您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页2014年中考数学压轴题精编--浙江篇(试题及答案)

2014年中考数学压轴题精编--浙江篇(试题及答案)

来源:意榕旅游网
2014年中考数学压轴题精编—浙江篇

2014年中考数学压轴题精编—浙江篇

12

x+1,点C的坐标为(-4,0),4平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.

y (1)写出点M的坐标;

(2)当四边形CMQP是以MQ,PC为腰的梯形时. Q ①求t关于x的函数解析式和自变量x的取值范围; ②当梯形CMQP的两底的长度之比为1 :2时,求t的值. M B A

1

x P C O 1

1.(浙江省杭州市)在平面直角坐标系xOy中,抛物线的解析式是y=

1.解:

(1)∵OABC是平行四边形,∴AB∥OC,且AB=OC=4

∵A,B在抛物线上,y轴是抛物线的对称轴,∴A,B的横坐标分别是2和-2 12

x+1,得A(2,2),B(-2,2) 4∴M(0,2) ····························································· 2分

代入y=

y Q (2)①过点Q作QH⊥x轴于H,连接CM 则QH=y,PH=x-t

yxt,即t=x-2y =

2412

∵Q(x,y)在抛物线y=x+1上

412

∴t=-x+x-2 ······················································ 4分

2由△PHQ∽△COM,得:

B 1 M A H x P C O 1 当点P与点C重合时,梯形不存在,此时,t=-4,解得x=1±5 当Q与B或A重合时,四边形为平行四边形,此时,x=±2

∴x的取值范围是x≠1±5且x≠±2的所有实数 ···················································· 6分 ②分两种情况讨论:

ⅰ)当CM>PQ时,则点P在线段OC上

∵CM∥PQ,CM=2PQ,∴点M纵坐标为点Q纵坐标的2倍 即2=2(∴t=-

12

x+1),解得x=0 4

12

×0+0-2=-2 ····························································································· 8分 21PQ,∴点Q纵坐标为点M纵坐标的2倍 2ⅱ)当CM<PQ时,则点P在OC的延长线上 ∵CM∥PQ,CM=即

12

x+1=2×2,解得:x=±23 ········································································· 10分 4

2014年中考数学压轴题精编—浙江篇 1

2014年中考数学压轴题精编—浙江篇

当x=-23时,得t=-当x=23时,得t=-

21×(-23)-23-2=-8-23 221×(23)+23-2=23-8 ········································· 12分 2 2.(浙江省台州市)如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转,DE,DF分别交线段..AC于点M,K. (1)观察:①如图2、图3,当∠CDF=0°或60°时,AM+CK_______MK(填“>”,“<”或“=”).②如图4,当∠CDF=30°时,AM+CK_______MK(只填“>”或“<”).

(2)猜想:如图1,当0°<∠CDF<60°时,AM+CK_______MK,证明你所得到的结论. (3)如果MK2

2

2

MK +CK =AM ,请直接写出∠CDF的度数和AM的值. E E F K C C (F,K)

M B M A D

A D

B

图1

图2

F C E F C K K E A (M)

D

B

M A

D

B

2.解:

图3

图4

(1)①= ②> ······································································································· 4分 (2)> ·························································································································· 6分 证明:作点C关于FD的对称点G,连接GK、GM、GD 则GD=CD,GK=CK,∠GDK=∠CDK E ∵D是AB的中点,∴AD=CD=GD G F C ∵∠A=30°,∴∠CDA=120°

K ∵∠EDF=60°,∴∠GDM+∠GDK=60° M B

∠ADM+∠CDK=60°

A

D

∴∠ADM=∠GDM. ···································································································· 9分 又∵DM=DM,∴△ADM≌△GDM,∴GM=AM

∵GM+GK>MK,∴AM+CK>MK. ······································································ 10分 (3)∠CDF=15°,

MK3AM=2. ············································································ 12分 2014年中考数学压轴题精编—浙江篇

2

2014年中考数学压轴题精编—浙江篇

3.(浙江省台州市)如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.

B (1)求证:△DHQ∽△ABC;

P (2)求y关于x的函数解析式并求y的最大值;

E (3)当x为何值时,△HDE为等腰三角形?

D

Q 3.解:

(1)∵A、D关于点Q成中心对称,HQ⊥AB, ∴∠HQD=∠C=90°,HD=HA

∴∠HDQ=∠A. ·········································································································· 3分 ∴△DHQ∽△ABC. ····································································································· 4分 (2)①如图1,当0<x≤2.5时

C H A ED=10-4x,QH=AQ²tan∠A=此时y=当x=

3x 4133215(10-4x)²x=-x+x ····································································· 6分

B 2424575时,y最大= ····························································· 7分 432

P E D Q C H (图1)

②如图2,当2.5<x≤5时

3ED=4x-10,QH=AQ²tan∠A=x

4133215此时y=(4x-10)²x=x-x ······································ 9分

2424

A 当x=5时,y最大=

75 4

32152x4x(0<x≤2.5)

∴y与x之间的函数解析式为y=

3215xx(2.5<x≤5)

42

B P D E Q C H (图2)

75y的最大值是. ··································································· 10分

4(3)①如图1,当0<x≤2.5时

QA5若DE=DH,∵DH=AH==x,DE=10-4x

cosA4

A ∴10-4x=

0x,∴x= 421显然ED=EH,HD=HE不可能; ············································································· 11分 ②如图2,当2.5<x≤5时

2014年中考数学压轴题精编—浙江篇 3

2014年中考数学压轴题精编—浙江篇

0x,∴x=; ······························································· 12分 411若HD=HE,此时点D,E分别与点B,A重合,x=5; ········································ 13分

若DE=DH,则4x-10=

若ED=EH,则△EDH∽△HDA

5x4x10EDDH3204∴,即,∴x= ························································ 14分 ==52xDHAD103x4∴当x的值为

4040320,,5,时,△HDE是等腰三角形. 2111103

4.(浙江省温州市)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BBl∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF上AC交射线BB1于F,G是EF中点,连结DG.设点D运动的时间为t秒.

(1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值;

(3)以DH所在直线为对称轴,线段AC经轴对称变换后

B1 F B 的图形为A′C′. ①当t>

3时,连结C′C,设四边形ACC′A′的面积为S, 5

H G

C

D E

求S关于t的函数关系式;

②当线段A′C′与射线BB1有公共点时,求t的取值范围 (写出答案即可). 4.解:

(1)∵∠ACB=90°,AC=3,BC=4

A

∴AB=32+42=5 ······································································································ 1分

∵AD=5t,CE=3t,∴当AD=AB时,5t=5

∴t=1 ····························································································································· 2分 ∴AE=AC+CE=3+3t=6···························································································· 3分 ∴DE=6-5=1 ·············································································································· 4分 (2)∵EF=BC=4,G是EF中点,∴GE=2 当AD<AE(即t<

3)时,DE=AE-AD=3+3t-5t=3-2t 2若△DEG与△ACB相似,则∴

32t332t4=或= 2423DEACDEBC或 ==

EGBCEGAC∴t=

31或t= ············································································································· 6分 463)时,DE=AD-AE=5t-(3+3t)=2t-3 22014年中考数学压轴题精编—浙江篇

4

当AD>AE(即t>

2014年中考数学压轴题精编—浙江篇

若△DEG与△ACB相似,则∴

2t332t34=或= 2423DEACDEBC或 ==

EGBCEGAC∴t=

917或t= ············································································································ 8分 4631917或或或时,△DEG与△ACB相似 46(3)①由轴对称变换得AA′⊥DH,CC′⊥DH

综上所述,当t=

∴AA′∥CC′

易知OC≠AH,故AA′≠CC′

∴四边形ACC′A′是梯形 ················································· 9分

A′ B H F B1 C′ G O C

D E

∵∠A=∠A,∠AHD=∠ACB=90° ∴△AHD∽△ACB,∴AH=3t,DH=4t ∵sin∠ADH=sin∠CDO,∴即

AHCO =

ADCDAHDHAD ==

ACBCABA

3CO9,∴CO=3t- =

55t35B (A′) F H A

G

C D E

(图甲)

B1 18∴AA′=2AH=6t,CC′=2CO=6t- ························· 10分

12∵OD=CD²cos∠CDO=(5t-3)×=4t-

55∴OH=DH-OD=∴S=②

12 ································································································· 11分 511181272108(AA′+CC′ )²OH=(6t+6t-)×=t- ································ 12分 2255525

3≤t≤ ·································································· 14分 630略解:当点A′落在射线BB1上时(如图甲),AA′=AB=5

∴6t=5,∴t=

5 6B H O C′ F G D E

(图乙)

B1 当点C′落在射线BB1上时(如图乙),易得CC′∥AB 故四边形ACC′B是平行四边形 ∴6t-故

2014年中考数学压轴题精编—浙江篇

1843=5,∴t= 530

A C

3≤t≤ 6305

2014年中考数学压轴题精编—浙江篇

5.(浙江省湖州市)如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端

点A,D),连结PC,过点P作PE⊥PC交AB于E.

(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;

若不存在,请说明理由;

(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.

P A D

E

B C

5.解:

(1)假设存在这样的点Q

∵PE⊥PC,∴∠APE+∠DPC=90° ∵∠D=90°,∴∠DPC+∠DCP=90° ∴∠APE=∠DCP,又∵∠A=∠D=90° ∴△APE∽△DCP,∴

A E

Q

P

D

APAE,∴AP²DP=AE²DC =

DCDPB

C

同理可得AQ²DQ=AE²DC

∴AQ²DQ=AP²DP,即AQ²(3-AQ)=AP²(3-AP)

∴AP -AQ =3AP-3AQ,∴(AP+AQ)(AP-AQ)=3(AP-AQ)

2

2

∵AP≠AQ,∴AP+AQ=3 ············································································ 2分 ∵AP≠AQ,∴AP≠

3,即P不能是AD的中点 2∴当P是AD的中点时,满足条件的Q点不存在

所以,当P不是AD的中点时,总存在这样的点Q满足条件

此时AP+AQ=3 ···························································································· 3分 (2)设AP=x,AE=y,由AP²DP=AE²DC可得x(3-x)=2y

∴y=

11231329x(3-x)=-x+x=-(x-)+ 222228

∴当x=

39(在0<x<3范围内)时,y最大值= 287≤BE<2 ······································································ 5分 8∴BE的取值范围为

6.(浙江省湖州市)如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.

(1)求经过A、B、C三点的抛物线的解析式;

(2)当BE经过(1)中抛物线的顶点时,求CF的长;

2014年中考数学压轴题精编—浙江篇

6

2014年中考数学压轴题精编—浙江篇

(3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值. y E A B

D

O F C x

6.解:

(1)由题意得A(0,2),B(2,2),C(3,0) 设所求抛物线的解析式为y=ax+bx+c

2a=-

3c=2

2

4则4a+2b+c=2 解得

b=

39a+3b+c=0

∴抛物线的解析式为y=-

c=2

·········································································· 3分

y E A D O F M C x G H B 224x+x+2 ····································· 4分 338(2)设抛物线的顶点为G,则G(1,),过点G作GH⊥AB于H 382则AH=BH=1,GH=-2=

33∵EA⊥AB,GH⊥AB,∴EA∥GH ∴GH是△BEA的中位线,∴EA=2GH=

4 ······························································· 6分 3过点B作BM⊥OC于M,则BM=OA=AB

∵∠EBF=∠ABM=90°,∴∠EBA=∠FBM=90°-∠ABF ∴Rt△EBA≌Rt△FBM,∴FM=EA=

4 37 ···················································· 8分 3∵CM=OC-OM=3-2=1,∴CF=FM+CM=(3)设CF=a,则FM=a-1或1-a ∴BF =FM +BM =(a-1)+2=a-2a+5

222222

∵△EBA≌△FBM,∴BE=BF 则S△BEF=

11122

BE²BF=BF =(a-2a+5) ···························································· 9分 222

又∵S△BFC=∴S=

11FC²BM=×a×2=a ········································································ 10分 22

12125(a-2a+5)-a=a-2a+ 222112

(a-2)+··································································································· 11分 222014年中考数学压轴题精编—浙江篇

7

即S=

2014年中考数学压轴题精编—浙江篇

∴当a=2(在0<a<3范围内)时, S最小值=

1 ··················································································································· 12分 2

7.(浙江省衢州市、丽水市、舟山市)△ABC中,∠A=∠B=30°,AB=23.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转. 6时,求点B的横坐标; 22

(2)如果抛物线y=ax+bx+c(a≠0)的对称轴经过点C,请你探究:

(1)当点B在第一象限,纵坐标是

5351,b=-,c=-时,A,B两点是否都在这条抛物线上?并说明理由; 452②设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出

y m的值;若不存在,请说明理由.

B

1

C -1 1 O x

-1

A

①当a=

7.解:

(1)∵点O是AB的中点,∴OB=

2

1AB=3 ······················································· 1分 2622)=(3)··········································· 2分 2设点B的横坐标是x(x>0),则x+(

解得x1=

66,x2=-(舍去) 22y A -1 1 ∴点B的横坐标是(2)①当a=得y=即y=

6 ························································ 4分 2C 5351,b=-,c=-时, 452O -1 1 x B 52135x-x- 452552135( x-)- ············································· 5分 4520以下分两种情况讨论

(甲)

情况1:设点C在第一象限(如图甲),则点C的横坐标为

5 5y 1 3OC=OB²tan30°=3×=1 ········································ 6分

3525由此,可求得点C的坐标为(,) ···················· 7分

55-1 A 1 O -1 x 8

B 2014年中考数学压轴题精编—浙江篇 C (乙)

2014年中考数学压轴题精编—浙江篇

点A的坐标为(-

21515,) 5521515,-) 55∵A,B两点关于原点对称,∴点B的坐标为(将x=-将x=

2155213515代入y=x-x-,得y=,即等于点A的纵坐标; 552

2155213515代入y=x-x-,得y=-,即等于点B的纵坐标. 552525,-) 55∴在这种情况下,A,B两点都在抛物线上. ······································································· 9分 情况2:设点C在第四象限(如图乙),则点C的坐标为(点A的坐标为(∵当x=

2151521515,),点B的坐标为(-,-) 55552151521515时,y=-;当x=-时,y= 5555∴A,B两点都不在这条抛物线上. ···················································································· 10分

(情况2另解:经判断,如果A,B两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A,B两点不可能都在这条抛物线上)

②存在.m的值是1或-1. ································································································ 12分 (y=a(x-m)-am+c,因为这条抛物线的对称轴经过点C,所以-1≤m≤1.

22

当m=±1时,点C在x轴上,此时A,B两点都在y轴上.因此当m=±1时,A,B两点不可能同时在这条抛物线上)

8.(浙江省宁波市)如图1,在平面直角坐标系中,O是坐标原点,□ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,23),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线l与x轴交于点F,与射线DC交于点G. (1)求∠DCB的度数;

(2)当点F的坐标为(-4,0)时,求点G的坐标;

(3)连结OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF′,记直线EF′与射线DC的

交点为H.

①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE; ②若△EHG的面积为33,请直接写出点F的坐标.

y D E F A O (图1)

l G C y l H G D F′ E F A O (图2)

2014年中考数学压轴题精编—浙江篇

y C E x A O (备用图)

9

D C B x B B x 2014年中考数学压轴题精编—浙江篇

8.解:

23DO(1)在Rt△AOD中,∵tan∠DAO=

AO=2=3

∴∠DAB=60° ································································································ 2分

∵四边形ABCD是平行四边形

∴∠DCB=∠DAB=60°················································································· 3分 (2)∵四边形ABCD是平行四边形

∴CD∥AB,∴∠DGE=∠AFE 又∵∠DEG=∠AEF,DE=AE

∴△DEG≌△AEF, ························································································ 4分 ∴DG=AF,∴AF=OF-OA=4-2=2

∴点G的坐标为(2,23) ········································································· 6分 (3)①∵CD∥AB,∴∠DGE=∠OFE

∵△OEF经轴对称变换后得到△OEF′

∴∠OFE=∠OF′E,∴∠DGE=∠OF′E ························································ 7分 在Rt△AOD中,∵E是AD的中点,∴OE=12AD=AE 又∵∠EAO=60°,∴∠EOA=∠AEO=60° 而∠EOF′=∠EOA=60°,∴∠EOF′=∠AEO

∴AD∥OF′·

······································································································· 8分 ∴∠OF′E=∠DEH,∴∠DEH=∠DGE 又∵∠HDE=∠EDG

∴△DEG∽△DHE ··························································································· 9分 ②点F的坐标为F1(-13+1,0),F2(-13-5,0) ························ 12分 解答如下(原题不作要求,仅供参考):

过点E作EM⊥直线CD于M,∵CD∥AB,∴∠EDM=∠DAB=60° ∴EM=DE²sin60°=2×

32=3 y ∵S11△EHG=2GH²EM=M D G l H

C 2GH²3=33

∴GH=6

E F′ ∵△DEG∽△DHE,∴DEDHDG=

DE F A O B x ∴DE2

=DG²DH

当点H在点G的右侧时,设DG=x,则DH=x+6

∴4=x(x+6),解得x1=-3+13,x2=-3-13(舍去) ∵△DEG≌△AEF,∴OF=AO+AF=-3+13+2=13-1 ∴F1(-13+1,0)

当点H在点G的左侧时,设DG=x,则DH=x-6

2014年中考数学压轴题精编—浙江篇

10

2014年中考数学压轴题精编—浙江篇

∴4=x(x-6),解得x1=3+13,x2=3-13(舍去) ∵△DEG≌△AEF,∴AF=DG=3+13 ∴OF=AO+AF=3+13+2=13+5 ∴F2(-13-5,0)

综上所述,点F的坐标有两个,分别是F1(-13+1,0),F2(-13-5,0)

9.(浙江省金华市)已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y=-

2的图像上.小明对上述问题进行了探究,发现不论m取何值,x符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限. ..

2(1)如图所示,若反比例函数解析式为y=-,P点坐标为(1,0),图中已画出一符合条件的一个正方x形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标; M1的坐标是____________

y

3

2

1

Q P

-3 -2 -1 O 1 2 3 x

-1 N M

-2

-3

(2)请你通过改变P点坐标,对直线M1M的解析式y=kx+b进行探究可得k=________,若点P的坐标为(m,0)时,则b=________; (3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标. 9.解:

(1)如图;M1的坐标为(-1,2) ········································································ 2分 y 2分) (2)k=-1,b=m ················································································6分(各(3)由(2)知,直线M1M的解析式为y=-x+6 则M(x,y)满足x(-x+6)=-2 解得x1=3+11,x2=3-11 ∴y1=3-11,y2=3+11 ∴M1,M的坐标分别为:

(3-11,3+11),(3+11,3-11) ·············································· 10分 2014年中考数学压轴题精编—浙江篇 -2 -3 11 -3 -2 3 M1 2 1 N1 Q1 -1 P O -1 1 2 Q 3 x N M 2014年中考数学压轴题精编—浙江篇

10.(浙江省金华市)如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点的坐标分别为(3,0)和(0,33).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的速 3(长度单位/秒)的速度向3上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点.设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动. 请解答下列问题:

(1)过A,B两点的直线解析式是___________________;

(2)当t=4时,点P的坐标为____________;当t=________,点P与点E重合; (3)①作点P关于直线EF的对称点P′,在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?

度分别为1,3,2(长度单位/秒).一直尺的上边缘l从x轴的位置开始以

②当t=2时,是否存在着点Q,使得△FEQ∽△BEP?若存在,求出点Q的坐标;若不存在,请说明理由.

y

B

E F l

x A O P 10.解:

(1)y=-3x+33; ·························································································· 4分 (2)(0,3),t=

9; ·······································································8分(各2分) 2(3)①当点P在线段AO上时,过F作FG⊥x轴,G为垂足(如图1)

∵OE=FG,EP=FP,∠EOP=∠FGP=90° ∴△EOP≌△FGP,∴OP=PG 又∵OE=FG=

FG31t,∠A=60°,∴AG==t 33tan602t 3y B P′ E O P F G A x 而AP=t,∴OP=3-t,PG=AP-AG=

29由3-t=t得 t= ····················································· 9分

35当点P在线段OB上时,形成的是三角形,不存在菱形;

(图1)

当点P在线段BA上时,过P作PH⊥EF,PM⊥OB,H、M分别为垂足(如图2)

2014年中考数学压轴题精编—浙江篇

12

2014年中考数学压轴题精编—浙江篇

BE331∵OE=t,∴BE=33-t,∴EF==3-t

333tan60y B P ∴MP=EH=

19tEF=,又BP=2(t-6) 26E H F P′ 在Rt△BMP中,BP²cos60°=MP 即2(t-6)²

19t45=,解得t= ····························· 10分 267O (图2)

A x ②存在.理由如下:

23∵t=2,∴OE=,AP=2,OP=1

3将△BEP绕点E顺时针方向旋转90°,得到△B′EC(如图3) y B ∵OB⊥EF,∴点B′ 在直线EF上, C点坐标为(

223,3-1) 33过F作FQ∥B′C,交EC于点Q,则△FEQ∽△B′EC 由

Q′ C1 D1 E P (图3)

F A CE3BEBE2===3,可得Q点坐标为(-,) C Q QE3FE3FEO B′ x ································································· 11分

2根据对称性可得,Q点关于直线EF的对称点Q′(-,3)也符合条件.

3 ····································································································· 12分

22

11.(浙江省绍兴市)如图,设抛物线C1:y=a(x+1)-5,C2:y=-a(x-1)+5,C1与C2的交点为A,B,点A的坐标是(2,4),点B的横坐标是-2. (1)求a的值及点B的坐标;

(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N.

①若l过△DHG的顶点G,点D的坐标为(1,2),求点N的横坐标; ②若l与△DHG的边DG相交,求点N的横坐标的取值范围. y y y

C1 C1 C1

A A A O O O x x x

B B B C2 C2 C2 备用图1 备用图2

2014年中考数学压轴题精编—浙江篇

13

2014年中考数学压轴题精编—浙江篇

.解:

(1)∵点A(2,4)在抛物线C1上,

∴把点A坐标代入y=a(x+1)2

-5得a=1

∴抛物线C2

1的解析式为y=x

+2x-4 ···························································· 1分

设B(-2,b),则b=-4

∴B(-2,-4) ······························································································ 2分

(2)①如图1

y ∵M(1,5),D(1,2),且DH⊥x轴 C1 M ∴点M在DH上,MH=5 A 过点G作GE⊥DH,垂足为E

D 由△DHG是正三角形得EG=3,EH=1 E G ∴ME=4

O H N x 设N(x,0),则NH=x-1

l 由△MEG∽△MHN,得MEEGB MH=

HN C2 ∴

45=

3x1,∴x=3+1 图1 ∴点N的横坐标为3+1 ·

··········································································· 7分

②当点D移到与点A重合时,如图2

直线l与DG交于点G,此时点N的横坐标最大. ······································· 8分 过点G,M作x轴的垂线,垂足分别为点Q,F,设N(x,0) ∵ A(2,4),∴G(2+23,2)

∴NQ=x-2-23,NF=x-1,GQ=2,MF=5

∵△NGQ∽△NMF,∴NQGQNF=

MF ∴

x22321038x1=5,∴x=

3 ···························································· 10分 当点D移到与点B重合时,如图3

直线l与DG交于点D,即点B,此时点N的横坐标最小. ······················ 11分 ∵B(-2,-4),∴H(-2,0),D(-2,-4),设N(x,0)

∵△BHN∽△MFN,∴NHBHFN=

MF ∴x2421x=5,∴x=-3 ·

············································································· 12分 又∵当点D与原点O重合时,△DHG不存在

2014年中考数学压轴题精编—浙江篇

1114

2014年中考数学压轴题精编—浙江篇

10382∴点N横坐标的取值范围为:-≤x≤且x≠0. ····················· 14分 33y y l M M C1 C1 A A (D)

G O F H Q N x D H N O F G B (D) C2 图3

l x B C2 图2

12

x+x+4交x轴的正半轴于点A,交y轴于点B. 2(1)求A、B两点的坐标,并求直线AB的解析式; (2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;

(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值. y y B B

12.(浙江省嘉兴市)如图,已知抛物线y=-

F Q O P E A x O (备用)

A x

12.解:

122

(1)令y=0,得-x+x+4=0,即x-2x-8=0

2解得x1=-2,x2=4,∴A(4,0)

y B F Q O (图1)

D P C E A x 令x=0,得y=4,∴B(0,4) 设直线AB的解析式为y=kx+b

4k+b=0k=-1则 解得 b=4b=4

∴直线AB的解析式为y=-x+4

·························································· 5分

(2)当点P(x,x)在直线AB上时,x=-x+4,解得x=2

当点Q(

xxxx,)在直线AB上时,=-+4,解得x=4 22222014年中考数学压轴题精编—浙江篇

15

2014年中考数学压轴题精编—浙江篇

所以,若正方形PEQF与直线AB有公共点,则2≤x≤4 ····························· 9分 (3)当点E(x,

x)在直线AB上时,点F也在直线AB上 28x=-x+4,解得x= 238①当2≤x<时,直线AB分别与PE、PF有交点,设交点分别为C、D,如图1

3此时PC=x-(-x+4)=2x-4 又PD=PC,∴S△PCD=

221PC=2(x-2) 2

∴S=

2127271628x-2(x-2)=-x+8x-8=-(x-)+ 44477

即S=-∵2<

71628(x-)+ ··············································································· 10分 477168168<,∴当x=时,S最大= ···················································· 11分 77738②当≤x≤4时,直线AB分别与QE、QF有交点,设交点分别为M、N,如图2

3y xx此时QN=(-+4)-=-x+4,又QM=QN 22B 2211∴S△QMN=QN=(x-4)

F 22P N 21即S=(x-4) ······································· 12分

2Q M E

88当x=时,S最大= ····························· 13分

93168综合①②得:当x=时,S最大=

77O (图2)

A x ····································································································· 14分

13.(浙江省义乌市)如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3). (1)直接写出抛物线的对称轴、解析式及顶点M的坐标;

(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标; (3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不...存在,请说明理由.

C

y D C1 y D B1 B O M A 图1

2014年中考数学压轴题精编—浙江篇 O1 x O M 图2

A1 x 16

2014年中考数学压轴题精编—浙江篇

13.解:

(1)对称轴:直线x=1 ··························································································· 1分

212111解析式:y=x-x或y=(x-1)- ···················································· 2分

4888

1顶点坐标:M(1,-) ················································································ 3分

8(2)由题意得y2-y1=3

121121即x2-x2-x1+x1=3 ········································································· 4分

4488

11整理得:(x2-x1)[(x2+x1)-]=3 ① ··················································· 5分

48

∵S=

1[2(x1-1+x2-1)]²3=3(x1+x2)-6 2

∴x1+x2=

S+2 ② ········································································· 6分 372(S>0)(事实上,更确切为S>66) S ······································································································· 7分

把②代入①并整理得:x2-x1=

x2+x1=14x1=6

当S=36时, 解得: (注:S>0或S>66不写不扣分)

x-x=2x=8221

把x1=6代入抛物线解析式得y1=3 ∴点A1(6,3)······························· 8分

(3)存在 ··················································································································· 9分

解法一:易知直线AB的解析式为y=

33x- 423) 4可得直线AB与对称轴的交点E的坐标为(1,-∴BD=5,DE=当PQ∥AB时,∴

15,DP=5-t,DQ=t 4DQDP =

DEDBy D G Q O M A E F P C B t5t15,得t= ······························· 10分 =

157x 下面分两种情况讨论:设直线PQ与直线AB、x轴 的交点分别为点F、G ①当0<t<

15时 7DQDP =

DBDE∵△FQE∽△FAG,∴∠FGA=∠FEQ ∴∠DPQ=∠DEB,∴△DPQ∽△DEB,∴∴

5tt201520,得t=>,∴t=舍去·············································· 11分 =15577742014年中考数学压轴题精编—浙江篇

17

2014年中考数学压轴题精编—浙江篇

151<t<3时 78∵△FQE∽△FAG,∴∠FAG=∠FQE

②当

∵∠DQP=∠FQE,∠FAG=∠DBE ∴∠DQP=∠DBE,∴△DPQ∽△DEB,∴∴

5tt20,得t= =15574DQDP =

DBDE20秒时,使直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的7对称轴围成的三角形相似 ·············································································· 12分

故当t=

(注:未求出t=

15能得到正确答案不扣分) 7

121121解法二:可将y=x-x向左平移一个单位得到y=x-,再用解法一类似的方法可求

48887220得x2′-x1′=,点A1′(5,3),t=

S7

∴x2-x1=

7220,点A1(6,3),t= S7

14.(浙江省舟山市)(本题满分12分)如图,在菱形ABCD中,AB=2cm,∠BAD=60°,E为CD边中点,点P从点A开始沿AC方向以每秒23cm的速度运动,同时,点Q从点D出发沿DB方向以每秒1cm的速度运动,当点P到达点C时,P,Q同时停止运动,设运动的时间为x秒.

(1)当点P在线段AO上运动时.

①请用含x的代数式表示OP的长度;

②若记四边形PBEQ的面积为y,求y关于x的函数关系式(不要求写出自变量的取值范围);

(2)显然,当x=0时,四边形PBEQ即梯形ABED,请问,当P在线段AC的其他位置时,以P,B,E,Q为顶点的四边形能否成为梯形?若能,求出所有满足条件的x的值;若不能,请说明理由.

D

Q E

A C O P

14.解:

(1)①由题意得∠BAO=30°,AC⊥BD

∵AB=2,∴OB=OD=1,OA=OC=3

∴OP=3-23x ·························································································· 2分

2014年中考数学压轴题精编—浙江篇

18

B

2014年中考数学压轴题精编—浙江篇

②如图1,过点E作EH⊥BD于H,则EH为△COD的中位线 ∴EH=

31OC=,∵DQ=x,∴BQ=2-x

22

D Q H A P O

E C

31∴y=S△BPQ+S△BEQ=(2-x)(3-23x+)

2211333=3x-x+ ········································ 5分

422

(2)能成为梯形,分三种情况:

ⅰ)如图2,当PQ∥BE时,∠PQO=∠DBE=30° ∴

OP3=tan30°= OQ3B 图1 D Q H P O

C

E 323x32即=,∴x=

1x35A 2此时PB不平行QE,∴x=时,四边形PBEQ为梯形

5 ···························································· 7分

ⅱ)如图3,当PE∥BQ时,P为OC中点

B

图2 33333∴AP=,即23x=,x=

22453此时,BQ=2-x=≠PE,∴x=时,四边形PEQB为梯形 ···················· 9分

44ⅲ)如图4,当QE∥BP时,△QEH∽△BPO

31xHQHE22,∴x=1(x=0舍去) ∴,∴==OBOP123x3此时,BQ不平行于PE,∴x=1时,四边形PEQB为梯形 ························ 11分 综上所述,当x=

23或或1时,以P,B,E,Q为顶点的四边形是梯形 A ································································································· 12分 D D E E H H Q Q C A C

O O P P B B 图3

2014年中考数学压轴题精编—浙江篇

图4

19

2014年中考数学压轴题精编—浙江篇

15.(浙江省东阳市)如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,交DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒

y D 速度运动,同时,点R从O出发沿OM方向以2个单位每秒速度运动,运动时间为t.

(1)C的坐标为________________;

(2)当t为何值时,△ANO与△DMR相似?

(3)求△HCR的面积S与t的函数关系式;并求以A、B、C、R为顶点的四边形是梯形时t的值及相应的S的值. 15.解:

(1)C(4,1) ········································································································ 2分

(2)∵P为正方形ABCD的对称中心,A(0,3),C(4,1)

∴P(2,2),D(3,4)

∵P为正方形ABCD的对称中心,∴∠AON=45° ∵AB∥DC,∴∠ANO=∠RMD

∴当∠RDM=∠AON=45°时,△ANO∽△RMD

此时点R与点P重合(如图1),∴R1(2,2),∴OR1=22 ∴t1=22÷2=2(秒) ·········································· 4分 当∠DRM=∠AON=45°时,△ANO∽△DMR 此时DR∥AO,∴R2(3,3),∴OR2=32 ∴t2=32÷2=3(秒)

故当t=2秒或3秒时,△ANO与△DMR相似 ········· 6分 (3)∵OR=2t,OH=t,∠ROH=45°,∴RH=t

112

∴S=t²(4-t)=-t+2t(0<t≤4) ··················· 7分

22

A P N B M R C H x O y A D M R2 P (R1) O N B H 图1 C x y D A R1 O N B H1 图2 P R2 M 112

S=t²(t-4)=t-2t(t>4) ····························· 8分

22

C H2 x 直线OM的解析式为y=x ①

由 C(4,1),D(3,4)可得直线OM的解析式为y=-3x+13 ② 联立①②解得x=同理可求得N(

131313,∴M(,) 4443399,),直线OM与直线AD的交点坐标为(,) 44221313÷1=(秒) 44当CR∥AB时,t=S=-

11321339×()+2×= ······································································· 9分 2443299÷1=(秒) 222014年中考数学压轴题精编—浙江篇

20

当AR∥BC时,t=

2014年中考数学压轴题精编—浙江篇

S=

19299×()-2×= ·············································································· 10分 2228当BR∥AC时,△BNR∽△ANP

如图3,过N作NE⊥OB于E,则△NHB∽△AOB ∴

NB1010NBAB,即,∴NB= ==

334NHAO43101,∴NB=AN 435233,),∴PN=

444y D A P R3 N O B 图3 R2 M (R1) ∴AN=

C x ∵P(2,2),N(

52RNBN11由△BNR∽△ANP得 ==,∴RN=PN=

12PNAN33∴OR=ON-RN=∴t=

23252-=

341221÷2=(秒) ············································································ 11分 33112111S=-×()+2×= ········································································· 12分

23318

2

16.(浙江省东阳市调研测试卷)已知抛物线y=-x+bx+c经过点A(0,4),且抛物线的对称轴为直线x=2.

(1)求该抛物线的解析式;

(2)若该抛物线的顶点为B,在抛物线上是否存在点C,使得A、B、O、C四点构成的四边形为梯形?若存在,请求出点C的坐标;若不存在,请说明理由。

(3)试问在抛物线上是否存在着点P,使得以3为半径的⊙P既与x轴相切,又与对称轴相交?若存在,请求出点P的坐标,并求出对称轴被⊙P所截得的弦EF的长度;若不存在,请说明理由.

y y B B

16.解:

(1)由题意得:-

A A O x O x 备用图 b=2,∴b=4 2又∵A(0,4),∴c=4

2014年中考数学压轴题精编—浙江篇

21

2014年中考数学压轴题精编—浙江篇

∴该抛物线的解析式为y=-x+4x+4 ························································ 3分

2

(2)∵y=-x+4x+4=-(x-2)+8,∴B(2,8)

22

由A(0,4),B(2,8)可得直线AB的解析式为y=2x+4 由O(0,0),B(2,8)可得直线OB的解析式为y=4x

①当AB∥OC时,直线OC的解析式为y=2x ············································· 4分

2

x1=1+5x2=1-5y=-x+4x+4

联立 解得  y2x=y1=2+25y2=2-25

y B ∴C1(1+5,2+25),C2(1-5,2-25)

·································································6分

②当AC∥OB时,直线AC的解析式为y=4x+4

x=0y=-x+4x+4联立 解得

y=4y=4x+4

A P2 P1 2

O P4 P3 x 此时C(0,4)与点A重合,舍去 ·························7分 (3)①当点P在x轴上方时,y=-x+4x+4=3

2

解得x1=2+5,x2=2-5,∴P1(2+5,3),P2(2-5,3) 此时P点到对称轴直线x=2的距离为5<3,即⊙P与对称轴相交 ········ 9分 对称轴被⊙P所截得的弦EF的长度为:232-(5)2=4 ························ 11分

②当点P在x轴下方时,y=-x+4x+4=-3

2

解得x1=2+11,x2=2-11,∴P3(2+11,-3),P4(2-11,-3) 此时P点到对称轴直线x=2的距离为11>3,即⊙P与对称轴相离 ····· 12分

17.(浙江省嵊州市普通高中提前招生)如图1至图4,⊙O均作无滑动滚动,⊙O1、⊙O2均表示⊙O与线段AB、BC或弧AB相切于端点时刻的位置,⊙O的周长为c,请阅读下列材料:

①如图1,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周. ②如图2,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转

n周. 360

O1

O2 O1 O O2

D B n° A

A B

图1

图2 C 解答以下问题:

(1)在阅读材料的①中,若AB=2c,则⊙O自转__________周;若AB=l,则⊙O自转__________周.在阅读材料的②中,若∠ABC=120°,则⊙O在点B处自转__________周;若∠ABC=60°,则⊙O在点B处自转__________周.

(2)如图3,△ABC的周长为l,⊙O从与AB相切于点D的位置出发,在△ABC外部,按顺时针方向

2014年中考数学压轴题精编—浙江篇

22

2014年中考数学压轴题精编—浙江篇

沿三角形滚动,又回到与AB相切于点D的位置,⊙O自转了多少周?请说明理由.

B

O O A B D

A C P

图4 图3

(3)如图4,半径为2的⊙O从半径为18,圆心角为120°的弧的一个端点A(切点)开始先在外侧滚动到另一个端点B(切点),再旋转到内侧继续滚动,最后转回到初始位置,⊙O自转多少周?请说明理由. 17.解: (1)2,

l11,, ································································································· 4分 c63l+1周 ························································································· 6分 cl周 c(2)⊙O自转了

理由:∵△ABC的周长为l,∴⊙O在三边上自转了

又∵三角形的外角和是360°,∴在三个顶点处,⊙O自转了∴O自转了

360=1(周) 360l+1周 ························································································· 8分 c(3)⊙O自转7周 ································································································· 10分

理由:∵弧AB的长为18×

212π=12π,∴⊙O在弧AB上自转了2×=6(周) 34360=1(周) 360∴O自转了7周 ······························································································ 12分 又∵在两个端点处,⊙O自转了

18.(浙江省嵊州市普通高中提前招生)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示,抛物线y=2ax+ax-

2

3经过点B. 2(1)求点B的坐标; (2)求抛物线的解析式;

(3)若三角板ABC从点C开始以每秒1个单位长度的速度向x轴正方向平移,求点A落在抛物线上时所用的时间,并求三角板在平移过程中扫过的面积; (4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由. y

A(0,2)

B O

C(-1,0) x 2014年中考数学压轴题精编—浙江篇 23

2014年中考数学压轴题精编—浙江篇

18.解:

(1)如图,过点B作BD⊥x轴于D

∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90° ∴∠BCD=∠CAO

又∵∠BDC=∠COA=90°,BC=CA ∴Rt△BCD≌Rt△CAO

∴BD=CO=1,CD=AO=2 ································· 1分 ∴点B的坐标为(-3,1) ··································· 2分 (2)把B(-3,1)代入y=2ax+ax-

y A(0,2) B D C P1 N O M P2 x 2

33,得1=18a-3a- 22解得a=

1 ········································································································ 3分 6

1213∴抛物线的解析式为y=x+x- ·························································· 4分

623(3)记平移后点A落在抛物线上的点为A′,点C落在x轴上的点为C′

12131213把y=2代入y=x+x-,得x+x-=2

626233

解得x1=-

7,x2=3,∴A′(3,2) 2∴点A落在抛物线上时所用的时间为:3÷1=3(秒) ································ 6分 BC=CA=12+22=5

三角板在平移过程中扫过的面积为: S=S△ABC+S□AC′CA′=

117×5×5+3×2= ············································· 8分 22(4)存在 ··················································································································· 9分

①延长BC至点P1,使CP1=BC,则得到以点C为直角顶点的等腰直角三角形△ACP1. 过点P1作P1M⊥x轴.

∵CP1=BC,∠P1CM=∠BCD,∠P1MC=∠BDC=90° ∴Rt△P1CM≌Rt△BCD

∴CM=CD=2,P1M=BD=1,可求得点P1(1,-1); ········· 10分

1213把x=1代入y=x+x-,得y=-1.

623∴点P1(1,-1)在抛物线上 ······················································ 11分

②过点A作AP2⊥AC,且使AP2=AC,则得到以点A为直角顶点的等腰直角三角形△ACP2 过点P2作P2N⊥y轴,同理可证Rt△P2NA≌Rt△AOC

∴P2N=AO=2,AN=CO=1,可求得点P2(2,1) ····································· 12分

12131把x=2代入y=x+x-,得y=

6263∴点P2(2,1)不在抛物线上,舍去 ······························································ 14分

综上所述,在抛物线上还存在点P(1,-1),使△ACP仍然是以AC为直角边的等腰直角三角形.

2014年中考数学压轴题精编—浙江篇

24

2014年中考数学压轴题精编—浙江篇

19.(浙江省慈溪中学保送生招生考试)如图,在平面直角坐标系中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.将正方形OABC绕O点顺时针旋转,旋转角为θ,当A点第一次落在直线y=x上时停止旋转.旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N. (1)求边AB在旋转过程中所扫过的面积; (2)设△BMN的周长为p,在正方形OABC旋转的过程中,p值是否有变化?请证明你的结论; (3)设MN=m,当m为何值时△MON的面积最小,最小值为多少?此时旋转角θ为多少度?并求出此时△BMN内切圆的半径. y y=x A M θ B O x N 19.解:

(1)当A点第一次落在直线y=x上时停止旋转,则OA旋转了45°,OB也旋转了45°,故B点落y 在x轴上.

如图1,边AB在旋转过程中扫过的面积为图中阴影部分的面积S阴影. A S阴影=S△AOB+S扇形BOB′-S扇形AOA′-S△A′OB′

C B y=x A′ B′ C′ 图1

x =S扇形BOB′-S扇形AOA′=1/2×(√2)×π/4-1/2×1×π/4 =π/8. ······································································· 4分

22

O (2)p值无变化. ···································································· 5分

证明:如图2,延长BA交y轴于点D 在△AOD与△CON中

∠AOD=∠CON=90°. -∠AON,OA=OC,∠OAD=∠OCN=90°∴△AOD≌△CON.

∴OD=ON,AD=CN. ·················································································· 6分 在△MOD与△MON中

OD=ON,∠MOD=∠MON=45°,OM=OM. ∴△MOD≌△MON.

∴MN=MD=AM+AD=AM+CN.

∴p=BM+MN+BN=BM+AM+CN+BN=AB+BC=2. ·························· 8分 ∴在正方形OABC旋转的过程中,p值无变化. ··········································· 9分 (3)设AM=n,则BM=1-n,CN=m-n,BN=1-m+n

∵△MOD≌△MON,∴S△MON=S△MOD=

11MD²OA=m. ···················· 10分 22在Rt△BMN中,BM +BN =MN . ∴(1-n)+(1-m+n)=m

222

222

y D A θ y=x 整理得n-mn+2-m=0

2

M B N C 25 2014年中考数学压轴题精编—浙江篇

O x 2014年中考数学压轴题精编—浙江篇

△=m-4(2-m)≥0

2

解得m≤-23-2(舍去)或m≥23-2

故当m=23-2时,△MON的面积最小 ················ 12分 S△MON最小=

1(23-2)=3-1 ······························ 13分 2此时n-(23-2)n+2-(23-2)=0

11解得n=3-1=m,即AM=m

22

2

1m,∴AM=CN 2此时由于AM=CN,∠OAM=∠OCN=90°,OA=OC,∴△AOM≌△CON ∴∠AOM=∠CON=∠AOD=θ=22.5° ······················································· 14分

∴CN=m-n=

∵BM=1-n=2-3,BN=1-m+n=2-3,MN=m=23-2 ∴Rt△BMN的内切圆半径为

20.(浙江省奉化市保送生招生考试)如图,△ABC中,AB=AC=10,BC=12,点D在BC上,且BD=4,以点D为顶点作∠EDF=∠B,分别交边.AB于点E,交射线..CA于点F.设BE=x,CF=y. (1)求y与x的函数关系式;

(2)当以点C为圆心,CF长为半径的⊙C和以点A为圆心,AE长为半径的⊙A相切时,求x的值; (3)若AC的中点O到直线..DE的距离为5,求DE的长.

A A

E

B D

20.解:

(1)∵AB=AC,∴∠C=∠B

1(BM+BN-MN)=3-23·························· 16分 2F

C

B C

备用图

D

∵∠CDF+∠EDF+∠BDE=180°,∠BED+∠B+∠BDE=180°,∠EDF=∠B ∴∠CDF=∠BED,∴△CDF∽△BED ∴

CFCDy124,即= =

BDBE4x32 ··········································································································· 2分 x∴y=

(2)分外切和内切两种情况考虑:

①当⊙C和⊙A外切时,点F在线段CA上,且AF=AE ∵AB=AC,∴BE=CF,∴x=

32 x∴x=42········································································································· 4分

2014年中考数学压轴题精编—浙江篇

26

2014年中考数学压轴题精编—浙江篇

②当⊙C和⊙A内切时,点F在线段CA延长线上,且AF=AE ∴x=AB-AE=10-AE,y=AC+AF=10+AE ∴10+AE=

32,解得AE=217,∴x=10-217 ··························· 6分

10AE(3)如图1,当点F在线段CA上时,过A作AG⊥BC于G,过O作OH⊥DE1于H,OK⊥BC于

K,连结OD,则OH=5

∵AB=AC=10,AG⊥BC,∴GC=BG=∴AG=102-62=8,KC=

1BC=6 2A E1 H O F

1GC=3 2而DC=BC-BD=12-4=8,∴DK=DC-KC=8-3=5 ∴DK=OH

又∵OK =OD -DK ,DH =OD -OH ,∴OK=DH ∴四边形DKOH是矩形,∴DE1⊥BC ∴Rt△E1BD∽△RtABG,∴∴DE1=

DE1DE1AG8,即==

BD46BG2

2

2

2

2

2

B D G 图1

K

C

16 ······································································································· 9分 3如图2,当点F在线段CA延长线上时,作Rt△AGC的外接圆⊙O,则DH、DM分别是⊙O的切线

DG=6-4=2,由切割线定理得: DM =DG²DC=2×8=16,∴DM=4 设OM与BC交于点N,易知△DNM≌△ONK ∴NM=NK,∴DN=5-NM

在Rt△DNM中,4+NM=(5-NM)

A E1 H E2 B G N D

P M 图2

K O 2

222

941,∴DN= 1010延长AG交EM于点P,则△DPG∽△DNM

C ∴NM=

DPPGDG2114119,PG=NM= ====,∴DP=DN=

DN4222NMDM2020∴AP=8+

9169= 202016DE2DE2DE13 由△E1E2G∽△AE2P得,即==

16941DE2DPAPDE22020∴DE2=

656 ··································································································· 14分 187

2014年中考数学压轴题精编—浙江篇

27

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务