DC–DCConverter-AwarePowerManagementfor
Low-PowerEmbeddedSystems
YongseokChoi,StudentMember,IEEE,NaehyuckChang,SeniorMember,IEEE,andTaewhanKim,Member,IEEE
Abstract—Mostdigitalsystemsareequippedwithdc–dccon-verterstosupplyvariouslevelsofvoltagesfrombatteriestologicdevices.DC–DCconvertersmaintainlegalvoltagerangesregardlessoftheloadcurrentvariationaswellasbatteryvoltagedrop.Althoughtheefficiencyofdc–dcconvertersischangedbytheoutputvoltagelevelandtheloadcurrent,mostexistingpowermanagementtechniquessimplyignoretheefficiencyvariationofdc–dcconverters.However,withoutacarefulconsiderationoftheefficiencyvariationofdc–dcconverters,findingatrueoptimalpowermanagementwillbeimpossible.Inthispaper,wesolvetheproblemofenergyminimizationwiththeconsiderationofthecharacteristicsofpowerconsumptionofdc–dcconverters.Specif-ically,thecontributionsofourworkareasfollows:1)Weanalyzetheeffectsoftheefficiencyvariationofdc–dcconvertersonasingle-taskexecutionindynamicvoltagescaling(DVS)schemeandproposetheDC_DVStechniquefordc–dcconverter-awareenergy-minimalDVS.2)DC_DVSisthenextendedtoembedanawarenessofthecharacteristicsofdc–dcconvertersingeneralDVStechniquesformultipletasks.3)WegoontoproposeatechniquecalledDC_CONFforgeneratingadc–dcconverterthatismostenergyefficientforaparticularapplication.4)Wealsopresentanintegratedframework,i.e.,DC-lp,basedonDC_DVSandDC_CONF,whichaddressesdc–dcconverterconfigurationandDVSsimultaneously.ExperimentalresultsshowthatDC-lpisabletosaveupto24.8%ofenergycomparedwithpreviouspowermanagementschemes,whichdonotconsidertheefficiencyvariationofdc–dcconverters.
IndexTerms—DC–DCconverter,lowpower,voltagescaling.
I.INTRODUCTION
LMOSTallmoderndigitalsystemsaresuppliedwithpowerthroughdc–dcconvertersbecausehigh-performanceCMOSdevicesareoptimizedtospecificsupplyvoltageranges.DC–DCconvertersaregenerallyclassifiedintotwotypes,namely:1)linearvoltageregulatorsand2)switchingvoltageregulators,accordingtothecircuitimplementation.However,nontrivialpowerdissipationisunavoidableinbothtypesofvoltageconversionanddirectlyaffectsbatterylife.Fig.1showsthepathofcurrentflowthroughadc–dcconverter
ManuscriptreceivedJuly25,2005;revisedAugust4,2006.ThisworkwassupportedbytheInformationTechnologyResearchandDevelopmentProjectfundedbytheKoreanMinistryofInformationandCommunications.TheworkofT.KimwassupportedinpartbytheNanoIP/SoCPromotionGroup,SeoulResearchandBusinessDevelopmentProgram,andinpartbytheMinistryofScienceandTechnology/KoreaScienceandEngineeringFoundationthroughtheAdvancedInformationTechnologyResearchCenter.Thispaperwaspre-sentedinpartattheDesignAutomationConference2005,Anaheim,CA,June2005.ThispaperwasrecommendedbyAssociateEditorM.Pedram.Y.ChoiandN.ChangarewiththeSchoolofComputerScienceandEngineering,SeoulNationalUniversity,Seoul151-742,Korea.
T.KimiswiththeSchoolofElectricalEngineeringandComputerScience,SeoulNationalUniversity,Seoul151-742,Korea.
DigitalObjectIdentifier10.1109/TCAD.2007.890837
A
1368IEEETRANSACTIONSONCOMPUTER-AIDEDDESIGNOFINTEGRATEDCIRCUITSANDSYSTEMS,VOL.26,NO.8,AUGUST2007
workisasfollows:Althoughaneffectivepowermanagementschemecanreducethepowerconsumptionofadevicetoalargeextent,itdoesnotalwaysmeanthatitalsoreducesthepowerconsumptionofadc–dcconverterminimally,insomecasesoperatingveryinefficiently,resultinginapoorbatterylifeenhancement.Consequently,itisquitenecessarytosolvethetwoproblems,namely:1)theproblemof(output)voltagescalingofadc–dcconverterand2)theproblemofvoltagescalingthatisappliedtothedevicesotherthanthedc–dcconverterinanintegratedfashion,sothatthetotalenergyconsumptionisgloballyminimized.
DVSisacceptedasoneofthemosteffectiveandwell-studiedpowermanagementtechniques.Assumingthattheprocessorsupplyvoltageisdynamicallyandcontinuouslyvariable,thereareoptimalalgorithmsforschedulingnonperiodictasksandselectingthebestvoltageforeachtask[11],andtherearealsovoltagescalingtechniqueswithfixedpriorityscheduling,whichareapplicabletoperiodictasks[12].Essentially,moststudiessuggestedDVSalgorithmsbasedondynamicorstaticpriorities.Thesealgorithmsaredifferentiatedbyhowslacktimesareestimatedandredistributed[13]–[17].SomeDVSschemesadjustthesupplyvoltagewithinanindividualtaskboundary(i.e.,intratask),notontask-by-taskbasis[18]–[20].In[21],practicalDVSschemeswiththeconsiderationofdis-cretesupplyvoltageandnonuniformloadcapacitancesweresuggested.However,whilealltheseDVSschemesdosaveenergy,noneofthemtakeintoaccounttheeffectsofvoltagescalingonthedc–dcconverter,theresultingchangesinloadcurrent,andtheireffectontheefficiencyofthedc–dcconverteritself.Toovercomethislimitationinpreviouspowerman-agementtechniques,wewillnowaddresstheissueofdc–dcconverter-awarepowermanagement.Specifically,weapproachtheproblemintwoaspectstocoverthecorepartsoftheproblemofdc–dcconverter-awarepowermanagement.
1)Theconverter-awarevoltagescalingproblem.Forasin-gletaskwithexecutioncyclesandadeadline,wederivethepowerconsumptionmodelofadc–dcconverterbyanalyzinghowpowerconsumptionisrelatedtooutputvoltageandproposearobustvoltagescalingtechnique1thatminimizesthesumoftheenergyconsumedbytheexecutionofthetaskandtheenergydissipatedbythedc–dcconverter.Theproposedtechniqueisthenextendedtohandlemultipletasks.Wethenaddresstheotherproblem.
2)Theapplication-drivenconverteroptimizationproblem.Thisinvolvesfindingthedc–dcconverterconfigurationthatisbestsuitedtotheapplicationandsystem,intermsofminimizingthetotalenergyconsumption.
SectionIIstartswithabriefsummaryofthefunctionofdc–dcconverters,followedbythedevelopmentofamodeloftheirpowerconsumptionandthederivationofpowerequations.InSectionIII,wepresentanintegrateddc–dcconverter-awareenergyminimizationalgorithm,whichessentiallysolvesthetwocoreproblems,namely:1)converter-awarevoltagescaling
1Note
thatourproposedvoltagescalingtechniqueisflexibleenoughtobe
incorporatedintomostoftheexistingDVSmethodswithminimalmodification.SectionIII-Dcoverssuchageneralapplicability.
Fig.2.DC–DCconvertersgeneratedifferentsupplyvoltagesfortheCPU,memory,andharddiskdrivefromasinglebattery.
and2)application-drivenconverteroptimization.SectionIVpresentsasetofexperimentalresultsthatshowtheeffectivenessoftheproposedtechniques.Finally,concludingremarksaremadeinSectionV.
II.DC–DCCONVERTERS
A.VoltageRegulation
Theproliferationofdigitaldevicesandconstanttechnologi-calinnovationmakeitimpossibletouseasinglesupplyvoltageforalldevices,andoften,multiplelevelsarerequiredinasingledevice.Sinceallsupplyvoltagesaregenerallyderivedfromasinglebattery,voltageregulators(dc–dcconverters)areneededtocontrolthesupplyvoltageforeachdevice,asindicatedinFig.2,whichshowsasimplifiedpowersupplynetworkforatypicalbattery-operatedembeddedsystem.
Theprimaryroleofadc–dcconverteristoprovidearegu-latedpowersource.Unlikepassivecomponents,logicdevicesdonotdrawaconstantcurrentfromtheirpowersupply.Thepowersupplycurrentchangesrapidlywithchangesinthedevices’internalstates.AnunregulatedpowersupplyislikelytosufferanIRdropcorrespondingtotheloadcurrent,whereasaregulatedpowersupplyaimstokeeptheoutputvoltageconstantregardlessofvariationintheloadcurrent.ThephenomenonofIRdropiscausedbyinternalresistanceofthepowersupply.Therefore,adc–dcconverterisstillneededforvoltageregula-tionevenifthereisonlyonesupplyvoltage.B.SwitchingRegulatorBasics
Wefocusonminimizingthepowerdissipationofastep-downswitchingregulator,whichisthetypemostfrequentlyusedinlow-powerapplications.Aswitchingregulatorusesaninductor,atransformer,oracapacitorasanenergy-storageelementtotransferenergyfromthepowersourcetothesys-tem.Theamountofpowerdissipatedbyvoltageconversioninaswitchingregulatorisrelativelylow,mainlyduetotheuseoflow-resistanceMOSFETswitchesandenergy-storageelements.However,theamountofpowerdissipatedbyalinearregulatorisratherhigh,mainlybecausethereisanupperboundontheefficiencyofalinearregulator,whichisequaltotheoutputvoltagedividedbytheinputvoltage.Inaddition,switchingregulatorscanincrease(i.e.,boost),decrease(i.e.,buck),andinvertinputvoltagewithasimplemodificationtotheconvertertopology,unlikelinearregulators.Fig.3(a)showsthebasicstructureofthestep-down(buck)switchingregulator.Aswitchingregulatorcontainsacircuit,locatedonthepathbetweentheexternalpowersupplyandtheenergy-storage
CHOIetal.:DC–DCCONVERTER-AWAREPOWERMANAGEMENTFORLOW-POWEREMBEDDEDSYSTEMS1369
∆IL(PWM)2··(D·RSW1+(1−D)·RSW2+RL+RC)32(2)
whereVI,VO,andIOaretheinputvoltage,outputvoltage,andoutputcurrent(i.e.,theloadcurrent)ofthedc–dcconverter,respectively;andRSW1,RSW2,RL,andRCaretheturn-onresistanceofthetopMOSFET(SW1),theturn-onresistanceof
1370IEEETRANSACTIONSONCOMPUTER-AIDEDDESIGNOFINTEGRATEDCIRCUITSANDSYSTEMS,VOL.26,NO.8,AUGUST2007
thebottomMOSFET(SW2),theequivalentseriesresistanceoftheinductorL,andtheequivalentseriesresistanceofthecapac-itorC,respectively.Dand∆IL(PWM)arethedutyratio(timewhenthecurrentactuallyflowsthroughthecomponent/totaltime)andtherippleofthecurrentflowingthroughtheinductor,respectively,whichcanbeexpressedasfollows:
D=
VO
VI
,∆IL(PWM)=
VO·(1−D)Lf·f(3)
S
whereLfisthevalueoftheinductor,andfSistheswitching
frequency,whichisassumedtobeconstantinaPWMdc–dcconverter.
Pconduction(PWM)consistsoftwoterms.Thefirstandsecondtermsrepresenttheconductionpowerconsumptionsduetothedccomponentandtheaccomponent(orcurrentripple),respectively,ofthecurrentflowingthroughallcomponents(i.e.,SWP1,SW2,L,andC)ontheRcurrentpath.Inthefirsttermofconduction(PWM)in(2),D·istheeffectiveresistanceoftheSW1+(1−D)·RcurrentpathofSWthe2+Rdc–dcLconverter,consideringthedutyratioofeachcomponentonthatpath.ThedutyratiosforSW1,SW2,andLareD,(1−D),and1,respectively.(SincethedccomponentofthecurrentflowingthroughtheCiszero,thetermrelatedtoCisomitted.)ItiswellknownthattheconductionpowerconsumptionofsomesystemscanbeexpressedbyI2·R,whereIisthecurrentflowingthroughthesystemandRistheresistivecomponentofthesystem.Therefore,theproductofthiseffectiveresistance
andI2
,whereIflowingthroughOisequivalenttothedccomponentofthecurrentO
eachcomponent,canbeusedtomodelthedccomponentoftheconductionpowerconsumptionofthePWMdc–dcconverter.Inthesecondterm,D·R(1−D)·RSW1+SW2+RL+RCistheeffectiveresistance,and(1/3)·(∆IL(PWM)/2)2isthesquareoftheaccomponent(orcurrentripple)ofthecurrentflowingthroughthecomponents.APFMdc–dcconverterhasavariableswitchingfrequencythatdependsontheoutputcurrent,theoutputvoltage,andotherfactors.Therefore,theswitchingfrequencyshouldbecharac-terizedaccuratelytodeterminetheamountoftheconductionpowerdissipationofaPFMdc–dcconverter.From[7],theswitchingfrequencycanbedescribedas
fS(PFM)=
1
T=2·IOIpeak·(TSW1+TSW2)(4)
whereIpeakisthepeakinductorcurrentallowedinagivenPFMdc–dcconverter,andTSW1andTandtheSWbottom2aretheturn-ontimesofthetopMOSFET(SW1)MOSFET(SW2),respectively.TSW1andTSW2canbedeterminedasfollows:
TSW1
=Ipeak·LfVI−VO
,TSW2
=Ipeak·LfVO
.
(5)
Pconduction(PFM)in(6)ismodeledinthesamewayasP(Iconduction(PWM).Inthefirstterm,((TSW1+TSW2)/T)·peak/2)2isthesquareofthedccomponentofthecurrent
flowingthrougheachcomponent,andinthesecondterm,(1/3)·((TaccomponentSW1+TofSWthat2)/T)·(∆Icurrent.LThe(PFM)duty/2)2isthesquareoftheratiosforSW1andSW2are(TSW1/(TTheseSW1+expressionsTSW2))andfor(TtheSW2current/(TSW1and+TdutySW2)),respectively.ratioscanbefoundin(orderivedfrom)manyreferences(e.g.,[7]and[25]).ReplacingTsionsfrom(5),wecanalsoconstructSW1andTthealternativeSW2withtheexpres-expressionshowninthelasttwolinesofthefollowingequation:Pconduction(PFM)=
TSW1+TSW2
T·Ipeak2TSW1·RSW1TSW22·TSW1+TSW2+·RSW2TSW1+TSW2
+RL
+13·∆IL(PFM)
22·TSW1·RSW1TSW1+TSW2+TSW2·RSW2TSW1+TSW2+RL+RC=
2·IOIpeak·Ipeak2VO·RSW1(VI−VO)·RSW22·VI+VI
+RL
2
+1Ipeak
VO·RSW1(VI−VO)·RSW23·2·VI+VI
+RL+RC(6)
where∆IL(PFM)istherippleoftheinductorcurrent,whichisalmostthesameasIpeakinthePFMdc–dcconverter.
2)GateDrivePowerDissipation:ThegatecapacitanceoftwoMOSFETswitchesisanothersourceofpowerdissipationindc–dcconverters.Adc–dcconvertercontrolstheoutputvoltageandmaintainstherequiredloadcurrentbyopeningandclosingtwoswitchesalternately.Thisprocessrequiresrepeatedchargingofthegatecapacitancesofthetwoswitches.Thus,thegatedrivepowerdissipationisdirectlyaffectedbytheamountofswitchingperunittime,whichistheswitchingfrequency.Consequently,PWMdc–dcconverterswithaconstantswitch-ingfrequencyconsumeafixedgatedrivepowerthatisinde-pendentoftheloadcondition,whereasPFMdc–dcconvertersconsumelessgatedrivepowerastheoutputcurrentdiminishes.Gatedrivepowerdissipationisroughlyproportionaltotheinputvoltage,theswitchingfrequency,andthegatechargeofMOSFETs,asshowninthefollowingequation[25]:
Pgate_drive=VI·fS·(QSW1+QSW2)
(7)
whereQSW1andQSW2arethegatechargesofthetopMOSFETandthebottomMOSFET,respectively.
ThisgatedrivepowermodelcanbeappliedtobothPWMandPFMdc–dcconvertersinthesameway,exceptthatfinthePWMmodel,butavariableinthePFMmodel.Sisaconstant3)ControllerPowerDissipation:Besidesthegatedrivepowerdissipationofthecontrolcircuit,thestaticpower
CHOIetal.:DC–DCCONVERTER-AWAREPOWERMANAGEMENTFORLOW-POWEREMBEDDEDSYSTEMS1371
dissipationofthePWMorPFMcontrolcircuit,andthepowerlostinmiscellaneouscircuitsinadc–dcconvertershouldbeconsidered.Generally,controllerpowerdissipationisindepen-dentoftheloadcondition,whichmakesthispowerdissipationadominantoneunderlightloads.Wecharacterizethecontrollerpowerdissipationas
Pcontroller=VI·Icontroller
(8)
whereIcontrolleristhecurrentflowingintothecontrollerofthedc–dcconverter,excludingthecurrentchargingthegatecapacitance.
Almostallmanufacturingparameters(i.e.,RSW1,RSW2,RL,RC,fS,Ipeak,Icontroller,etc.)canbeobtainedfromdatasheetsprovidedbythemanufacturerofeachcomponent.Wecanbuildapowerconsumptionmodelforthedc–dccon-verterwiththisinformation.Wethenvalidateourpowermodelbycomparingthepowerestimatedbythemodelwithfiguresfromthedc–dcconvertermanufacturer’sdatasheetsoracircuitsimulation.
Ifwehaveoneparameterwhosevalueisnotknown,forexample,Icontroller,wecanestimateitsvaluefromthedif-ferencebetweentheenergyconsumptioncalculatedbyourenergymodelexcludingonlyIcontrollertermsandtheenergyconsumptionobtainedfromthecurveofloadcurrentversusefficiency(orpowerconsumption),whichisprovidedbythemanufacturersforaspecificcondition,asfollows:
Pdcdc(PWM)(v)
=iO(v)2·
v·RSW1+1−v·RSW2+RLVIVI+13·12·vv
2Lf·fS·1−VI·vVI·RSW1+1−vVI
·RSW2+RL+RC
+VI·fS·(QSW1+QSW2)+VI·Icontroller=Pdcdc_except_Icontroller(PWM)(v)+VI·Icontroller
(9)
Icontroller=Pv)−Pdcdc(PWM)(dcdc_except_Icontroller(PWM)(v)VI
.
(10)
SinceallcircuitparametersexceptIcontrolleraregiven,wecanobtainthevalueofPdcdc_except_ImodelandthevalueofPcontroller(PWM)(v)fromourpowerdcdc(PWM)(v)fromthedatasheetforaspecificoutputvoltage(vinthepreviousequations)and,thus,estimatethevalueofIcontroller.Finally,toverifythevalidityofourpowermodelandtheestimatedparameter,weincorporatethisparametervalueintoourpowermodelandthenseewhetheritestimatesthepowerconsumptionofthedc–dcconverteraccuratelyfordifferentoutputvoltagesandchangedvaluesofotherparameters.
Tovalidatethesepowermodels,wecomparedtheefficiencycurvesprovidedbymanufacturerswiththecurvesestimated
byourmodelfortwocommercialdc–dcconverters,namely:1)theTPS40009[26]and2)TPS62100[27],whichusePWMandPWM/PFMhybridcontrol,respectively.Allmanufacturingparametershavebeenextractedfromdatasheets.AsshowninFig.4,thepowermodelsforboththePWMandPFMconvertersareaccurateenoughtoallowustoestimatethepowerdissipationofrealdc–dcconverters.D.EffectsofMOSFETGateWidthSizing
Asshowninprevioussections,powerdissipationindc–dcconvertersisaffectedbyvariousparameters.Theseconsistofthemanufacturingparameters,whichcannotbechangedatruntime,andload-dependentparameters,suchastheoutputvoltageandcurrentofthedc–dcconverter,whichcanbechangedtosuittherun-timeworkload,orbyhigh-levelpowermanagementtechniques.
Sincewearetryingtoreducethetotalsystemenergycon-sumptionbymeansofDVSwhenusingagivendc–dccon-verter,ratherthanproposingmodificationtodc–dcconvertersthemselves,weconsidermostmanufacturingparameterstobefixedandfocusontheeffectsoftherun-timeloadvariationinthepowerdissipation.However,unlikeothermanufacturingparameters,thegatewidthoftheMOSFETswitchesshowsinterestingbehavior,especiallyinsystemsequippedwithaPWMdc–dcconverter.AsthegatewidthoftheMOSFETgetssmaller,theturn-onresistanceoftheMOSFETincreases,whereasthegatechargeisreduced[2],[7].Morespecifically,theturn-onresistanceRSWandthegatechargeQwidthofWSWoftheMOSFETswitcheswithagateas
SWcanbeestimatedRSW=
W0
R0SW
WSW
,QSW=
WWQ0(11)
0
whereR0andQ0aretheturn-onresistanceandthegatecharge,respectively,ofaMOSFETwithagatewidthofW0.
ThismeansthattheoptimalvalueofthegatewidthW,intermsoftheenergyconsumption,willvarywiththeloadcondi-tionbecausetheturn-onresistanceandthegatechargeaffecttheload-dependentpower(i.e.,conductionpowerdissipation)andtheload-independentpower(i.e.,gatedrivepowerdissipation),respectively,inaPWMdc–dcconverter.SinceDVScausesadrasticvariationoftheloadconditionfromoneapplicationtoanother,theoptimalgatewidthoftheMOSFETswitchesmayvarywiththeapplicationinaDVS-enabledsystem.Fig.5showsthatthechangeofWaffectstheconversionefficiencyinoppositewaysunderlightandheavyloads.
III.DC–DCCONVERTER-AWAREENERGY
MANAGEMENTTECHNIQUES
A.ProposedAlgorithm:AnOverview
Configuringadc–dcconverterandaDVSschemetomin-imizetheoverallenergyconsumptionisacomplexproblem,asitwillbecomeapparentinthefollowingsection.Tomaketheproblemmoretractable,sothatitcanbeinvolvedina
1372IEEETRANSACTIONSONCOMPUTER-AIDEDDESIGNOFINTEGRATEDCIRCUITSANDSYSTEMS,VOL.26,NO.8,AUGUST2007
Fig.5.Conversionefficiencyofadc–dcconverterfordifferentvaluesoftheparameterW.(TheefficiencycurvewithW=W0isequivalenttothatofaTPS40009[26].)
systematicway,weproposeasimplebutrobustframework,whichiscalledDC-lp,forourconverter-awareenergymini-mizationalgorithm.DC-lpessentiallycombinestwocoretech-niques,namely:1)DC_DVS(SectionIII-B)and2)DC_CONF(SectionIII-C).DC_DVSrefinestheDVSresultbyconsideringtheenergyefficiencyofthedc–dcconvertertobeused,whereasDC_CONFrefinestheconfigurationofthedc–dcconverter(i.e.,determinestheoptimalvalueoftheparameterW)from
CHOIetal.:DC–DCCONVERTER-AWAREPOWERMANAGEMENTFORLOW-POWEREMBEDDEDSYSTEMS1373
Thefollowingsectionsdescribethetwosteps,eachofwhichsolvesthedc–dcconverterenergyminimizationproblems.Step1istheconverter-awarevoltagescalingproblem,whichistodeterminetaskandvoltageschedulesthatminimizethetotalenergyconsumptionofasystem,includingthatofthedc–dcconverter.Step2istheapplication-drivendc–dcconverteroptimizationproblem,whichistofindthemostenergy-efficientconfigurationofthedc–dcconverterfortheapplication.B.Converter-AwareVoltageScalingTechnique
ForaCMOScircuit,itiswellknownthattheCPUpowerPiandtheenergyconsumptionEiforataskJicanbecomputed(assumingafixedsupplyvoltage)by
Pi=CCPU,i·Ei=Ri·Pi
2Vdd,i
duringaunittimeperiod,startingatt.Then,thetotalenergyconsumedbythevoltagescalingAioftaskJiisgiven[11]by
ti,2
E(Ai)=Pi(fi(t))dt
ti,1
(14)
whereti,1andti,2arethestartingandendingtimes,respec-tively,oftheexecutionoftaskJi.Thus,thetotalCPUenergy
consumptionECPU,excludingthatofthedc–dcconverter,forNtasks(J1,J2,...,JN)is
Ni=1t
ti,2
ECPU=Pi(fi(t))dt.(15)
·fi+Vdd,i·Istatic+Pon
(12)
i,1
whereCCPU,iistheaverageswitchedcapacitanceperclock
cycleforthetask,fiistheoperatingfrequency,Vdd,iisthesupplyvoltageusedfortheexecutionofthetask,Istaticisthefrequency-independentstaticcurrent(consistingmainlyofthesubthresholdleakagecurrent),Ponistheinherentpowerconsumption(whichisindependentofthescalablesupplyvoltageoftheCPU),andRiisthetotalnumberofcyclesrequiredfortheexecutionoftaskJi.
However,supplyvoltagescalingincursonecrucialpenalty,i.e.,thereducedvoltageincreasescircuitdelay,whichisap-proximatelylinearlyproportionaltothesupplyvoltagesincethecircuitdelayTdcanbeexpressed[22]as
Td=
CLVdd
µCox(D/L)(Vdd−Vt)α
(13)
Combiningthisequationwith(1),thetotalenergyconsump-tion,includingthatofthedc–dcconverter,forthetaskscanbeexpressedas
Ni=1t
ti,2
Etot=ECPU+Pdcdcdt.(16)
i,1
whereCLrepresentsthetotalnodecapacitance,µisthemo-bility,Coxistheoxidecapacitance,Vtisthethresholdvoltage,
Vddisthesupplyvoltageforthetask,αisaconstantsatisfying1<α<2,andDandLrepresentthewidthandlengthofthetransistors,respectively.
Aninstanceofataskschedulingandavoltageallocationprobleminasystemconsistsofasetoftasks(orjobs)J={J1,J2,...,JN}andavariablevoltagerange[Vmin,Vmax],whereNisthenumberoftasks.
EachtaskJi∈Jisassociatedwiththefollowingparameters:aidiRi
arrivaltimeofJi;
deadlineofJi(ai≤di);
numberofprocessorcyclesrequiredtocompleteJi.
Notethatthevaluesofai,di,andRiaregivenfortaskJi,andthevaluesoffi(t)andPi(fi(t))varywiththedynamicallyscaledvoltagesusedinrunningJiand,thus,directlyaffecttheenergyconsumption.Ascheduleoftasksisreferredtoasafeasiblescheduleifallthetimingconstraintsofthetasksaresatisfied.Then,thetaskschedulingandvoltagescalingproblembecomesasfollows.
Problem1:Givenaninstanceoftasks,adc–dcconverter,andthevoltagerangeofaprocessor,findafeasibletaskscheduleandvoltagescalingthatminimizesEtotin(16).
ToreducethecomplexityofProblem1,wefirstproposeatechniqueforsolvingarestrictedversionoftheproblemandthenextendittoafullsolution.
SolutiontoProblem1withasingletask:From(1)and(12),wecanderivethetotalpowerequationintermsofthesupplyvoltagevariablealonebecauseasystemwithDVShasthemaximumoperatingfrequency,whichisproportionaltoitsoperatingvoltage.Thatis,f=αV,whereαisasystem-3
+Vdd·dependentconstant,andthus,PCPU=CCPU·α·Vdd
Istatic+Pon.Furthermore,sincepowerconsumptioncanalsobeexpressedasaproductofloadcurrentandsupplyvoltage(i.e.,P=VI),wehave
2
Idd=CCPU·α·Vdd+Istatic+
2
=CCPU·α·VO+Istatic+
Pon
VddPon
=IOVO
(17)
Sincethesupplyvoltagedirectlydeterminestheprocessor’sclockfrequency[asimpliedin(13)],itisoftenconvenienttoconsidertheenergyconsumptiontobeafunctionoftheclockfrequency.Letfi(t)betheclockfrequencyassignedtotaskJiattimet,andletPi(fi(t))betheenergyconsumedintaskJi
whereIddisthesupplycurrentflowingintotheCPU.IOistheoutputcurrent,andVOistheoutputvoltageofthedc–dcconverter.
1374IEEETRANSACTIONSONCOMPUTER-AIDEDDESIGNOFINTEGRATEDCIRCUITSANDSYSTEMS,VOL.26,NO.8,AUGUST2007
FixingthevalueofWin(1)and(17),wecanexpressthetotalpowerconsumptionPtot,includingthatofthedc–dcconverter,foreachcontroltechnique,asPtot(PWM)(v)
=PCPU(v)+Pdcdc(PWM)(v)
=CCPU·α·v3+Istatic·v+Pon+iO(v)2·vVI·RSW1+1−v·RSW2+RLVI
+1·12·vv32Lf·fS·1−VI·vVI·RSW1+1−vVI·RSW2+RL+RC+VI·fS·(QSW1+QSW2)+VI·Icontroller(18)
Ptot(PFM)(v)
=PCPU(v)+Pdcdc(PFM)(v)=CCPU·α·v3+Istatic·v+Pon+
2·iO(v)
Ipeak
·Ipeak22·vVI·RSW1+1−vVI
·RSW2+RL
2
+13·Ipeak2·vVI·RSW1+1−v
VI
·RSW2+RL+RC+VI·
2·iO(v)(VI−v)·Ipeak·
v
Ipeak·Lf·VI
·(QSW1+QSW2)+VI·Icontroller
(19)
wherevisthescalablevoltage,theonlyvariablecontrolledbyDVS,whichisequivalenttoboththesupplyvoltageVoutputvoltageVddoftheCPUandthe·α·v2+IOofthedc–dcconverter,andiO(v)=CCPUstatic+(PonForataskwithanexecutiontimeT/vand).
adeadlineD,thevalueofEtotfortheexecutionofthetaskcanbeobtainedbysimplymultiplyingthetotalpowerconsumptionPtot(v)bytheexecutiontimebecausethepowerlossinthedc–dcconverterduringstandbystateisnegligible,i.e.,
D
T
Etot(v)=
Ptot(v)dt=
Ptot(v)dt=T·Ptot(v).(20)
0
0
Then,applyingT=R/f=R/αV,whereRisthenumberofcyclesforthetaskandVisitssupplyvoltage,toEtot(v)gives
Etot(v)=
Rα·Ptot(v)v
.(21)
Etot(v)isnotamonotonicallyincreasingfunctionofthe
outputvoltage.Thismeansthatusingthelowestfeasiblevoltage(orfrequency)forataskdoesnotalwaysminimizethetotalenergyconsumption.Fig.7showstherelationship
Fig.7.Energyconsumptionagainstsupplyvoltageforthesystemconfigura-tionC1,whichisdescribedinSectionIV(v∝CPUclockfrequency).
CHOIetal.:DC–DCCONVERTER-AWAREPOWERMANAGEMENTFORLOW-POWEREMBEDDEDSYSTEMS1375
Fig.10.TotalenergyconsumptionagainstW.
1376IEEETRANSACTIONSONCOMPUTER-AIDEDDESIGNOFINTEGRATEDCIRCUITSANDSYSTEMS,VOL.26,NO.8,AUGUST2007
Fig.13.Determinationofthediscretevoltages(frequencies)byDC_DISC_DVS-1.(a)fOPT Etot(w)=Etot(v1,w)+···+Etot(vk,w) =γ1·w+γ2· 1 +γ3w (23) whereγ1,γ2,andγ3areconstants.Notethatthisequationisconvexwithrespecttow.Consequently,todeterminetheenergy-optimalvalueofWin[Wmin,Wmax],wefirstderiveaWvaluewOPTthatminimizesEtotandthensimplycheckwhetherwOPTisintherange[Wmin,Wmax]andfinallysettheminimum-energyvalueofWaccordingly.Thissolutionprocedure,whichiscalledDC_CONF,isshowninFig.11.D.DC–DCConverter-AwareDVSforDiscreteSupplyVoltages ToshowthatDC-lpisapplicabletoawiderangeofDVSproblems,wewillnowconsidertheproblemofdc–dcconverter-awareDVSwithdiscretelyvariablesupplyvoltages(oroperatingfrequencies).ByexaminingtheflowofDC-lpinFig.6,wecanseethatweneed,attheleast,toupdateStep1(i.e.,DC_DVS),whichsolvestheDVSproblemforcontinuouslyvariablesupplyvoltages.Inmoredetail,weneedtointroducetheconstraintofdiscretevoltagesintoDC_DVS-1,whichsolvesthedc–dcconverter-awareDVSproblemforasingletask.Oncewehavedevelopedatechnique(whichwewillcallDC_DISC_DVS-1)tosolvethedc–dcconverter-awareDVSproblemforasingletaskusingdiscretevoltages, DC_DVS-mcanrepeatedlyuseDC_DISC_DVS-1foreachofthescheduledtasks.(NotethattheexecutionscheduleoftaskswillhavealreadybeenobtainedusinganexistingDVStechnique.)WenowexplainDC_DISC_DVS-1,whichisalsosummarizedinFig.12. Let(f1,f2,...,fK)bethesetofavailableoperatingfre-quencies,assumingf1 Weimplementedourproposeddc–dcconverter-awarepowermanagementtechniquesinC++andtestedthemonaset 2v x representsthevoltagecorrespondingtothefrequencyfx. CHOIetal.:DC–DCCONVERTER-AWAREPOWERMANAGEMENTFORLOW-POWEREMBEDDEDSYSTEMS1377 TABLEI EXPERIMENTALSYSTEMCONFIGURATIONS 1378IEEETRANSACTIONSONCOMPUTER-AIDEDDESIGNOFINTEGRATEDCIRCUITSANDSYSTEMS,VOL.26,NO.8,AUGUST2007 TABLEIV COMPARISONSOFENERGYCONSUMEDBYNODVS(NO_DVS),ACONVENTIONALDVSSCHEME(DVS_ONLY),ANDOURDC–DCCONVERTER-AWARE DVSTECHNIQUE(DC_DVS)FORBENCHMARKPROGRAMS.SYSTEMCONFIGURATIONISC2, ANDwISTHECONFIGURATIONPARAMETEROFTHEDC–DCCONVERTERUSED CHOIetal.:DC–DCCONVERTER-AWAREPOWERMANAGEMENTFORLOW-POWEREMBEDDEDSYSTEMS1379 TABLEVI ENERGYCONSUMPTIONUSINGDC_DISC_DVSCOMPAREDWITHACONVENTIONALDVSMETHOD[21], USING{0.8V,1.4V,2.0V,2.6V,3.2V},FORTHECONFIGURATIONC1 1380IEEETRANSACTIONSONCOMPUTER-AIDEDDESIGNOFINTEGRATEDCIRCUITSANDSYSTEMS,VOL.26,NO.8,AUGUST2007 TABLEVIII ENERGYCONSUMPTIONUSINGDC_DISC-lpCOMPAREDWITHACONVENTIONALDVSMETHOD[21], USING{0.8V,1.4V,2.0V,2.6V,3.2V},FORTHECONFIGURATIONC1 YongseokChoi(S’01)receivedtheB.S.andM.S.degreesincomputerscienceandengineeringfromSeoulNationalUniversity,Seoul,Korea,in2000and2002,respectively.HeiscurrentlyworkingtowardthePh.D.degreeattheSchoolofComputerScienceandEngineering,SeoulNationalUniversity. Hisresearchinterestsincludeembeddedsystemsdesignandsystem-levellow-powerdesign. CHOIetal.:DC–DCCONVERTER-AWAREPOWERMANAGEMENTFORLOW-POWEREMBEDDEDSYSTEMS1381 NaehyuckChang(M’97–SM’05)receivedtheB.S.,M.S.,andPh.D.degreesfromSeoulNationalUni-versity,Seoul,Korea,in1989,1992,and1996,re-spectively. HehasbeenwiththeSchoolofComputerScienceandEngineering,SeoulNationalUniversity,since1997,whereheiscurrentlyanAssociateProfessor.Hisresearchinterestincludesembeddedsystemsandlow-powersystems.Hehaspublishedmorethan70technicalpapersintheseareas. Dr.ChangisamemberoftheAssociationfor ComputingMachinery/SpecialInterestGrouponDesignAutomation(ACMSIGDA).HecurrentlyservesontheTechnicalProgramCommitteeofACMSIGDAandtheIEEECircuitsandSystemsSocietyconferencesandsym-posiumssuchasDAC,ICCAD,ISLPED,andISQED.HeiscurrentlyanAssociateEditoroftheIEEETRANSACTIONSONCOMPUTER-AIDEDDESIGNOFINTEGRATEDCIRCUITSANDSYSTEMS,theJournalofLow-PowerElec-tronics,andtheJournalofEmbeddedComputing. TaewhanKim(M’93)receivedtheB.S.degreeincomputerscienceandstatisticsandtheM.S.degreeincomputersciencefromSeoulNationalUniversity,Seoul,Korea,in1985and1987,respectively,andthePh.D.degreeincomputersciencefromtheUniver-sityofIllinois,Urbana–Champaign,in1993. From1993to1998,hewaswithLatticeSemicon-ductorCorporationandSynopsysInc.,wherehewasinvolvedinlogicandhigh-levelsynthesis,andfromAugust1998to2003,hewaswiththeDepartmentofElectricalEngineeringandComputerScience,Korea AdvancedInstituteofScienceandTechnology,Daejeon,Korea.Currently,heisaProfessorwiththeSchoolofElectricalEngineeringandComputerScience,SeoulNationalUniversity.Hisresearchinterestsareintheareaofcomputer-aideddesignofintegratedcircuitsandcombinatorialoptimizations. 因篇幅问题不能全部显示,请点此查看更多更全内容