11麦克斯韦方程组的微分形式是:.HJDt,EBt,AB0,AD2静电场的基本方程积分形式为:AAAdlCE0 SDAds3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:4线性且各向同性媒质的本构关系方程是:5电流连续性方程的微分形式为:。6电位满足的泊松方程为 ; 在两种完纯介质分界面上电位满足的边界 。7应用镜像法和其它间接方法解静态场边值问题的理论依据是。8.电场强度E的单位是,电位移D的单位是 。9.静电场的两个基本方程的微分形式为 E0 AD ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 enD3.eBSn 4.DE,BH,JE 5.e0nE0JenHSAJ2t6. 1122 1n2n7.唯一性定理 8.V/m C/m21.在分析恒定磁场时,引入矢量磁位A,并令BA的依据是(c.AB0 )2. “某处的电位0,则该处的电场强度E0”的说法是(错误的 )。3. 自由空间中的平行双线传输线,导线半径为a, 线间距为D,则传输线单位长度的电容为( C0 )。1ln(Daa)4. 点电荷产生的电场强度随距离变化的规律为( 1/r2 )。5. N个导体组成的系统的能量W12Nqii,其中i1i是(除i个导体外的其他导体)产生的电位。6.为了描述电荷分布在空间流动的状态,定义体积电流密度J,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。8. 真空中一个电流元在某点产生的磁感应强度dB随该点到电流元距离变化的规律为(1/r2 )。10. 半径为a的球形电荷分布产生的电场的能量储存于 (整个空间 )。三、海水的电导率为4S/m,相对介电常数为81,求频率为1MHz时,位幅与导幅比值?三、解:设电场随时间作正弦变化,表示为:EexEmcost 则位移电流密度为:JDdtex0rEmsint 其振幅值为:J3dm0rEm4.510Em 传导电流的振幅值为:JcmEm4Em 因此: JdmJ1.125103cm四、自由空间中,有一半径为a、带电荷量q的导体球。试求:(1)空间的电场强度分布;(2)导体球的电容。(15分)四、解:由高斯定理ASq得Dq4r2 qSDAdDerDer2 4r空间的电场分布EDeqr42 00r导体球的电位UEAdlEAdrqqaaaer42Adr4 0r0a导体球的电容CqU40a 五、两块无限大接地导体板分别置于x=0和x=a处,其间在x=x0处有一面密度为C/m2的均匀电荷分布,如图所示。求两导体板间的电场和电位。(20分)解:d21200xxd22dx0;dx20x0xa 得:1xC1xD10xx0; 122xC2xD2x0xa 5.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为 。6.电介质的极性分子在无外电场作用下,所有正、负2x1x电荷的作用中心不相重合,而形成电偶极子,但由于电xxx00x偶极矩方向不规则,电偶极矩的矢量和为零。在外电场作用下,极性分子的电矩发生________________,使电偶极矩的矢量和不再为零,而产生__________。7.根据场的唯一性定理在静态场的边值问题中,只要满足给定的_______ 条件,则泊松方程或拉普拉斯方程1x和满足得边界条件为2x100,2a0;1x02x0,解得C1x0x0ax,D10,C20,D200a0aax0x0ax0≤≤x0, 所以1x2xx0axxax0≤≤0adxax0E11xex1exdx0a的解是__________。8.谐振腔品质因素Q定义为_______________。9.在导电媒质中,电磁波的传播速度(相速)随 改变的现象,称为色散效应。10.在求解静电场的边值问题时,常常在所研究的区域之外,用一些假想的电荷代替场问题的边界,这种求解方法称为 法。11.若电介质的分界面上没有自由电荷,则电场和电位移应满足的边界条件分别为 。12.电磁波的恒定相位点推进的速度,称为 ,而包络波上某一恒定相位点推进的速度称为 。13在任何导波装置上传播的电磁波都可分为三种模式,它们分别是 波、 波和 波判断题1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。()2.一个点电荷Q 放在球形高斯面中心处。如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。()3.在线性磁介质中,由L0xx0d2xx0E22xexexdx0ax0xa 六、有一平行金属板电容器,极板面积为l×b,板间距离为d,用一块介质片(宽度为b、厚度为d,介电常数为ε)部分填充在两极板之间,如图所示。设极板间外加电压为U0,忽略边缘效应,求介质片所受的静电力。六、解:平行板电容器的电容为: , (lx)bbx所以电容器内的电场能量为:C0ddbU0212WeCU0[0(lx)x]22d由 FiWe不变 可求得介质片受到的静电giWe力为:Fxxb(0)U02U0不变2d1.旋度矢量的 恒等与零梯度矢量的 恒等与零。2.在静电场中,导体表面的电荷密度与导体外的电位函数满足 的关系式 。3.极化介质体积内的束缚电荷密度与极化强度之间的关系式为 。I 的关系可知,电感系数不仅与导线的几何尺寸、材料特性有关,还与通过线圈的电流有关。( )4.电磁波垂直入射至两种媒质分界面时,反射系数4.若密绕的线圈匝数为N,则产生的磁通为单匝时的 倍,其自感为单匝的 倍。与透射系数之间的关系为1+=。()235.损耗媒质中的平面波,其电场强度和磁场强度在空间上互相垂直、时间上同相位。()6.均匀平面波中的电场能量与磁场能量相等。()7位移电流和传导电流都是电荷定向运动形成的。()8.在时变电磁场中,只有传导电流与位移电流之和才是连续的。()9.若有两个带电导体球的直径,与球间距离差不多,它们之间的静电力等于把每个球的电量集中于球心后所形成的两个点电荷之间的静电力。()第三套 1磁率为.在均匀各向同性线性媒质中,设媒质的导,则磁感应强度B和磁场H满足的方程为: 。2.设线性各向同性的均匀媒质中,20称为 方程。3.时变电磁场中,数学表达式SEH称为 。4.在理想导体的表面, 的切向分量等于零。5.矢量场A(r)穿过闭合曲面S的通量的表达式为: 。6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。11.已知麦克斯韦第二方程为EBt,试说明其物理意义,并写出方程的积分形式11.答:意义:随时间变化的磁场可以产生电场。 其积分形式为:EdlBdSCSt12.试简述唯一性定理,并说明其意义。12.答:在静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的,这一定理称为唯一性定理。 它的意义:给出了定解的充要条件:既满足方程又满足边界条件的解是正确的。 13.什么是群速?试写出群速与相速之间的关系式。 13.答:电磁波包络或能量的传播速度称为群速。 群速vg与相速vp的关系式为: vvpg 1dvpvpd14.写出位移电流的表达式,它的提出有何意义? 14.答:位移电流:JDdt 位移电流产生磁效应代表了变化的电场能够产生磁场,使麦克斯韦能够预言电磁场以波的形式传播,为现代通信打下理论基础。 三、计算题 (每小题10 分,共30分)15.按要求完成下列题目(1)判断矢量函数By2eˆxxzeˆy是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。解:(1)根据散度的表达式BBxByBz将xyz矢量函数B代入,显然有B0 故:该矢量函数为某区域的磁通量密度。 (2)电流分布为:J1B(2分)0 eˆxeˆyeˆzxyz(2分)y2xz01xeˆx2yzeˆz(1分)016.矢量A2ˆexeˆy3eˆz,B5eˆB(2)ABx3eˆyeˆz,求(1)A解:1AB7eˆx2eˆy4eˆz 2AB103310 17.在无源的自由空间中,电场强度复矢量的表达式为Eeˆx3E0eˆy4E0ejkz 1.试写出其时间表达式;2.说明电磁波的传播方向;解:(1)该电场的时间表达式为:Ez,tReEejt 3Ez,teˆx3E0eˆy4E0costkz 由于相位因子为ejkz,其等相位面在xoy平面,传播方向为z轴方向。 18.均匀带电导体球,半径为a,带电量为Q。试求球内任一点的电场球外任一点的电位移矢量解:(1)导体内部没有电荷分布,电荷均匀分布在导体表面,由高斯定理可知在球内处处有:DdS0 S故球内任意一点的电位移矢量均为零,即 E0ra由于电荷均匀分布在ra的导体球面上,故在ra的球面上的电位移矢量的大小处处相等,方向为径向,即DD0ˆer,由高斯定理有DdSQ即 4r2D0Q整理可得:SDD0ˆeQr4r2ˆerra 19.设无限长直导线与矩形回路共面,(1)判断通过矩形回路中的磁感应强度的方向(画×);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。解:建立如图坐标通过矩形回路中的磁感应强度的方向为穿入纸面,即为ˆey方向。在xoz平面上离直导线距离为x处的磁感应强度可由下式求出:BdlBeˆ0I0I即:y c2x通过矩形回路中的磁通量da/2BdSbxdz0ISa/22xdxdz0Ia2lnddb20.解:(1)由于所求区域无源,电位函数满足拉普拉斯方程设:电位函数为x,y,满足方程:222x,y2)利用分离变量法: x2y20(2x,yffk2xgydxfddx202g 根据边界条件dy2k2yg0k22xky0x0xay0,x,y的通解可写为:4nx,yAnynsinan1axeAnnsin再由边界条件:y0n1axU0求得AnA2U0n1cosnπ n槽内的电位分布为 2Unx,y01cosnπsinnxayn1nae1.在均匀各向同性线性媒质中,设媒质的介电常数为,则电位移矢量D和电场E满足的方程为: 。2.设线性各向同性的均匀媒质中电位为,媒质的介电常数为,电荷体密度为V,电位所满足的方为 。3.时变电磁场中,坡印廷矢量的数学表达式为 。4.在理想导体的表面,电场强度的 分量等于零。5.表达式ArdS称为矢量场A(Sr)穿过闭合曲面S的 。6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 。7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 。8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 。9.对横电磁波而言,在波的传播方向上电场、磁场分量为 。10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 场,因此,它可用磁矢位函数的旋度来表示。简述题 (每小题5分,共20分)答:磁通连续性原理是指:磁感应强度沿任一闭合曲面的积分等于零,或者是从闭合曲面S穿出去的通量等于由S外流入S内的通量。BdS 其数学表达式为:0 S12.答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。亥姆霍兹定理告诉我们,研45究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究。 13.答:其物理意义:随时间变化的磁场可以产生电场。 方程的微分形式:EB t14.答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。极化可以分为:线极化、圆极化、椭圆极化。15.矢量函数Ayx2eˆxyzeˆz,试求(1)A(2)A解:1、AAxAyAxyzz(3分)2xyy(2分)eˆxeˆyeˆz2 、 Axyz(3分)yx20yzeˆxzeˆzx2(2分)16.矢量A2eˆx2eˆz,Beˆxeˆy,求(1)AB(2)求出两矢量的夹角解:1AB2eˆx2eˆzeˆxeˆy(3分)eˆxeˆy2eˆz(2分)2根据ABABcos AB2eˆx2eˆzeˆxeˆy2cos21 所以60 222217.方程 给出一球族解:(1)ueˆuxxeˆuuyyeˆzz(3分)(2)eˆx2xeˆy2yeˆz2z(2分)nˆueˆx2eˆy4eˆxeˆy2u所nˆ4165 18.放在坐标原点的点电荷在空间任一点r(1)求出电力线方程;(2)画出电力线。1qEqr42eˆreˆxxeˆyyeˆzz由力线0r4q0r340r3方程得xdxydyzdz对上式积分得-2yC1xzCC1,C2为任意常数。2y式中,(2)电力线图18-2所示。19.设点电荷位于q金属直角劈上方,如图1所示,求画出镜像电荷所在的位置直角劈任意一点(x,y,z)处的电位表达式qq图图解:(1)镜像电荷所在的位置如图19-1所示。(2)如图19-2所示任一点(x,y,z)处的电位为q41111 0r1r2r3r4r21x1y22z2其中,r22x12y2z2 r3x12y22z2r4x12y22z220.设时变电磁场的电场强度和磁场强度分别为:EE0cos(te)HH0cos(tm) 写出电场强度和磁场强度的复数表达式证明其坡印廷矢量的平均值为:S1av2E0H0cos(em)解:1电场强度的复数表达式 EEej0e(电场强度的复数表达式HHj0em(2)据Sav12ReEH*得 S1j(em)1av2ReE0H0e2E0H0cos(em)21.设沿z方向传播的均匀平面电磁波垂直入射到理想导体,如图2所示,该电磁波电场只有x分量即 EeˆxEjz0e求出反射波电场的表达式;求出区域1 媒质的波阻抗。解:(1)设反射波电场EreˆxEjzre 区域1中的总电场为5EEreˆx(E0ejzEzrej) 根据z0导体表面电场的切向分量等于零的边界条件得ErE0 反射波电场的表达式为EreˆxE0ejz(2)媒质1的波阻抗00因而得 120377() 66