.2Mobile Ion Content of Polymer Films - 7/95 2.3.27Cleanliness Test - Residual Rosin - 1/95

2.3.27.1Rosin Flux Residue Analysis-HPLC Method - 1/95 2.3.28Ionic Analysis of Circuit Boards, Ion Chromatography Method - 1/95 2.3.29Flammability, Flexible Flat Cable- 11/88

2.3.30A

Solvent

pH

Determination

in

Anhydrous

Flourocarbon Solvents- 11/81 2.3.31Relative Degree of Cure of

U.V. Curable Material - 2/88

2.3.32C Flux Induced Corrosion (Copper Mirror Method)- 1/95

2.3.33C Presence of Halides in Flux, Silver Chromate Method - 1/95

2.3.34B Solids Content, Flux - 1/95

2.3.34.1B Percentage of Flux on/in Flux-Coated and/or Flux-Cored Solder - 1/95

2.3.35B Halide Content, Quantitative (Chloride and Bromide)- 1/95 2.3.35.1Fluorides by Spot Test, Fluxes - Qualitative - 1/95

2.3.35.2Flouride Concentration, Fluxes - Quantitative--1/95 2.3.36Acid Acceptance of Chlorinated Solvents- 10/85 2.3.37B V olatile Content of Adhesive Coated Dielectric Films - 5/98 2.3.38B Surface Organic Contaminant Detection Test - 8/97

2.3.39B Surface Organic Contaminant Identification Test (Infrared Analytical Method) - 8/97

2.3.40Thermal Stability - 7/95

SECTION 2.4 - MECHANICAL TEST METHODS 2.4.1D Adhesion, Tape Testing--8/97

2.4.1.1B Adhesion, Marking Paints and Inks--11/88

2.4.1.2Adhesion of Conductors on Hybrid Substrates--12/87 2.4.1.3Adhesion, Resistors (Hybrid Circuits)--12/87 2.4.1.4Adhesion, Overglaze (Hybrid Circuits)--12/87 2.4.1.5A Determination of Heat Transfer--5/95 2.4.1.6Adhesion, Polymer Coating--7/95 2.4.2A Ductility of Copper Foil--3/76

2.4.2.1D Flexural Fatigue and Ductility, Foil--3/91

2.4.3D Flexural Fatigue, Flexible Printed Wiring Materials--5/98 2.4.

3.1C Flexural Fatigue and Ductility, Flexible Printed Wiring--3/91

2.4.

3.2C Flexural Fatigue and Ductility, Flexible Metal-Clad Dielectrics--3/91 2.

4.4B Flexural Strength of Laminates (at Ambient Temperature)--12/94 2.4.4.1A Flexural Strength of Laminates (at Elevated Temperature)--12/94 2.4.5Folding Endurance, Flexible Printed Wiring Materials--4/73

2.4.5.1Flexibility - Conformal Coating 2.4.6Hot Oil--4/73

2.4.7A Machinability, Printed Wiring Materials--7/75 2.4.8C Peel Strength of Metallic Clad Laminates--12/94 2.4.8.1Peel Strength, Metal Foil (Keyhole Method for Thin Laminates)--1/86

2.4.8.2A Peel Strength of Metallic Clad Laminates at Elevated Temperature (Hot Fluid Method)--12/94

2.4.8.3A Peel Strength of Metallic Clad Laminates at Elevated Temperature (Hot Air Method)--12/94

2.4.8.4Carrier Release, Thin Copper--1/90

2.4.9D Peel Strength, Flexible Dielectric Materials--10/88 2.4.9.1Peel Strength of Flexible Circuits - 11/98 2.4.9.2Bonding Process - 11/98 2.4.10Plating Adhesion--4/73

2.4.11Shear Strength Flexible Dielectric Materials--4/73 2.4.12A Solderability, Edge Dip Method--6/91

2.4.13F Solder Float Resistance Flexible Printed Wiring Materials--5/98 2.4.1

3.1Thermal Stress of Laminates--12/94 2.4.14Solderability of Metallic Surfaces--4/73

2.4.14.1Solderability, Wave Solder Method--3/79

2.4.14.2Liquid Flux Activity, Wetting Balance Method--1/95 2.4.15A Surface Finish, Metal Foil--3/76

2.4.16A Initiation Tear Strength, Flexible Insulating Materials--12/82

2.4.17Tear Strength, Propagation--4/73

2.4.17.1A Propagation, Tear Strength, Flexible Insulating Materials--12/82

2.4.18B Tensile Strength and Elongation, Copper Foil--8/80 2.4.18.1Tensile Strength and Elongation, In-House Plating--8/97

2.4.18.2Hot Rupture Strength, Foil--7/

2.4.18.3Tensile Strength, Elongation, and Modulus--7/95 2.4.19C Tensile Strength and Elongation, Flexible Printed Wiring Materials--5/98 2.4.20Terminal Bond Strength, Flexible Printed Wiring--4/73

2.4.21D Land Bond Strength, Unsupported Component Hole--8/97

2.4.21.1C Bond Strength, Surface Mount Lands Perpendicular Pull Method--5/91

2.4.22C Bow and Twist (Percentage)--6/99 2.4.22.1C Bow and Twist-Laminate--5/93

2.4.22.2Substrate Curvature: Silicon Wafers with Deposited Dielectrics--7/95

2.4.23Soldering Resistance of Laminate Materials--3/79 2.4.24C Glass Transition Temperature and Z-Axis Thermal Expansion by TMA--12/94 2.4.24.1Time to Delamination (TMA Method)--12/94

2.4.24.2Glass Transition Temperature of Organic Films - DMA Method--7/95

2.4.24.3Glass Transition Temperature of Organic Films - TMA Method--7/95

2.4.24.4Glass Transition and Modulus of Materials Used in High Density Interconnection (HDI) and Microvias -DMA Method - 11/98

2.4.24.5Glass Transition Temperature and Thermal Expansion of Materials Used In High Density Interconnection (HDI) and Microvias -TMA Method -11/98

2.4.25C Glass Transition Temperature and Cure Factor by DSC--12/94

2.4.26Tape Test for Additive Printed Boards--3/79

2.4.27.1B Abrasion (Taber Method), Solder Mask and Conformal Coating--1/95 2.4.27.2A Solder Mask Abrasion (Pencil Method)--2/88

2.4.28B Adhesion, Solder Mask (Non-Melting Metals)--8/97 2.4.28.1C Adhesion, Solder Resist (Mask), Tape Test Method--3/98

2.4.29B Adhesion, Solder Mask, Flexible Circuit--2/88 2.4.30Impact Resistance, Polymer Film--10/86 2.4.31A Folding, Flexible Flat Cable--4/86

2.4.32A Fold Temperature Testing, Flexible Flat Cable--4/86 2.4.33C Flexural Fatigue and Ductility, Flat Cable--3/91 2.4.34Solder Paste Viscosity - T-Bar Spin Spindle Method (applicable for 300,000 to 1,600,000 Centipose)--1/95

2.4.34.1Solder Paste Viscosity - T-Bar Spindle Method (Applicable at Less Than 300,000 Centipose)--1/95

2.4.34.2Solder Paste Viscosity - Spiral Pump Method (Applicable for 300,000 to 1,600,000 Centipose)--1/95

2.4.34.3Solder Paste Viscosity - Spiral Pump Method (Applicable at Less Than 300,000 Centipose)--1/95

2.4.34.4Paste Flux Viscosity - T-Bar Spindle Method--1/95 2.4.35Solder Paste - Slump Test--1/95

2.4.36B Rework Simulation, Plated-Through Holes for Leaded Components--8/97 2.4.37A Evaluation of Hand Soldering Tools for Terminal Connections--7/91

2.4.37.1A Evaluation of Hand Soldering Tools for Printed Wiring Board Applications--7/91 2.4.37.2Evaluation of Hand Soldering Tools on Heavy Thermal Loads--7/93

2.4.38A Prepeg Scaled Flow Testing--6/91

2.4.39A Dimensional Stability, Glass Reinforced Thin Laminates--2/86

2.4.40Inner Layer Bond Strength of Multilayer Printed Circuit Boards--10/87

2.4.41Coefficient of Lintear Thermal Expansion of Electrical Insulating Boards--3/86

2.4.41.1A Coefficient of Thermal Expansion by the Vitreous Silica (Quartz) Dilatometer Method--8/97

2.4.41.2Coefficient of Thermal Expansion - Strain Gage Method--8/97

2.4.41.3In-Plane Coefficient of Thermal Expansion, Organic Films--7/95

2.4.41.4V olumetric Thermal Expansion Polymer Coatings on Inorganic Substrates--7/95 2.4.42Torsional Strength of Chip Adhesives--2/88

2.4.42.1High Tempreature Mechanical Strength Retention of Adhesives--3/88

2.4.42.2Die Shear Strength--2/98 2.4.42.3Wire Bond Pull Strength--2/98 2.4.43Solder Paste - Solder Ball Test--1/95 2.4.44Solder Paste - Tack Test--3/98

2.4.45Solder Paste - Wetting Test--1/95

2.4.46Spread Test, Liquid or Extracted Solder Flux, Solder Paste and Extracted Cored Wires or Preforms--1/95

2.4.47Flux Residue Dryness--1/95

2.4.48Spitting of Flux-Cored Wire Solder--1/95 2.4.49Solder Pool Test--1/95

2.4.50Thermal Conductivity, Polymer Films--7/95

2.4.51Self Shimming Thermally Conductive Adhesives--1/95 SECTION 2.5 - ELECTRICAL TEST METHODS

2.5.1B Arc Resistance of Printed Wiring Materials--5/86 2.5.2A Capacitance of Insulating Materials--7/75 2.5.3B Current Breakdown, Plated Through Holes--8/97 2.5.4Current Carrying Capacity, Multilayer Printed Wring--4/73

2.5.4.1A Conductor Temperature Rise Due to Current Changes in Conductors--8/97 2.5.5A Dielectric Constant of Printed Wiring Materials--7/75

2.5.5.1B Permittivity (Dielectric Constant) and Loss Tangent (Dissipation Factor) of Insulating Material at 1MHz (Contacting Electrode Systems)--5/86

2.5.5.2A Dielectric Constant and Dissipation Factor of Printed Wiring Board Material--Clip Method--12/87

2.5.5.3C Permittivity (Dielectric Constant) and Loss Tangent (Dissipation Factor) of Materials (Two Fluid Cell Method)--12/87

2.5.5.4Dielectric Constant and Dissipation Factor of Printed Wiring Board Material--Micrometer Method--10/85

2.5.5.5C Stripline Test for Permittivity and Loss Tangent (Dielectric Constant and Dissipation Factor) at X-Band--3/98

2.5.5.5.1Stripline Test for Complex Relative Permittivity of Circuit Board Materials to 14 GHZ--3/98

2.5.5.6Non-Destructive Full Sheet Resonance Test for Permittivity of Clad Laminates--5/

2.5.5.7Characteristic Impedance and Time Delay of Lines on Printed Boards by TDR--11/92

2.5.5.8Low Frequency Dielectric Constant and Loss Tangent, Polymer Films--7/95 2.5.5.9Permittivity and Loss Tangent, Parallel Plate, 1MHz to 1.5 GHz--11/98

2.5.6B Dielectric Breakdown of Rigid Printed Wiring Material--5/86

2.5.6.1A Dielectric Strength, Polymer Solder Mask and/or Conformal Coatings--2/88 2.5.6.2A Electric Strength of Printed Wiring Material--8/97

2.5.6.3Dielectric Breakdown V oltage and Dielectric Strength--10/86

2.5.7C Dielectric Withstanding V oltage, PWB--8/97

2.5.7.1Dielectric Withstanding V oltage - Polymeric Conformal Coating - 7/00

2.5.8A Dissipation Factor of Flexible Printed Wiring Material--7/75

2.5.10A Insulation Resistance, Multilayer Printed Wiring (Between Layers)--12/87 2.5.10.1Insulation Resistivity for Adhesive Interconnection Bonds--11/98

2.5.11Insulation Resistance, Multilayer Printed Wiring (Within a Layer)--4/73

2.5.12Interconnection Resistance, Multilayer Printed Wiring--4/73

2.5.13A Resistance of Copper Foil--3/76 2.5.14A Resistivity of Copper Foil--8/76

2.5.15A Guidelines and Test Methods for RFI-EMI Shielding of Flat Cable--10/86

2.5.16A Shorts, Internal on Multilayer Printed Wiring--11/88 2.5.17E V olume Resistivity and Surface Resistance of Printed Wiring Materials--5/98 2.5.17.1A V olume and Surface Resistivity of Dielectric Materials--12/94

2.5.17.2V olume Resistivity of Conductive Resistance Used in High Dentisty Interconnection (HDI) and Microvias, Two-Wire Method--11/98

2.5.18B Characteristic Impedance Flat Cables (Unbalanced)--7/84

2.5.19A Propagation Delay of Flat Cables Using Time Domain Reflectometer--7/84

2.5.19.1A Propagation Delay of Flat Cables Using Time Domain Reflectometer

(TDR)--7/84

2.5.21A Digital Unbalanced Crosstalk, Flat Cable--3/84 2.5.24Conductor Resistance, Flexible Flat Cable--6/79 2.5.25A Dielectric Withstand V oltage Flexible Fat Cable--11/85

2.5.26A Insulation Resistance Flexible Flat Cable--11/85 2.5.27Surface Insulation Resistance of Raw Printed Wiring Board Material--3/79 2.5.28A Q Resonance, Flexible Printed Wiring Materials--4/88

2.5.30Balanced

and

Unbalanced

Cable

Attenuation

Measurements--12/87

2.5.31Current Leakage (Through Overglaze Films)--12/87 2.5.32Resistance Test, Plated Through-Holes--12/87

2.5.33Measurement of Electrical Overstress from Soldering Hand Tools--11/98

2.5.3

3.1Measurement of Electrical Overstress from Soldering

Hand Tools(Ground Measurements)--11/98

2.5.3

3.2Measurement of Electrical Overstress from Soldering Hand Tools(Transient Measurements)--11/98

2.5.3

3.3Measurement of Electrical Overstress from Soldering Hand Tools(Current Leakage Measurements)--11/98

2.5.3

3.4Measurement of Electrical Overstress from Soldering Hand Tools(Shielded Enclosure)--11/98

SECTION 2.6 - ENVIRONMENTAL TEST METHODS

2.6.1E Fungus Resistance Printed Wiring Materials--8/97 2.6.1.1Fungus Resistance – Conformal Coating --7/00

2.6.2C Moisture Absorption, Flexible Printed Wiring--5/98 2.6.2.1A Water Absorption, Metal Clad Plastic Laminates--5/86

2.6.3E Moisture and Insulation Resistance, Printed Boards--8/97

2.6.

3.1C Moisture and Insulation Resistance-Polymeric Solder Masks and Conformal

Coatings--11/98 2.6.

3.1D Moisture and Insulation Resistance - Solder Mask--7/00 2.6.

3.2B Moisture and Insulation Resistance, Flexible Base Dielectric--5/88

2.6.

3.3A Surface Insulation Resistance, Fluxes--1/95 2.6.

3.4A Moisture and Insulation Resistance – Conformal Coating--7/03

2.6.4A Outgassing, Printed Boards--8/97

2.6.5C Physical Shock, Multilayer Printed Wiring--8/97 2.6.6B Temperature Cycling, Printed Wiring Board--12/87 2.6.7A Thermal Shock and Continuity, Printed Board--8/97 2.6.7.1Thermal Shock--Polymer Solder Mask Coatings--2/88 2.6.7.1A Thermal Shock - Conformal Coating--7/00

2.6.7.2A Thermal Shock, Continuity and Microsection, Printed Board--8/97

2.6.7.3Thermal Shock - Solder Mask--7/00

2.6.8D Thermal Stress, Plated Through-Holes--3/98 2.6.8.1Thermal Stress, Laminate--9/91 2.6.9A Vibration, Rigid Printed Wiring--8/97

2.6.9.1Test to Determine Sensitivity of Electronic Assemblies to Ultrasonic

Energy--1/95 2.6.9.2Test

to

Determine

Sensitivity

of

Electronic

Components to Ultrasonic

Energy--1/95

2.6.10A X-Ray (Radiography), Multilayer Printed Wiring Board Test Methods--8/97

2.6.11B Hydrolytic Stability Solder Mask and/or Conformal Coating--8/98

2.6.11C Hydrolytic Stability Solder Mask - 7/00 2.6.11.1Hydrolytic Stability - Conformal Coating - 7/00 2.6.12Temperature Testing, Flexible Flat Cable--6/79 2.6.13Assessment of Susceptibility to Metallic Dendritic Growth: Uncoated Printed

Wiring--10/85

2.6.14A Resistance to Electrochemical Migration, Polymer Solder Mask--8/87

2.6.14C Resistance to Electrochemical Migration, Solder Mask--7/00

2.6.14.1Electrochemical Migration Resistance Test--9/00 2.6.15B Corrosion, Flux--1/95

2.6.16Pressure V essel Method for Glass Epoxy Laminate Integrity--7/85

2.6.16.1Moisture V essel)--8/98

2.6.17Hydrolitic Stability, Flexible Printed Wiring Material--12/82

2.6.18A Low Temperature Flexibility, Flexible Printed Wiring Materials--7/85

2.6.19Environmental and Insulation Resistance Test of Hybrid Ceramic Multilayer

Substrate Boards--12/87

2.6.20A 2.6.20A Superseded by J-STD-020A

2.6.21Service Temperature of Flexible Printed Wiring--12/88 2.6.22Superseded by J-STD-035 (.pdf file) 2.6.23Test

Procedure

for

Steam

Ager

Temperature

Repeatability--7/93

2.6.24Junction Stability Under Environmental Conditions 2.6.25Conductive Anodic Filament (CAF) Resistance Test: X-Y Axis

2.6.26DC Current Induced Thermal Cycling--5/01

Resistance

of

HDIS

Under

High

Temperature and Pressure (Pressure

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务