ActaCrystallographicaSectionF
StructuralBiologyandCrystallizationCommunications
ISSN1744-3091
Expression,purification,crystallizationandpreliminaryX-raydiffractionanalysisofThermotoganeapolitanab-glucosidaseB
-Glucosidasesbelongtofamilies1,3and9oftheglycosidehydrolasesandactoncello-oligosaccharides.Family1and3enzymesareretainingandarereportedtohavetransglycosylationactivity,whichcanbeusedtoproduceoligosacchar-idesandglycoconjugates.Family3enzymesarelesswellcharacterizedthantheirfamily1homologuesandtodateonlytwocrystalstructureshavebeensolved.Here,theexpression,purification,crystallizationandX-raydiffractiondataofafamily3-glucosidasefromthehyperthermophilicbacteriumThermotoganeapolitanaarereported.Crystalsofselenomethionine-substitutedproteinhavealsobeengrown.ThecrystalsbelongtospacegroupC2221,withunit-cell
˚.Nativedatahavebeencollectedtoparametersa=74.9,b=127.0,c=175.2A
˚resolutionandthestructurehasbeensolvedto2.7A˚usingthe2.4A
selenomethionineMADmethod.Modelbuildingandrefinementofthestructureareunderway.
PernillaTurner,aAnna
Pramhed,bErikKanders,aMartinHedstro¨m,aEvaNordberg
Karlssona*andDerekT.Loganb*
DepartmentofBiotechnology,CentreforChemistryandChemicalEngineering,LundUniversity,Box124,S-22100Lund,Sweden,andbDepartmentofMolecularBiophysics,
CentreforChemistryandChemicalEngineering,LundUniversity,Box124,S-22100Lund,Sweden
aCorrespondencee-mail:
eva.nordberg_karlsson@biotek.lu.se,derek.logan@mbfys.lu.se
Received2May2007Accepted14August2007
1.Introduction
Glycosidehydrolases(GH)areenzymesthathydrolyzeglycosidicbondsbetweentwoormorecarbohydratesorbetweenacarbo-hydrateandanoncarbohydratemoiety.Carbohydratesareessentialcomponentsofbiomass,whichisestimatedtobeproducedinaquantityofabout60GtyÀ1(Coxetal.,2000)andwhichcontainsanarrayofstructuralandstoragepolysaccharides.Toutilizetheserawmaterials,microorganismsproduceawidevarietyofcarbohydrate-hydrolyzingandcarbohydrate-modifyingglycosidehydrolases.Theseenzymescanalsobeusedasspecificcatalystsinindustrialapplica-tions,e.g.inthefoodandfeedindustries,thepaperandpulp,starchandtextileindustriesandinnewlyemerging‘green’processes(Turneretal.,2006,2007),takingadvantageoftheirspecificityinselectivepreparationsofcarbohydrate-containingrawmaterials.Basedonsequencesimilarities,GHhavetodatebeenclassifiedinto108separatefamilies(Coutinho&Henrissat,1999).-Glucosi-dases(EC3.2.1.21)playaroleinthecarbohydratemetabolismofmanyorganismsbyactingonthe-glycosidiclinkagesofcello-oligosaccharidescontaining-d-1,4-glycosidicbonds.TheseenzymesareclassifiedintothreeGHfamilies:GH1,GH3andGH9.BothGH1andGH3arefamilieswitharetainingmechanismandaredominatedbyenzymesactingonoligosaccharidesubstrates,whiletheGH9familyhasaninvertingmechanismandmostlycontainsendoglucanases.Retainingenzymesutilizeadouble-displacementmechanismwithretentionofconfigurationattheanomericcarbonofthesugarringandoftendisplaytransglycosylationabilities,whichcanbeofinterestforapplicationsfocusingonthesynthesisofoligo-saccharidesorrelatedproducts.Thecatalysisinvolvestwocarbox-ylateresidueslocatedonoppositesidesofthesugarplaneandthereactioncanbedividedintotwosteps:glycosylation,inwhichaglycosyl-enzymeintermediateisformed,anddeglycosylation,inwhichawatermolecule(hydrolysis)oranalcohol(transglycosyl-ation)hydrolyzestheglycosyl-enzyme(McCarter&Withers,1994;Sinnott,1990).Asfoldisbetterconservedthansequence,manyGH
ActaCryst.(2007).F63,802–806
#2007InternationalUnionofCrystallographyAllrightsreserved
802
doi:10.1107/S1744309107040341
crystallizationcommunications
familieshavebeengroupedintostructurallyrelatedclans(GHA–N;Coutinho&Henrissat,1999).ClanAisbyfarthelargest,containing17GHfamiliesallsharingthe(/)8-fold,whiletheotherclans(GHB–N)onlycontaintwoorthreeGHfamilieseach.GH1-glucosi-dasesbelongtoclanAandhavebeenmorethoroughlycharacterizedthantheGH3representatives.Severalthree-dimensionalstructureshavebeensolved,someofwhicharefromthermophiles,e.g.a-glycosidasefromSulfolobussolfataricus(Aguilaretal.,1997)anda-glucosidasefromThermotogamaritima(Zecheletal.,2003).
EnzymesclassifiedasmembersofGH3donotbelongtoanyoftheknownGHclans,indicatingamoreunusualfold.Generally,knowl-edgeofthefunctionandstructureofGH3enzymesislessabundant,theirsequenceconservationisrelativelylowandfewenzymesarewellcharacterized.Forinstance,itispresentlystillimpossibletolocatetheacid/basecatalyticgroupsbasedonsequencehomology,aseventhisregionhaslowsequenceconservation.OnlytwocrystalstructureshavebeensolvedtodateofGH3enzymes:a-1,3-1,4-d-glucanexohydrolase(EC3.2.1.58)fromHordeumvulgare(barley;Vargheseetal.,1999;PDBcode1ex1)anda-hexosaminidase(EC3.2.1.52)fromVibriocholera(NewYorkStructuralGenomicsConsortium,unpublishedwork;PDBcodes1tr9and1y65).
TheenzymecrystallizedinthisworkoriginatesfromT.neapolitana(Tn)andisa-glucosidase(Bgl)classifiedintoGH3.TheenzymeisabbreviatedTnBgl3B,inaccordancewiththenomenclatureproposedbyHenrissatetal.(1998).ThegenewasisolatedfromDSMstrain4359withthepurposeofselectingacandidatecatalystforalkylglucosidesynthesisandtheenzymeshowedpromisingresultsinalkylglucosideproductionbytransglycosylation(Turneretal.,2007).ThestructurewiththehighesthomologytoTnBgl3B,thatofthebarleyenzyme,isonly20%identicaloverall;hence,structuralinformationonTnBgl3Bisessentialinordertogainfurtherknowl-edgeonthefunctionofthefamily3enzymes.Inaddition,TnBgl3BisthefirstthermostablerepresentativeofGH3,whichmayallowidentificationofthermostabilizingfeatures.
concentrationof1mMwhentheopticaldensityat620nmwas0.6andexpressionwasallowedtoproceedfor2h.
2.4.PurificationofSeMet-Bgl3B
Thecellculturewasharvestedbycentrifugationat5000gand277Kfor5min.Thepelletwasdissolvedin7mlbindingbuffer(20mMTris–HCl,0.75MNaCl,20mMimidazolepH7.5)andlysedbyultrasonicationinaUP400Sinstrument(DrHielscher,Stuttgart,Germany).Solubleproteinswereseparatedfromthecelldebrisbycentrifugationat80000gand277Kfor10min.Thesupernatantwaspassedthrougha0.45mmfilterandpurifiedona1mlHiTrapchelatingcolumn(GEHealthcare,Sweden).Thegelmatrixwaswashedwithdeionizedwaterbeforeloadingwithfivevolumesof5mgmlÀ1coppersulfate.Thecolumnwasthenwashedwithde-ionizedwaterandequilibratedwith10mlbindingbuffer.Crudeextractwasloadedontothecolumnandunboundproteinswerewashedoffwith10mlbindingbuffer.Elutionwasachievedwithagradientof20–500mMimidazolein20mMTris–HCl,0.75MNaClpH7.5.20fractionsof1mleachwerecollected.Thefractionscontainingproteinasobservedinthechromatogramoflightabsorptionat280nmwereanalyzedandusedforcrystallization.SDS–PAGEaccordingtoLaemmli(1970)wasusedtoanalyzetheenzymepurity.
2.5.Proteinanalyses
Inthestandardassayformeasuring-glucosidaseactivity,p-nitrophenolisreleasedfromp-nitrophenyl--d-glucopyranoside(pNPG).40mlenzymesolutionwasaddedto96mlpreheated2.94mMpNPGdissolvedin20mMcitrate–phosphatebufferpH5.6andincubatedfor5mininaQBD2blockheater(Grant,UK)at358K.Afterincubation,thesampleswereputonicefor5minandtheabsorbanceat405nmwasreadusinganUltrospec1000spec-trophotometer(GEHealthcare,Sweden).Oneunitcorrespondstotheamountofenzymethatwillrelease1mmolp-nitrophenolperminuteunderthedescribedconditions.
2.6.Mass-spectrometricanalysisofSeMetincorporation
2.Materialsandmethods
2.1.Chemicals
AllchemicalswereproanalysifromMerckEurolabs(Darmstadt,Germany)unlessotherwisestated.
2.2.Expressionandpurificationofnativeprotein
His-taggedTnBgl3BwasproducedinEscherichiacolistrainTuner
´(DE3)growninminimalmediumbyfed-batchtechniques(deMare
etal.,2005).Extractsfromcultures,harvested4hafterinductionwithIPTG(isopropyl-d-1-thiogalactopyranoside),werepurifiedinatwo-stepprocedure.Heattreatment(343K,40min)precipitatedE.coliproteins,whichweresubsequentlyremovedbycentrifugation(27000g,30min).TheresultingsupernatantcontainingTnBgl3Bwasloadedontoanimmobilizedmetal-ionaffinitychromatographycolumnandpurifiedasdescribedpreviously(Turneretal.,2007).
2.3.SeMetincorporation
ThemolecularmassesoftheHis-taggedproteins(nativeandSeMet-modified)weredeterminedbyelectrosprayionizationmassspectrometryusingaQSTARhybridPulsariinstrument(AppliedBiosystems,CA,USA)equippedwithanano-ionsourcekit(Proxeon,Denmark).TheproteinsamplesweredesaltedusingaC4ZipTip(Millipore,MA,USA).5mlofthesolutionwasthenmixedwithanequalvolumeofacetonitrilecontaining0.1%formicacidbeforebeingappliedtothenanospraycapillary.Thenanospraysourcewassettopositive-ionmodewithasourcevoltageof+0.8kV.Thequadrupolesystemwasadjustedtoscanbetween800–3000m/zinTOF–MSmodeandchargeenvelopesoftheproteinvariantswereobtainedfrom120sofdataaccumulation.
2.7.Crystallization
Thebgl3b-containingplasmidwastransformedbyelectroporationintothemethionine-auxotrophicE.colistrainB834(DE3)(Novagen,Madison,WI,USA).Colonieswereinoculatedintominimalmediumwith25mgmlÀ1seleno-l-methionine(SeMet),cultivatedat310Kwithshakingforabout2dandthentransferredtoafresh200mlcultureofminimalmediumsupplementedwithSeMetandgrownat310K.ThecellswereinducedbytheadditionofIPTGtoafinal
ActaCryst.(2007).F63,802–806
Purifiedproteinwasdialyzedagainst20mMMESbufferpH6.2andconcentratedto3–5mgmlÀ1.Suitableinitialproteinconcen-trationswerefoundusingthePre-CrystallizationScreen(PCT,HamptonResearch,CA,USA).InitialcrystallizationconditionswerefoundusingthePACTPremierscreen(MolecularDimensionsLtd,UK;Newmanetal.,2005).CrystallizationtrialsweresetupinGreinerlow-profile96-wellplatesusingaMosquitorobot(TTPLabtech,UK)at293K.Dropsconsistingof100nlproteinsolutionmixedwith100nlreservoirsolutionwereequilibratedagainst80mlreservoir
Turneretal.
-GlucosidaseB
803
crystallizationcommunications
solution.Paralleltrialsweresetupforthenativeproteinataconcentrationof5mgmlÀ1andfortheSeMetproteinat3.1mgmlÀ1.Smallcrystalsofbothproteinsappearedafter4dindropswheretheprecipitantwas20%PEG3350in0.1Mbis-TrispropanepH7.5andanyof0.2MNaBr,NaI,KSCNandNa2SO4.ThemostpromisingdropswereoptimizedwithrespecttoPEGandsaltconcentration.Thecrystalsusedfordatacollectiongrewinhangingdropsconsistingof1mlproteinsolutionand1mlreservoirsolutionequilibratedagainst1mlreservoirsolution.Thebestcrystallizationconditionsfor
Table1
X-raydata-collectionandphasingstatistics.
Valuesinparenthesesareforthehighestresolutionshell.
SeMetPeak
Datacollection
Unit-cellparameters
˚)Wavelength(A˚)Resolution(A
Rmerge†(%)
TotalobservationsUniquereflectionsAverageredundancy‡Completeness(%)hI/(I)iSnorm/Sano§
˚)Phasing(to2.7A
Phasingpower(dispersive/anomalous)RCullis}(dispersive/anomalous)
Meanfigureofmerit(centric/acentric)
a=74.9,b=127.0,c=175.20.97909
24–2.7(2.87–2.7)6.3(43.7)102212433102.4
97.6(97.4)10.7(2.1)1.16(1.04)—/0.813—/0.862
Inflectionpoint
a=74.9,b=127.0,c=175.20.97924
24–2.7(2.87–2.7)6.4(41.1)99797426442.3
97.2(96.0)11.0(2.1)1.15(1.03)0.071/0.8060.678/0.8680.168/0.358
High-energyremotea=74.9,b=127.0,c=175.20.97565
19–2.9(3.07–2.9)7.9(46.3)82094362272.3
97.3(97.5)9.9(1.8)1.07(1.04)0.218/0.5880.876/0.963
Native
a=74.9,b=127.2,c=175.20.97906
40–2.4(2.5–2.4)6.4(45.3)143480327994.4
98.9(98.2)16.7(3.7)1.02(1.02)
thenativeproteinwere16–20%PEG3350,0.1–0.2MNaIandfortheSeMetproteintheywere20–24%PEG3350,0.1–0.25MNaI,bothin90mMbis-TrispropanebufferpH7.4.
2.8.Datacollection
Allcrystalswerecryoprotectedwith25%glycerol,20%PEG3350,0.2MNaI,90mMbis-TrispropanepH7.4andflash-cooleddirectlyinaliquid-nitrogenstreamfromanCryostreamcooler(OxfordCryo-
PPPP
†Rmerge(I)=jkjIjkÀhIijj=jkIjk,whereIjkarethekindividualobservationsofeachreflectionjandhIijisthevalueafterweightedaveraging.‡FriedelmatesPParetreatedasseparatereflectionsfortheMADdataset.§S/S=h(I)iassumingFriedel’slawtobetrue/h(I)iassumingFriedel’slawtobefalse.}R=\"=ÁisoforacentricnormanocullisisoPP
reflectionsand\"ano=ÁBijvoetforanomalousdifferences,where\"isoand\"anoaretheisomorphousandanomalouslackofclosure,respectively,ÁisoistheisomorphousdifferenceandÁBijvoetistheBijvoetdifference.
Figure1
Amino-acidsequencealignmentofglycosidehydrolasefamily3.Theregionssurroundingtheputativeactive-siteregionareshown.Abbreviations:TnBglB,ThermotoganeapolitanaDSM4359-glucosidase3B;TmBgl,T.maritimaMSB8-glucosidase;FnGH,Fervidobacteriumnodosumglycosidehydrolase;AhBgl,Aeromonashydrophila-glucosidase;FspBgl,Flavobacteriumsp.MED217-glucosidase;PaBgl,Prevotellaalbensis-glucosidase;YpBgl,YersiniapestisNepal516-glucosidase;CtBglB,Clostridiumthermocellum-glucosidaseB;CsBgl,C.stercorarium-glucosidase;PspGlc,Paenibacillussp.TS12glucocerebrosidase;AnBgl,Aspergillusniger-glucosidase;FmBgl,Flavobacteriummeningosepticum-glucosidase;HvBgl,barley-d-glucanexohydrolaseExoI.Aminoacidsinboldhavebeendeterminedexperimentallyascatalyticaminoacids,aninvertedtriangledenotesthepositionofthenucleophileanddiamondsdenotethepositionsofverifiedacid/baseresidues.
804
Turneretal.
-GlucosidaseBActaCryst.(2007).F63,802–806
crystallizationcommunications
systems,UK).Thecrystalscouldbesoakedinthecryosolutionforaperiodofafewsecondstoafewminuteswithoutanyobservabledifferenceindiffractionquality.Crystalswerepre-screenedatstationI911-5oftheMAX-IIsynchrotron(Lund,Sweden).Three-wave-˚resolutionwerecollectedatstationlengthSeMetMADdatato2.7A
ID29attheESRFsynchrotron(Grenoble,France)fromacrystalmeasuringapproximately400Â80Â20mmgrownin20%PEG3350,0.15MNaI,90mMbis-TrispropanepH7.4.Theoscillationrangewas0.7and160imageswerecollectedforeachwavelength.Anative
˚resolutionwascollectedfromacrystalmeasuringdatasetto2.4A
approximately400Â200Â20mmgrownin16%PEG3350,0.1MKBr,90mMbis-TrispropanepH7.4.Theoscillationrangewas0.5and244imageswerecollected.Thebeamsizewas50Â50mmandtherod-shapedcrystalsweretranslatedtoexposeafreshvolumeaftereachwavelength(fortheMADdata)andonceduringeachwavelength.SeveralMADdatasetswerecollectedfromseparatecrystalsandthatproducingthebestoverallfigureofmeritfortheexperimentalphaseswasusedforstructuredetermination(Table1).DatawereintegratedandscaledusingXDS(Kabsch,1993,2001).FurtherdatareductionandmanipulationusedtheCCP4package(CollaborativeComputationalProject,Number4,1994)driventhroughtheCCP4iinterface(Pottertonetal.,2003).TheanomalousscatteringsubstructurewassolvedusingautoSHARP(deLaFortelle&Bricogne,1997),exploitingSHELXDforPattersonfunction
´netal.,2003).Phaseswereimprovedbysolventflippingsolution(Uso
usingSOLOMON(Abrahams&Leslie,1996).Theoptimalsolventcontentforthisprocesswas47.8%.
ofTnBgl3Bis96%identicaltoa-glucosidaseisolatedfromadifferentstrainofthesamespeciesandthemajordifferenceisanonconservedstretchclosetotheN-terminus(Zverlovetal.,1997).TheTnBgl3BsequencewasalignedagainstanumberofothersequencesfromtheGH3family(Fig.1).Theoverallsequenceidentitywiththestructurallydeterminedbarleyenzyme(HvBgl)isonly20%.Distinctphylogeneticclustersofenzymeswithinthefamilyhavebeenidentified,withsixmajorbranches(Harveyetal.,2000).TnBgl3Bislocatedincluster5,togetherwithenzymesfromT.maritima(AE001690),Prevotellaruminicola(U35425),Clos-tridiumthermocellum(X15644),C.stercorarium(Z94045)andRuminicoccusalbus(U92808).TnBgl3BisrelativelydistantfromtheH.vulgareenzyme,whichisfoundincluster1togetherwithrepre-sentativesfromanumberofotherplants.Alignmentsalsoshowedadifferenceinthelengthofthesequencebetweenthesetwoenzymes,withthethermostableTnBgl3BhavingaC-terminalextensionofapproximately115aminoacids,indicatingadifferenceinthenumberofdomains.Thisfindingisalsosupportedbyclusteranalysis(Harveyetal.,2000).
3.2.ProductionandSeMetincorporation
3.Resultsanddiscussion
3.1.Overallsequence
Glycosidehydrolasefamily3includes873genesequences,ofwhichalmostallarebacterial(631)oreukaryotic(236).Despitethelargenumberofsequences,ratherfewGH3enzymeshavebeenbiochemicallycharacterized.Onlyone,thatfromH.vulgare,hasbeencharacterizedatthestructurallevel(Vargheseetal.,1999;Hrmovaetal.,2004,2005).
GHfamily3alsoincludesthermostableenzymesandinthisworkwehavecrystallizeda-glucosidaseoriginatingfromthehyperther-mophileT.neapolitana(DSMstrain4359).Theamino-acidsequence
ProductionoftheHis-tagged-glucosidaseinE.coliTuner(DE3)[maximumspecificgrowthrate(max)=0.7hÀ1at310K]resultedinanintracellularrecombinantproteinlevelcorrespondingtoapproximately15%ofthetotalprotein.
Themethionine-auxotrophicstraingrewslowly(max=0.3hÀ1at310K),buttheSeMet-substitutedTnBgl3Balsoconstitutedapproximately15%ofthetotalprotein.BoththeSeMet-substitutedandthenativeglucosidaseweresuccessfullypurifiedtoabout90%(Fig.2)andtheactivityofthepurifiedsampleswasverified(datanotshown).
SeMetincorporationwasconfirmedbynanospraymassspectro-metry.PurifiedsamplesofHis-taggednativeandSeMet-TnBgl3Bwereexaminedandtheaveragemasseswere82225and82740Da,respectively.Theadditionalmassof515Dacorrespondstothedifferenceobtainedwhenseleniumreplacessulfurin11methionineresidues,thetotalnumberinthesequence.SeMetthereforeoccupiesallpossiblemethioninesitesintheprotein.
3.3.Crystallizationanddatacollection
BothnativeTnBgl3BandSeMet-TnBgl3BcrystallizedinthePACTPremierScreenandtheconditionswerefurtheroptimized.CrystalsbelongtospacegroupC2221,withtheunit-cellparameters
Figure2
SDS–PAGEanalysisofproteinpurifiedbyIMAC.(a)SeMet-TnBgl3B,(b)TnBgl3B.
Figure3
AnativeTnBgl3BcrystalintheX-raybeamatbeamlineID29oftheESRF.Thelengthofthecrystalisapproximately400mm.
ActaCryst.(2007).F63,802–806Turneretal.
-GlucosidaseB
805
crystallizationcommunications
WethankthebeamlinestaffatMAX-labandtheESRFforassistancewithdatacollection.TheB834(DE3)strainwasakindgiftfromDrClaesvonWachenfeldt,DepartmentofCellandOrganismBiology,LundUniversity.FinancialsupportfromTheFoundationforStrategicEnvironmentalResearch,MistratoENKandPTandfrom
˚det)toENKandDListheSwedishResearchCouncil(Vetenskapsra
gratefullyacknowledged.ENKalsoacknowledgestheKrapperupFoundationforadditionalsupport.
References
Abrahams,J.P.&Leslie,A.G.W.(1996).ActaCryst.D52,30–42.
Aguilar,C.F.,Sanderson,I.,Moracci,M.,Ciaramella,M.,Nucci,R.,Rossi,M.&Pearl,L.H.(1997).J.Mol.Biol.271,789–802.
CollaborativeComputationalProject,Number4(1994).ActaCryst.D50,760–763.
Coutinho,P.M.&Henrissat,B.(1999).RecentAdvancesinCarbohydrateBioengineering,editedbyH.J.Gilbert,G.Davies,B.Henrissat&B.Svensson,pp.3–12.Cambridge:RoyalSocietyofChemistry.
Cox,P.M.,Betts,R.A.,Jones,C.D.,Spall,S.A.&Totterdell,I.J.(2000).Nature(London),408,184–187.
Harvey,A.J.,Hrmova,M.,DeGori,R.,Varghese,J.N.&Fincher,G.B.(2000).Proteins,41,257–269.
Henrissat,B.,Teeri,T.T.&Warren,R.A.J.(1998).FEBSLett.425,352–354.Hrmova,M.,DeGori,R.,Smith,B.J.,Vasella,A.,Varghese,J.N.&Fincher,G.B.(2004).J.Biol.Chem.279,4970–4980.
Hrmova,M.,Streltsov,V.A.,Smith,B.J.,Vasella,A.,Varghese,J.N.&Fincher,G.B.(2005).Biochemistry,44,16529–16539.Kabsch,W.(1993).J.Appl.Cryst.26,795–800.
Kabsch,W.(2001).InternationalTablesforCrystallography,Vol.F,editedbyM.G.Rossmann&E.Arnold,pp.730–734.Dordrecht:KluwerAcademicPublishers.
LaFortelle,E.de&Bricogne,G.(1997).MethodsEnzymol.276,472–494.Laemmli,U.(1970).Nature(London),227,680–685.
McCarter,J.D.&Withers,S.(1994).Curr.Opin.Struct.Biol.4,885–892.
´,L.,Velut,S.,Ledung,E.,Cimander,C.,Norrman,B.,Karlsson,E.N.,deMare
Holst,O.&Hagander,P.(2005).Biotechnol.Lett.27,983–990.
Newman,J.,Egan,D.,Walter,T.S.,Meged,R.,Berry,I.,BenJelloul,M.,Sussman,J.L.,Stuart,D.I.&Perrakis,A.(2005).ActaCryst.D61,1426–1431.
Potterton,E.,Briggs,P.,Turkenburg,M.&Dodson,E.(2003).ActaCryst.D59,1131–1137.
Sinnott,M.L.(1990).Chem.Rev.90,1171–1202.
¨ck,M.,Sjo¨berg,P.,NordbergTurner,C.,Turner,P.,Jacobson,G.,Waldeba
Karlsson,E.&Markides,K.(2006).GreenChem.8,949–959.
Turner,P.,Svensson,D.,Adlercreutz,P.&Karlsson,E.N.(2007).J.Biotechnol.130,67–74.´n,I.,Schmidt,B.,vonBu¨low,R.,Grimme,S.,vonFigura,K.,Dauter,M.,Uso
Rajashankar,K.R.,Dauter,Z.&Sheldrick,G.M.(2003).ActaCryst.D59,57–66.
Varghese,J.N.,Hrmova,M.&Fincher,G.B.(1999).Structure,7,179–190.Zechel,D.L.,Boraston,A.B.,Gloster,T.,Boraston,C.M.,Macdonald,J.M.,Tilbrook,D.M.G.,Stick,R.V.&Davies,G.(2003).J.Am.Chem.Soc.125,14313–14323.
Zverlov,V.V.,Volkov,I.Y.,Velikodvorskaya,T.V.&Schwarz,W.H.(1997).Microbiology,143,3537–3542.
Figure4
FirstdiffractionimagefromthenativeTnBgl3Bcrystal.Thebluecircleindicatesa
˚.resolutionof2.3A
giveninTable1.ThereisoneTnBgl3Bmoleculeintheasymmetric
unit,givingasolventcontentof57%.
Thecrystalsusedfordatacollectionwereplate-shapedandhaddimensionsofaround300Â200Â20mm(Fig.3).X-raydatawere
˚fortheSeMetproteinand2.4A˚forcollectedtoaresolutionof2.7A
thenativeprotein(Fig.4andTable1).
PhasingstatisticsarepresentedinTable1.Theanomaloussignal
˚wasweak:autoSHARPsuggestedresolutioncutoffsof3.67and4.1A
forthepeakandinflection-pointdata,respectively,despitea
˚.TenSepositionswerefoundanddiffractionresolutionlimitof2.7A
refinedtooccupanciesof0.4–0.9.Thelowoccupancieswereun-expected,astheincorporationofSeMethadbeenshowntobe100%bymassspectrometry.However,twodifferentbatchesofproteinwereused:oneforcheckingtheincorporationofSeMetandoneforgrowingthecrystalsfromwhichtheX-raydatawerecollected.ThesameprotocolforSeMetincorporationwasused,butthereprodu-cibilityofincorporationwasnottested.Someofthemethionineresiduesmaybeonthesurfaceandthuslesswellordered.Never-theless,theelectron-densitymapsaftersolventflatteningwereofgoodqualityandmanualmodelbuildingandrefinementareinprogress.
806
Turneretal.
-GlucosidaseBActaCryst.(2007).F63,802–806
因篇幅问题不能全部显示,请点此查看更多更全内容