您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页jp020815p

jp020815p

来源:意榕旅游网
1366J.Phys.Chem.B2003,107,1366-1369

Nitrogen-IncorporatedSAPO-11MolecularSieve:Synthesis,Characterization,andProperties

JianminXiong,†YunjieDing,*,†HejunZhu,†LiYan,†XiumeiLiu,‡andLiwuLin‡

NaturalGasUtilizationandAppliedCatalysisLaboratoryandStateKeyLaboratoryofCatalysis,DalianInstituteofChemistryandPhysics,TheChineseAcademyofSciences,Dalian,116023,ChinaReceiVed:March27,2002;InFinalForm:September23,2002

Nitrogen-incorporatedSAPO-11molecularsievesweresynthesizedbyasecondarysynthesistechniqueatlownitridationtemperature(400°C)withastartingmaterialofSAPO-11zeolitedopedwith2wt%Ru.TheobtainedpowdersamplesshowedhighactivityinKnoevenagelcondensation,whichactsasaprobingreactionforbasecatalysis.Thechangesinstructureofthenitrogen-incorporatedsampleswereinvestigatedbymeansof27Al-MASNMRand31P-MASNMRspectra,X-raydiffraction,andBETsurfaceareameasurements.Itwasfoundthatnitrogen-containingspecieshadincorporatedintotheframeworkofSAPO-11zeolite,inwhichsomeNatomsdirectlybondedtoAlandPatomsandformedAlN4,AlN2O2,andPN4groups.Thesespecieswithterminal-NH2groupsonthesurfacetogetherwereresponsibleforthebasicityofnitrogen-incorporatedSAPO-11zeolite.

Introduction

Thereplacementofliquidacidsandbasesbysolidsascatalystsinorganicreactionsisarequisiteforbetterenviron-mentalpreservation.Whiletheresearchonsolidacidcatalystswasboomedbyoilrefiningthroughthediscoveryofalargenumberofsystemsincludingzeolites,clays,mixedoxides,andsulfates,onlyafewsolidbasecatalystsareyetavailable.Amongthem,nitrogen-incorporatedmolecularsievesareofinterestduetotheirhighsurfaceareaandshape-selectivity.

TheSAPO-11molecularsievesarecomposedofPO4[x]AlO4andSiO4tetrahedron,andiftheoxygenatomsofthetetrahedronwerereplacedtosomelevelbycertainisoelectronicgroups,suchas-NH-species,asaresultofsuchsubstitution,itwillbeexpectedthattheLewisbasicityoftheframeworkincreasesduetothelowerelectronegativityofnitrogenwithrespecttooxygen.Nitrogen-incorporatedcompoundsmaythusbecomecandidatesofcatalystsforanewsetofbasecatalyticreactions.InrecentyearstherehavebeenmanyofreportsonthenitridationofamorphousAlPO4,inwhichamorphousAlPO4precursorswithhighsurfaceareaweresynthesizedthroughdifferentmethods1,2andthennitridizedinaflowofdryammoniaatabout800°C.Thebasicstrengthoftheoxynitridescouldbecontrolledbytheconditionsofnitridationduetothenitrogencontentoftheoxynitridesvaryingwiththetimeandtemperatureofnitridation.Thecontentofnitrogencouldachieveuptoabout20wt%,andtheBETsurfacearearemainedalmostunchangedafternitridation.3,4TheobtainedamorphousoxynitridesshowedhighactivityintheKnoevenagelcondensationbetweenbenz-aldehydeandmethylenecompounds.InsituIRandNMRspectraexhibitedthatthespeciesofAl-NH-P,Al-NH2andP-NH2onthesurfacewereresponsibleforthebasicityoftheamorphousoxynitrides.5,6However,fewreportsonnitrogen-incorporatedmolecularsievesappeared.Itisverydifficulttoavoidthecollapseofmolecularsieveframeworkwhennitri-dationofthemolecularsieveswasperformedinaflowofNH3

*Correspondingauthor.E-mail:dyj@dicp.ac.cn.Fax:86-411-4379143.†NaturalGasUtilizationandAppliedCatalysisLaboratory.‡StateKeyLaboratoryofCatalysis.

atatemperatureof800°C.Therefore,itisnoteasytoobtainnitrogen-incorporatedmolecularsieves.Meanwhile,finecrystal-linityandporestructuresofmolecularsieves,whichhaveconsiderablesignificanceinshape-selectivereactions,wouldbemaintainedwhennitridationwascarriedoutatlowtemperature.7Itiswell-knownthatonsometransitionmetals,suchasrutheniummetal,theammoniamoleculecanbeeasilydecom-posedintoNHx(x)1∼2)groups,whichareveryreactivespeciesfortheabovesubstitutionreaction.Inthisway,oxygenbridgingatomsinmolecularsievescouldbereplacedby-NH-speciesatlowtemperature.

Theobjectiveofthisworkistodevelopanimprovedmethodforpreparationofnitrogen-incorporatedSAPO-11zeolitebasecatalystatlowtemperatureandtocharacterizethestructurechangesduringnitridationbymeansofMASNMR,BET,andXRDmethods.ExperimentalSection

SamplePreparation.SAPO-11zeolitewassynthesizedbyasol-gelmethod,whichhasbeenpresentedelsewhere.8-10Theas-synthesizedSAPO-11wasfirstbakedatabout580°Cforabout4htoremovethetemplate,andthensoakedinRuCl3(purchasedfromJohnsonMattheycompany)solutiontogetaRuloadingof2.0wt%.Thenitwasdriedatambienttemperatureforseveraldays,anddriedfinallyinanovenat120°Cforabout4h(denotedasRu-SAPO-11).NitridationofSAPO-11molecularsievepowderwascarriedoutinatubularquartzreactorat400°Cinaflowofpureammonia.Theflowrateofammoniawascontrolledatca.30mL/min.Attheendofthenitridationprocess,thesamplewasslowlycooledtoroomtemperatureinanitrogenflow.Thepowdersobtainedafternitridizingfordifferenttimesof5,25,and50haredenotedasSAPO-11-5N,SAPO-11-25N,andSAPO-11-50N,respec-tively.TheMg-AlhydrotalciteusedinthispaperascontrastwasMg4Al2(OH)16CO3.Themethodofitssynthesisispresentedinref11.

BasicityEvaluation:TheContentofNitrogenandtheKnoevenagelCondensationReaction.Thecontentsofnitrogeninthenitrogen-incorporatedsamplesweredetectedbyalkaline

10.1021/jp020815pCCC:$25.00©2003AmericanChemicalSociety

PublishedonWeb01/17/2003

N-IncorporatedSAPO-11MolecularSieveJ.Phys.Chem.B,Vol.107,No.6,20031367

TABLE1:BETSurfaceAreaMeasurementsandNitrogenContentsforNitridedSAPO-11MolecularSieves

SAPO-11

SBET(m2/g)N(%,w/w)

a

SAPO-11-5N

1370.52

SAPO-11-25N

1260.77

SAPO-11-50N

1251.23

SAPO-11-5N-800a

281.25

1850

ThisisaSAPO-11withoutRunitridedat800°C.

Figure1.XRDpatternsfornitridedSAPO-11molecularsieves(a)calcinedSAPO-11;(b)Ru-SAPO-11;(c)SAPO-11-5N;(d)SAPO-11-25N;(e)SAPO-11-50N.

digestionwithmoltenNaOHat400°C,andtheresultingNH3wastitratedwith1NH2SO4;thedetailedprocedureisfoundedintheliterature.12Allreactionswerecarriedoutunderaninertatmosphere(N2),inaround-bottomflaskfittedwitharefluxcondenser.Theflaskwasimmersedinathermostatedwaterbathandthereactionmixturewasmagneticallystirred.Amixtureofpreviouslydistilledbenzaldehyde(4mmol)andethylcyanoacetate(4mmol)wasintroducedwithtolueneasasolvent(30mL)intotheflask.Oncethemixturereached50°C,0.2wt%ofthecatalystwasadded.Samplesofthereactionmixturewerethenperiodicallywithdrawnbya1µLmicrosyringeattimeintervalsof30,60,120,180,and240minandanalyzedbyShimadzugaschromatographGC-8A,equippedwithanFIDdetectorandanHP-5(cross-linked5%PHMEsiloxane)capillarycolumn.

MASNMRMeasurement.MASNMRexperimentswereperformedonaBrukerDRX-400spectrometer.Dataof31Pwereobtainedbymeasuringthesamplesusingafrequencyof161.97MHz,pulsewidthofπ/8,delayof2.0s,and100scans.For27Al-MASNMRexperiments,afrequencyof104.26MHandz400scansinsteadwereused.

XRDAnalysis.XRDpatternsweremeasuredinaironRigakuD/Max-rbdiffractometerusingCuKRradiationat40kVand50mA.The2θangleswerescannedfrom5°to50°atarateof2°min-1.

BETMeasurement.Thesurfaceareasofthedifferentnitrogen-incorporatedSAPO-11sampleswereobtainedbynitrogenadsorptionusinganASAP2010(Micromeritics)afteroutgassingthesamplesundervacuumat250°C.ResultsandDiscussion

NitrogenContent.Thenitrogencontentsinthenitrogen-incorporatedsamplesaresummedinTable1.ThenitrogencontentincreasedwiththetimeofnitridationforRu-dopedsamples.ItisnotablethatthecontentofnitrogenforSAPO-11-50Nthatwasnitridedatlowtemperatureof400°CwasalmostcomparabletothatofthesamplewithoutRuthatwasnitridedat800°C.

BETMeasurements.FromthedatashowninTable1,itisfoundthatthesurfaceareasofSAPO-11-5N,SAPO-11-25N,andSAPO-11-50Nsamplesdecreasedverylittleafternitrida-tion,whichiscomparabletothatoftheSAPO-11precursor,butthesamplelostmostsurfaceareaifnitrindationisconductedat800°C.

XRDAnalysis.TheXRDpatternsofsamplesarepresentedinFigure1.Fromthespectraitwasfoundthattheintensityofdiffractionpeakat2θ)8.09increased,therestofdiffractionpeaksatlower-angleremainedunchanged,andthepeakat2θ)19.89disappearedwhileanewpeakat2θ)20.65appearedafternitridation.Theseresultsshowthatsomechangesinchemicalcomposition(thiswasfurtherconfirmedbytheresultsof27Aland31PMASNMRmeasurements)andcrystal-linestructureoccurredduringnitridation.

BasicityEvaluationofNitrogen-IncorporatedSAPO-11Zeolites.TheKnoevenagelcondensationisusuallyusedinorganicsynthesistoproducealkenesfrommoleculescontainingcarbonylgroups.Thisreactioniscatalyzedbybasesundermildreactionconditions.Knoevenagelcondensationisoftenusedasaprobingreactiontoevaluatethebasicityofoxynitrides.Indeed,byreactingonemolealdehydewithonemolemoleculecontainingactivatedmethylenegroupswithdifferentpKavalueinthepresenceofabasecatalyst,itispossibletofindtheminimumpKavalueofthereactantfromwhichthecatalystbecomesactive.Thus,inthiswaycatalystswithdifferentbasicitiescanbeconvenientlycompared.5,13

HeretheKnoevenagelcondensationwasreaction1.Thatlittle

1368J.Phys.Chem.B,Vol.107,No.6,2003Figure2.ConversionvsreactiontimefornitridedSAPO-11andMg-Alhydrotalcite.

activitywasfoundforallsampleswithoutdopingRu,eventhroughnitridationcarriedoutinawholerangeofnitridationtemperaturesfrom400to800°C,meansthattherewerenobasicsitesinthesesamplesatall.

ThesamereactionwasperformedwiththeSAPO-11-5N,SAPO-11-25N,SAPO-11-50N,andMg-Alhydrotalcitecatalysts.FromtheresultsshowninFigure2,wecanseethatthenitridesweremuchmoreactivethanMg-AlhydrotalciteinKnoevenagelcondensation.Thenitrogen-incorporatedSAPO-11samplesgave8.3%,7.9%,and9.5%conversion,respectively,dependingonthetimeofnitridation.TheconversionofbenzaldehydeforSAPO-11-5NwashigherthanthatforSAPO-11-25N,duetoasignificantnumberof-NH2terminalgroupsexistinginthesamplesatthebeginningofnitridation.4Theselectivityofthiscondensationproduct(malononitrileben-zylidene)wasabout100%forallsamples,nofurtherreactionfollowingaMichael-typeadditionwasobserved.

AccordingtotheobservationfromBenitez,12freshlypreparedamorphousaluminophosphateoxynitride(AlPON)catalystsreadilyunderwenthydrationandhydrolysisunderatmosphericconditions.Hydrationandhydrolysiswereobservedfornitrogen-incorporatedSAPO-11molecularsievecatalysts,butthelossofbasicitywasnotobvious.FortheSAPO-11-50N,theconversionofbenzaldehydestillremainedatabout8%,whichwascomparabletothefreshcounterpart,eventhoughthesamplewasplacedunderatmosphericconditionsformorethantwomonths,implyingthatoxygenatomsintheframeworkofSAPO-11zeolitescouldbesubstitutedtosomelevelsbynitrogen-containinggroups.ThissubstitutionoccurringduringnitridationwouldbeconfirmedbythefollowingNMRmeasurements.MASNMRSpectrumCharacterization.High-resolutionmagic-anglespinningsolid-stateNMRisapowerfultooltoelucidatedetailsofmolecularsievestructure.Inthecaseofthisstudy,thecombinedresultsof27Al(Figure3)and31P(Figure4)MASNMRdataprovidedmoreinformationaboutthechangesthatoccurredaftertreatmentofSAPO-11witham-monia.

(1)27Al-MASNMRSpectra.The27Al-MASNMRspectraofthecalcinedSAPO-11andthenitrogen-incorporatedSAPO-11samplesareshowninFigure3.Theassignmentsofchemicalshifts,foundintheliterature,aresummedinTable2.Thepeakat38.83ppmwastypicallytheAlO4tetrahedronwithneighbor-ingPO4tetrahedron.14Thereweremanyopinionsabouttheassignmentof30ppm:oneascribedittofour-coordinatedAl,15-19anotherrelateditwiththefive-coordinatedAl,20-22andChenandco-workersconsidereditsassignmentaseitherfour-

Xiongetal.

Figure3.27AlMASNMR(a)calcinedSAPO-11;(b)SAPO-11-25N;(c)SAPO-11-50N.

Figure4.31PMASNMR(a)calcinedSAPO-11;(b)SAPO-11-25N;(c)SAPO-11-50N.

coordinatedAlorfive-coordinatedAlbasedonthecalcinationtemperature.23Thepeakat-14ppmwasascribedtooctahedralAlcoordinatedwith4PO4tetrahedronand2H2Omolecules.14The27Al-MASNMRspectraofSAPO-11-25N(Figure3b)andSAPO-11-50N(Figure3c)samplesindicatedthatthepeakat-9ppmisAlhexacoordinatedto4PO4and2NH3,implyingtheH2OofoctahedroninthecalcinedSAPO-11samplewassubstitutedbyNH3duringnitridation.Anewpeakat12.48ppmoccurredinthespectraofSAPO-11-25NandSAPO-11-50NandwasascribedtoAlpentacoordinatedwith4PO4and1NH3.4Itisemphasizedtonotethatthesignalsbetween84and126ppm,whichbelongedtothestructuralnitrogenAl(NxO4-x)-(x)1∼4),swelledupaftertheSAPO-11hadbeennitridedfor25h.After50hnitridation,twowidenewsignalsat108

N-IncorporatedSAPO-11MolecularSieve

TABLE31Pand272:AlSummaryMASNMR

ofAssignmentofChemicalShiftsforchemicalshift

(ppm)

assignment

ref27Al

38.83Al(OP)4

1430(1)four-coordinatedAl15-19(2)pentacoordinatedAl

20-22-14(3)Al(4OP,2Hdecidedbythecalcinationtemp.23-9Al(4OP,2NH2O)143)412.48Al(4OP,1NH3)88AlO2N224108AlN431

P

--29.623.65P(OAl)P(3OAl,OH)4

25,2627-6.4

PN4

4,28

and88ppmappearedinFigure3c,whichareascribedtoAltetracoordinatedwith4nitrogens(AlN4)andAltetracoordinatedwith2nitrogensand2oxygens(AlO2N2)respectively.24ThisimpliedthattheNatomsweredirectlybondedtothestructuralAlatoms.

(2)31P-MASNMRSpectrum.The31P-MASNMRspectraofthecalcinedSAPO-11anditssamplestreatedwithNH3at400°Cfor25and50hareshowninFigure4.ThesummedassignmentsofchemicalshiftsarelistedinTable2.Inthe31P-MASNMRspectrumofcalcinedSAPO-11sample(Figure4a),aresonanceat-29.60ppmisattributedtothetypicaltetrahedralPsitewith4neighboringAlO4tetrahedrons,25,26andthepeakat-23.65ppmshouldbeassignedtotetrahedralP(3AlO4,OH).27IncomparingthespectrumofcalcinedSAPO-11withthatofSAPO-11-50N(Figure4c),itisworthnotingthatanewpeakat-6.40ppmappeared,whichwasascribedtothetetrahedralPN4.ThisshiftisconsistentwiththereplacementofObyNinPO4tetrahedron.4,28TheresultsprovideevidencefortheincorporationofnitrogenintotheSAPO-11framework.Therefore,wecanconcludethatthenitrogenhasdirectlybondedtoPatoms,justastoAlatoms.4Oxynitrideshavethecharacterofbeingliabletohydrolysis,14butthenitrogen-incorporatedSAPO-11zeoliteswereexposedtothemoistairfordifferenttimesandfoundthattheactivityinKnoevenagelcondensationwaslostverylittleevenaftertwomonths.TheseresultsfurtherprovedthatthenitrogenhadenteredintotheframeworkofSAPO-11,becausetheterminalgroupsof-PNH2orhydroxyl-aminephysicallyadsorbedareliabletohydrolysis.Conclusion

Anewfamilyofsolidbasecatalysts,nitrogen-incorporatedSAPO-11molecularsieves,hasbeensynthesizedwithastartingmaterialofSAPO-11zeolitedopedwith2wt%Rubynitridinginanammoniaflowatalowtemperatureof400°C.Thenitrogen-incorporatedSAPO-11zeoliteswerecharacterizedbyhighspecificsurfaceareas,finecrystallinity,shape-selectivity,andbeingactivecatalystsfortheKnoevenagelcondensation.Thechangesinstructureoftheobtainedsampleswerestudiedbymeansof27Al-MASNMRand31P-MASNMRspectra;it

J.Phys.Chem.B,Vol.107,No.6,20031369

canbeconcludedthatnitrogen-containingspeciesincorporatedintotheframeworkofSAPO-11zeolite,inwhichsomeNatomsdirectlybondedtoAlandPatomsandformedAlN4,AlN2O2,andPN4groups.Thesespecies,togetherwiththeterminal-NH2group,areresponsibleforthebasicityofnitrogen-incorporatedSAPO-11zeolites.

Acknowledgment.SupportedfinanciallybytheNationalNaturalScienceFoundationofChina(20043001).ReferencesandNotes

(1)Centeno,M.A.;Grange,P.J.Phys.Chem.B1999,103,2431.(2)Benitez,J.J.;Odriozola,J.A.;Marchand,R.;Laurent,Y.;Grange,P.J.Chem.Soc.,FaradayTrans.1995,91(24),4477.

(3)Centeno,M.A.;Debois,M.;Grange,P.J.Phys.Chem.B1998,102,6835.

(4)Stein,A.;Wehrle,B.;JansenM.Zeolites1993,13,291.

(5)Grange,P.;Bastians,P.;Conanec,R.;Marchand,R.;Laurent,Y.Appl.Catal.A1994,114,L191.

(6)Climent,M.J.;Corma,A.;Fornes,V.;Frau,A.;Guil-lopez,R.;Iborra,S.;Primo,J.J.Catal.1996,163,392.

(7)Ding,Y.;Xiong,J.;Lu,Y.;He,X.;Lin,L.Chin.J.Catal.2001,22(3),227.

(8)Escalante,D.;Giraldo,L.;Pinto,M.;Pfaff,C.;Sazo,V.;Matjushin,M.;Me´ndez,B.;Lo´pez,C.M.;Machado,F.J.;Goldwasser,J.;Ramı´rezdeAgudelo,M.M.J.Catal.1997,169,176.

(9)Machado,F.J.;Lo´pez,C.M.;Goldwasser,J.;Me´ndez,B.;Yvan,C.;Escalante,D.;TovarM.;Ramı´rez-Agudelo,M.M.Zeolites1997,19,387.

(10)Alfonzo,M.;Goldwasser,J.;Lo´pez,C.M.;Machado,F.J.;Matjushin,M.;Me´ndez,B.;Ramı´reAgudelo,M.M.J.Mol.Catal.A:Chem.1995,98,35.

(11)Tichit,D.;Lhouty,M.H.;Guida,A.;Chiche,B.H.;Figueras,F.;Auroux,A.;Bartalini,D.;Garrone,E.J.Catal.1995,151,50.(12)Benı´tez,J.J.;Dı´az,A.;Laurent,Y.;Odriozola,J.A.Appl.Catal.A:General1999,176,177.

(13)Massion,A.;Odriozola,J.A.;Bastians,Ph.;Conanec,R.;Marchand,R.;Laurent,Y.;Grange,P.Appl.Catal.A:General1996,137,9.

(14)Jahn,E.;Muller,D.;Richter-Mendau,J.InSynthesisofmicro-porousmaterials;Occelli,M.L.,Robson,H.E.,Eds.;VanNostrandReinhold:NewYork,1992;Vol.1MolecularSieves,p248.(15)Jahn,E.;Mu¨ller,D.;Becker,K.Zeolites1990,10,151.(16)Ray,G.J.;Samoson,A.Zeolites1993,13,410.

(17)Haddix,G.W.;Narayana,M.;Gillepsie,W.D.;Georgellis,M.B.;Wu,Y.J.Am.Chem.Soc.1994,116,672.

(18)Samoson,A.;Lippmaa,E.;Engelhardt,G.;Lohse,U.;Jerschkewitz,H.G.Chem.Phys.Lett.1987,134,589.

(19)Kosslick,H.;Tuan,V.;Fricke,R.;Martin,A.StudiesinSurfaceScienceandCatalysis;Elsevier:Amsterdam,1994,Vol.84ZeolitesandRelatedMicroporousMaterials,StateoftheArt1994,p1013.

(20)Alemany,L.B.;Kirker,G.W.J.Am.Chem.Soc.1986,108,6158.(21)Gilson,J.P.;Edwards,G.C.;Peters,A.W.;Rajagopalan,K.;Wormsbecher,R.F.;Roberie,T.G.;Shatlock,M.P.J.Chem.Soc.Chem.Commun.1987,2,91.

(22)Coster,D.;Blumenfeld,A.L.;Fripiat,J.J.J.Phys.Chem.1994,98,6201.

(23)Chen,T.;Wouters,B.H.;Grobet,P.J.Eur.J.Inorg.Chem.2000,2,281.

(24)Smith,M.E.J.Phys.Chem.1992,96,6(3),1444.(25)Mu¨ller,D.;Jahn,E.;Ladwig,G.;andHaubenreisser,U.Chem.Phys.Lett.1984,109,332.

(26)Engelhard,G.High-ResolutionSolid-StateNMRofSilicatesandZeolites;JohnWiley:Chichester,1987;andreferencestherein.(27)Jahn,E.;Mu¨ller,D.;Becker,K.Zeolites1990,10,151.

(28)Bunker,B.C.;Tallant,D.R.;Balfe,C.A.;Kirkpatrick,R.J.;Turner,G.L.;andReidmeyer,M.R.J.Am.Ceram.Soc.1987,70,675.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务