您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页Performance evaluation of ensemble empirical mode decomposition

Performance evaluation of ensemble empirical mode decomposition

来源:意榕旅游网
AdvancesinAdaptiveDataAnalysisVol.1,No.2(2009)231–242

cWorldScientificPublishingCompany󰀁

PERFORMANCEEVALUATIONOFENSEMBLE

EMPIRICALMODEDECOMPOSITION

R.K.NIAZY∗,†,‡,C.F.BECKMANN∗,§,J.M.BRADY†

andS.M.SMITH∗

∗Centre

forFunctionalMagneticResonanceImagingoftheBrain(FMRIB)

UniversityofOxford,Oxford,UK

†Department

ofEngineeringScience

UniversityofOxford,Oxford,UK

‡Cardiff

UniversityBrainResearchImagingCentre(CUBRIC)SchoolofPsychology,CardiffUniversityParkPlace,Cardiff,CFI03AT,UK

§Department

ofClinicalNeurosciences

DivisionofNeuroscienceandMentalHealthSchoolofMedicine,ImperialCollegeLondon,UK

Empiricalmodedecomposition(EMD)isanadaptive,data-drivenalgorithmthatdecom-posesanytimeseriesintoitsintrinsicmodesofoscillation,whichcanthenbeusedinthecalculationoftheinstantaneousphaseandfrequency.EnsembleEMD(EEMD),wherethefinalEMDisestimatedbyaveragingnumerousEMDrunswiththeadditionofnoise,wasanadvancementintroducedbyWuandHuang(2008)totryincreasingtherobustnessofEMDandalleviatesomeofthecommonproblemsofEMDsuchasmodemixing.Inthiswork,wetesttheperformanceofEEMDasopposedtonormalEMD,withemphasisontheeffectofselectingdifferentstoppingcriteriaandnoiselevels.OurresultsindicatethatEEMD,inadditiontoslightlyincreasingtheaccuracyoftheEMDoutput,substantiallyincreasestherobustnessoftheresultsandtheconfidenceinthedecomposition.

Keywords:Ensembleempiricalmodedecomposition;Hilbert–Huangtransform;stoppingcriteria.

1.Introduction

Empiricalmodedecomposition(EMD)1,2isadata-driven,adaptivedataanaly-sismethodthatdecomposesanytimeseriesintoitsintrinsicmodesofoscillation.Eachmode(component),calledintrinsicmodefunction(IMF),isanarrow-band,amplitude-andfrequency-modulated(AMandFM)component,whichallowsthecalculationoftheinstantaneousphaseandfrequencyaspartofHilbert–Huangtransform(HHT).1,2HHTanditsEMDalgorithmhavefoundmanyapplicationsinawiderangeofscientificfieldsincludingmeteorology,3–6financialtime-series

231

232R.K.Niazyetal.

analysis,7structuralfailure,8,9seismology,8imageandtextureanalysis,10,11noisesynthesis,12,13signalfilteringandde-noising,14,15variousbiomedicalapplica-tions16–23andinneuroscience.14,24–26

Despiteitspowerandapplicability,EMDsuffersfromsomeweaknessesthathaveyettobeovercome.Ofinteresthereisthelackofrobustnessintheresultswithregardtofactorssuchasthechoiceofstoppingcriteria,noise,andfre-quencycontent.Thesefactorsaffecttheresultsintheformofmodemixingand“erroneous”low-frequencycomponents.27Inanattempttoaddresstheseissues,WuandHuang27haveintroducedtheconcepttoEnsembleEMD(EEMD)bywhichthefinaldecompositionisachievedbyaveraginganensembleofdecompositions,eachwithsomeGaussiannoiseaddedtoaltertheoutcome.Byaveragingthedifferentdecompositions,thenoiseisaveragedoutandanestimateofthe“true”decomposi-tioniscalculatedwithaconfidenceestimate.Inthiswork,wetesttheperformanceofEEMDagainstconventionalEMDwithregardstorobustnessagainstthelevelofinherentnoiseandvariationinthestoppingcriteria.2.Methods

ThemaingoalofthisworkistomeasuretheperformanceofEEMDcomparedtoconventionalEMDwithrespecttoaccuracyandrobustnessontwofronts.First,theabilitytorecoverasignalburiedinnoise.Second,theeffectofchangesinthestoppingcriteria.

TheoriginalHHTpaper1suggestedstoppingthesiftingoncethestandarddeviationbetweentwosuccessivesiftingsislessthanapresetthreshold.Huangetal.28latersuggestedacriterionbasedonnumberofzero-crossingsandextrema.Oncethenumberofzero-crossings/extremaremainsconstantforSsuccessiveiterations,thesiftingisstopped.ThiscriterionwillbereferredtosimplyasS.AnSof4hasbeenrecommendedasagenerallyacceptablenumberbasedonempiricaltests.Rillingetal.29haveproposedanalternativecriterionwherebytwothresholdsareusedtostopthesifting.Thefirstthreshold,θ1,istheratioofthemeanenvelopetotheabsolutedifferencebetweentheupperandlowerenvelopes.Thesiftingcontinuesaslongasthisratioishigherthanθ1for95%ofthedata.Thesiftingalsocontinuesifmorethan5%ofthedatahasaratioaboveathreshold,θ2,usually=10θ1.Lastly,ithasbeensuggestedbyWuandHuang27thatafixednumberofsiftingsshouldbeused,whichwillbereferredtoasthefixedSstoppingcriterion.Thelattercriterionhasbeenshowntoberobustinproducingconsistentdecompositionsfordatawithsimilarstatisticalproper-tiesandlength.Inthiswork,wewillonlycomparetheSandfixedSstoppingcriteria.

2.1.Testsignalsandrelativeerrormeasurement

Inthefollowingnumericexperiments,theperformanceofconventionalEMDandEEMDistestedfortherecoveryofartificialtestsignalsofdifferentfrequencies.

PerformanceEvaluationofEEMD233

Thetestsignalsaresinusoidswithanormalizedfrequencyrangefrom0.01to0.4.Eachtestsignalhas1001samplepointsandismodulatedbythefollowingenvelope:

m[n]=0.25sin[3πn/fs]+0.75.

(1)

Themodulatorisintroducedtodetectanyerrorsduetooversiftingasthisisknowntoyieldconstantamplitudecomponents.Themodulatoralsoinducesmodemixing.AsampletestsignalandtheamplitudemodulatorareshowninFig.1.

TheperformanceofEMDinthedifferentexperimentswillbemeasuredbytherelativeerrorbetweentherecoveredsignal(theIMFwiththehighestcorrelationtothesignal)andthesimulatedtestsignal.Therelativeerrorwillbecalculatedasfollows:

󰀂󰀁

s[n]−c[n])2n(󰀁2,(2)e=

s[n]nwheres[n]isthesimulatedsignalandc[n]istheIMFcomponentmosthighly

correlatedwiths[n].Finally,allnoiselevelsindicatedarerelativetothestandarddeviationofthesignal,forexampleanoiselevelof0.5hasanamplitude0.5×std(signal).

2.2.EMDperformance

TheaimofthisexperimentistoinvestigatetheperformanceofEMDinseparatingnoisefromsignalatdifferentnoiselevelsandusingdifferentstoppingcriteria.Test

Fig.1.AnexampleofatestsignalusedforEMDperformancetesting;thedashedlineisthemodulatorsignal.

234R.K.Niazyetal.

signalsweregeneratedasdescribedabove,resultinginatotalof40signalsranginglinearlyin(normalized)frequencyfrom0.01to0.4.Foreachsignal(withdifferentfrequency),noisewasaddedwithlevels0.2,0.4,and0.8andanEMDdecompositionwascarriedout.Theprocessofnoiseadditionanddecompositionwasrepeated10timesforeachcombinationofnoiselevel,signalfrequency,andstoppingcriterion.Therelativeerrorwasthencalculatedfromeachdecompositionandaveragedoverthe10runs.Thisexperimentwasrepeatedusingarangeof1–10fortheSstoppingcriterionand1–20forthefixedSstoppingcriterion.2.3.EEMDperformance

Inthisexperiment,theaimistodeterminetheadvantageofusingEEMDovercon-ventionalEMD.Further,weinvestigateddifferentsettingsforperformingEEMDincludingdifferentstoppingcriteriaandperturbation(i.e.,usedforalteringthedecomposition)noiselevels.Theperturbationnoiselevelisthelevelofnoiseusedtoassistinthedecomposition,ratherthanthelevelofnoiseinherentinthesig-nal.Testsignalsforthisexperimentweregeneratedasdescribedinthepreviousexperiment.However,thetestsignalshadnoiselevelsof0.2,0.4,and0.8added.Theamountofperturbationnoisewasvariedusinglevelsof0.2,0.5,and1.0ofthestandarddeviationofthetestsignal(plustheinherentnoise).AteachnoiselevelboththeSandfixedScriteriawereusedwithvaluesofS=2,4,and8,andfixedS=5,10,and15.Foreachcombinationofbackgroundnoise,perturba-tionnoise,andstoppingcriterion,500decompositionswereperformed.Typically,the500decompositionsdidnotallresultinthesamenumberofIMFs.However,therewasusuallyone“winning”numberofIMFs,whichresultsmostfrequently(typically70–80%).However,thismightnotbetheoptimalchoicesinceitmaybearguedthatthemostparsimoniousIMFrepresentationistheonewiththeleasterror.Forthisreason,wealsocomparedtheresultsobtainedusingthewinningandtheminimum(mostparsimonious)numberofIMFs.TherelativeerrorswerecomputedfromtheresultingmeanIMFs.3.ResultsandDiscussion3.1.EMDperformance

Figure2showstheresultsfromthestoppingcriteriaexperiment.Unsurprisingly,asthenoiselevelincreases,theabilityofEMDtoseparatenoisefromsignaldecreases.AsweprogressthroughtherowsofFig.2,therelativeerrorusinganygivenstoppingcriterionincreases.Wenotetheappearanceofpeaksatlowfrequencywheretherelativeerrorincreases.TheappearanceofthesepeaksisnotsurprisingknowingthatEMDbehavesasadyadicfilterwhenoperatingonnoise,30–32especiallythatthepeaklocationsseemtohaveadyadicratio.Thesepeaksaremostlikelyforfrequenciesintheboundarybetweentwodyadicfilterbins,drivenbytheaddedwhitenoise.Thisdoesnotimplythattherearefixedfrequencybinsproducedby

PerformanceEvaluationofEEMD235

(a)(d)

(b)(e)

(c)(f)

Fig.2.TheperformanceofEMDusingdifferentSandfixedSstoppingcriteriaunderdifferentnoiseconditions.Therelativeerrormeasureisthatcomputedbetweentheextractedsignalandthesimulatedsignalbeforeintroducingthenoise.Panels(a)–(c)areresultsfromusingtheSstoppingcriteriaandpanels(d)–(f)arethecorrespondingerrorlevelsusingthefixedScriteriawiththesamenoiselevels.

236R.K.Niazyetal.

theEMD;ratherthesefrequencybinsarespontaneouslydrivenbythepeaksfromtheaddedwhitenoise.Whenthefrequencyofthetestsignalisattheborderoftwoofthesebins,thereismoreerrorassociatedwithitsrecoveryasitismorelikelytosplit.Whatissurprising,though,isthatasthenoiselevelincreases,thelocationofthesepeaksseemstoshifthigherupthefrequencyspectrum.Itcouldbethattheaddedsignalinterfereswiththenormaldecompositionofnoiseinawaythatthesmallerthesignal-to-noiseratio(SNR)is,themoreEMDactsasaspontaneousdyadicfilter,ashasbeenpreviouslyreported.Conversely,thehighertheSNRis,themoreinfluenceithasonthedecomposition.Hence,theshiftinthelocationoftheerrorpeakswiththechangeofSNR.

UsingtheSstoppingcriterion,thereseemstobelittletodistinguishbetweenthevaluesusedapartfromthoseatthebottomoftherange.OneshouldavoidusingS=1,asatthisleveltherelativenoiseismarkedlyhigherthantherest.Also,therearelocalminimaatS=4(alsosuggestedbyHuangetal.28)and8,wherethereseemstobeadipintheerrorvaluescomparedtotherest,butagainnothingsubstantial.SimilarlyforthefixedSthebottomoftherangeshouldbeavoided.Thereseemstobealocalminimumatavalueof4,afterwhichtheerrorpeaksaround8,thencontinuouslydecreasesasthenumberofsiftingsisincreased.Ingeneral,theuseoftheSstoppingcriterionresultedinslightlylowererrorvaluescomparedwiththefixedScriterion,atallnoiselevels.3.2.EEMDperformance

Figure3illustratesthemodemixingproblemandthepotentialofEEMDtodealwithit.Inthe“signal”panel,thetestsignalplusnoiseisshowninblueandthetestsignalonitsownisshowninred.ThefirstfourIMFsfromconventionalandEEMDarealsoshown.AreaswheremodemixingwaspresentintheoriginaldecompositionhaveeffectivelybeencorrectedusingEEMD.Thiscanbeseenaroundtime-points80,150,205,and230.

Finally,Figs.4and5showtheresultsoftheEEMDexperimentatabackgroundnoiselevelof0.4,comparedwithconventionalEMD.Regardingaccuracy,thefind-ingfromtheseresultsisthedecreaseinrelativeerrorregardlessoftheperturbationnoiselevelorthestoppingcriteria:almostallcombinationsworkedequallywellwithlittletochoosebetweenthem.Theuseofthe“winning”numberofIMFs,however,providesmuchbettererrorvaluesthroughoutthefrequencyrange.Moreimpor-tantly,asshownintheboxplotsofFig.5,thedistributionaroundtheresultsaremuchtighterwhenusingEEMD;thatis,thereisamarkedincreaseintherobust-nessoftheoutcomeusingEEMDcomparedtoconventionalEMDasindicatedbythetighterwhiskersoftheboxplots.Thiswasaconsistentfindingregardlessofthestoppingcriteriaorperturbationnoiselevel.Also,usinglowerlevelsofperturbationnoiseseemstoresultinslightlylowererrorvalues.

TheincreaseinEMDestimationrobustness,andassociatedcharacterizationofestimationuncertainty,throughtheapplicationofEEMD,canbethoughtofas

PerformanceEvaluationofEEMD237

Fig.3.ModemixinginEMDandEEMD.Thetoppanelshowsinbluethesignalbeingdecom-posed(signal+noise).Overlaidinredisthenoise-freetestsignal.ThefirstfourIMFsareshownusingboththeconventionalEMD(blue)andEEMD(green).Modemixingcanbeseenaroundtimepoints80,150,205,and230usingtheconventionalEMD.Inthiscase,theEEMDseemstoremedytheproblemofmodemixing.

somewhatanalogoustotheuseofMonteCarlosamplingmethods,usedtoachieverobustmodelfittinganderrorcharacterization;inthecaseofEMD,whichprovidesanentirelydata-drivendescription/decompositionoftheoriginaldata,itisclearlynotpossibletotakemultiplesamplesof‘modelparameters’,butinsteadweareusingmultiple‘samples’ofthedataitself.

Finally,theerrorpeaksseenpreviouslyinFig.2alsoappearinFig.4usingEEMD.However,inthecaseofEEMD,therealsoseemstobeamarkedshiftintheerrorpeaksasafunctionoftheamountofsifting!Again,theerrorpeaksresultingfromanygivencriterionseemtohaveadyadicratiowhereeachpeakoccursathalfthefrequencyofthenext.ThereasonwhytheerrorpeaksinEEMDshowa

238R.K.Niazyetal.

Minimum number of IMFs

S

1Perturbation Noise level=0.20.80.60.40.20

S=2

S=4

S=8

Winning number of IMFsNormal EMD

S=5

fixed S

S=10

S=15

10.80.60.40.20

00.10.20.30.400.10.20.30.4

1Perturbation Noise level=0.50.80.60.40.20

10.80.60.40.20

Relative Error00.10.20.30.400.10.20.30.4

1Perturbation Noise level=1.00.80.60.40.20

10.80.60.40.2000.10.20.30.400.10.20.30.4Normalised Frequency

Fig.4.EEMDperformanceatnoiselevel0.4,usingdifferentperturbationnoiselevelsandstop-pingcriteria.Eachrowoffiguresisadifferentperturbationnoiselevel.TheleftandrightcolumnscontaintheresultsusingtheSandfixedSstoppingcriteria,respectively.ResultsshownindashedlinesareobtainedbyaveragingEMDdecompositionswiththeleastnumberofIMFs,whilesolidlinesrepresentresultsobtainedbyaveragingthedecompositionswiththemostfrequentnumberofIMFs(winningnumberofIMFs).IngrayaretheresultsfromtheconventionalEMDwiththesamenoiselevel.

PerformanceEvaluationofEEMD239

Fig.5.BoxplotsofEEMDrelativeerrorcomparedtonormalEMDatanoiselevelof0.4.Theboxplotdistributionsareacrossthefrequencyrange.Eachrowisatadifferentperturbationnoiselevel.TheleftandrightcolumnsareusingtheSandfixedSstoppingcriteria,respectively.Thecrossesindicatepossibleoutliers.TheresultsfromnormalEMDarethesameineachcolumn,asthenoiseperturbationleveldoesnotapply.EEMDperformanceisclearlysuperiortoconventionalEMDasindicatedbythelowererrorvalues(accuracy)andtighterwhiskers(robustness).

240R.K.Niazyetal.

dependenceontheamountofsifting,whilstthisisnotthecaseforconventionalEMD,isnotclear.Similarresultsandconclusionswereobtainedfromthe0.2and0.8noiselevelexperiments(resultsnotshown).Eventhoughhypothesescanbemadeaboutthebehavioroftheerrorpeaksandtheirdependenceonnoiselevelandtheamountofsifting(inthecaseofEEMD),thesewouldremainspeculativeandspecificnumericexperimentsneedtobecarriedouttoinvestigatethesephenomenafurther.4.Conclusion

Insimulationtests,theEEMDwasshowntoimprovetheaccuracyofthedecom-position,andsignificantlyincreasetherobustnesswithregardtoSNRandchangesinthestoppingcriteria.Moreover,intestingtherecoveryofsignalsburiedinnoise,testsshowedarelationshipbetweenthefrequencyofthesignalandtherelativeerror,wheretheerrorpeakedatsomefrequencies.Thelocationoftheseerrorpeaksseemtofollowadyadicpattern.Inaddition,inthecaseofEEMD,thelocationoftheerrorpeaksshiftedhigherupthefrequencyspectrumatmorestringentstoppingconditionsthatarelikelytocausemoresifting.References

1.N.E.Huang,Z.Shen,S.R.Long,M.C.Wu,H.H.Shih,Q.Zheng,N.-C.Yen,C.C.TungandH.H.Liu,TheempiricalmodedecompositionandtheHilbertspectrumfornonlinearandnon-stationarytimeseriesanalysis,R.Soc.Lond.Proc.Ser.AMath.Phys.Eng.Sci.454(1971)(1998)903–995.

2.N.E.Huang,Z.ShenandS.R.Long,Anewviewofnonlinearwaterwaves:theHilbertspectrum,Annu.Rev.FluidMech.31(1999)417–457.

3.K.CoughlinandK.K.Tung,Eleven-yearsolarcyclesignalthroughouttheloweratmosphere,J.Geophys.Res.(Atmos.)109(2004)(D21105).

4.D.G.Duffy,TheapplicationofHilbertHuangtransformstometeorologicaldatasets,J.Atm.Oce.Tech.21(4)(2004)499–611.

5.I.M.JanosiandR.Muller,Empiricalmodedecompositionandcorrelationpropertiesoflongdailyozonerecords,Phys.Rev.E.Stat.Nonlin.Soft.Matter.Phys.71(5Pt2)(2005)056126.

6.S.SinclairandG.G.S.Pegram,Empiricalmodedecompositionin2-Dspaceandtime:atoolforspace-timerainfallanalysisandnowcasting,Hydrol.EarthSyst.Sci.9(1–2)(2005)127–137.

7.N.E.Huang,M.-L.Wu,W.Qu,S.R.LongandS.S.P.Shen,ApplicationsofHilbert–Huangtransformtonon-stationaryfinancialtimeseriesanalysis,Appl.Stochas.Model.Busi.Indus.19(3)(2003)245–268.

8.C.-H.Loh,T.-C.WuandN.E.Huang,Applicationoftheempiricalmodedecompo-sition:Hilbertspectrummethodtoidentifynear-faultground-motioncharacteristicsandstructuralresponse,Bull.Seismol.Soc.Amer.91(5)(2001)1339–1357.

9.L.W.Salvino,D.J.Pines,M.D.ToddandJ.Nichols,Signalprocessinganddamagedetectioninaframestructureexcitedbychaoticinputforce,inSmartStructuresandMaterials2003:Modeling,SignalProcessing,andControl,ed.R.C.Smith,Vol.5049(SPIE,2003),pp.639–650.

PerformanceEvaluationofEEMD241

10.J.C.Nunes,Y.Bouaoune,E.Del´echelle,O.NiangandP.Bunel,Imageanalysis

bybidimensionalempiricalmodedecomposition,ImageVis.Comput.21(12)(2003)1019–1026.

11.J.C.Nunes,S.GuyotandE.Del´echelle,Textureanalysisbasedonlocalanalysis

ofthebidimensionalempiricalmodedecomposition,Mach.Vis.Appl.16(3)(2005)177–188.12.E.Del´echelle,J.-C.NunesandJ.Lemoine,Empiricalmodedecompositionsynthesisof

fractionalprocessesin1D-and2D-space,ImageVis.Comput.23(9)(2005)799–806.13.G.Rilling,P.FlandrinandP.Gon¸calv`es,Empiricalmodedecomposition,fractional

gaussiannoiseandhurstexponentestimation,IEEE-ICASSP,Philadelphia,PA,USA(2005).

14.H.Liang,S.Bressler,R.DesimoneandP.Fries,Empiricalmodedecomposition:a

methodforanalyzingneuraldata,Neurocomputing65–66(2005)801–807.15.P.Flandrin,P.Gon¸calv`esandG.Rilling,Detrendinganddenoisingwithempirical

modedecompositions,Eusipco,12thEuropeanSignalProcessingConf.(Vienna,Aus-tria,2004).

16.W.Huang,Z.Shen,N.E.HuangandY.C.Fung,Engineeringanalysisofbiological

variables:anexampleofbloodpressureover1day,Proc.Natl.Acad.Sci.USA95(9)(1998)4816–4821.

17.H.Liang,Z.LinandR.W.McCallum,Artifactreductioninelectrogastrogrambased

onempiricalmodedecompositionmethod,Med.Biol.Eng.Comput.38(1)(2000)35–41.

18.J.I.SalisburyandY.Sun,Assessmentofchaoticparametersinnonstationaryelec-trocardiogramsbyuseofempiricalmodedecomposition,Ann.Biomed.Eng.32(10)(2004)1348–1354.[EvaluationStudies].

19.E.P.SouzaNeto,M.A.Custaud,J.C.Cejka,P.Abry,J.Frutoso,C.Ghariband

P.Flandrin,Assessmentofcardiovascularautonomiccontrolbytheempiricalmodedecomposition,Meth.Inf.Med.43(1)(2004)60–65.

20.M.Bennett,S.McLaughlin,T.AndersonandN.McDicken,Empiricalmodedecom-positionandtissueharmonicimaging,UltrasoundMed.Biol.31(8)(2005)1051–1061.21.M.A.ChappellandS.J.Payne,Amethodfortheautomateddetectionofvenousgas

bubblesinhumansusingempiricalmodedecomposition,Ann.Biomed.Eng.33(10)(2005)1411–1421.

22.H.Liang,Q.-H.LinandJ.D.Z.Chen,Applicationoftheempiricalmodedecomposi-tiontotheanalysisofesophagealmanometricdataingastroesophagealrefluxdisease,IEEETrans.Biomed.Eng.52(10)(2005)1692–1701.[ClinicalTrial].

23.M.-C.WuandC.-K.Hu,Empiricalmodedecompositionandsynchrogramapproach

tocardiorespiratorysynchronization,Phys.Rev.EStat.Nonlin.Soft.Matter.Phys.73(5Pt1)(2006)051917.

24.C.M.Sweeney-Reed,A.O.AndradeandS.J.Nasuto,Empiricalmodedecomposi-tionofeegsignalsforsynchronizationanalysis,Proc.3rdIEEEEMBSSUKandRIPostgraduateConf.BiomedicalEngineeringandMedicalPhysics(Southampton,UK,2004).

25.C.M.Sweeney-Reed,J.D.Howroyd,A.O.AndradeandS.J.Nasuto,Empiricalmode

decompositionforisolationofneuralassembliesunderlyingcognitiveacts,Proc.4thIEEEEMBSSUKandRIPostgraduateConf.BiomedicalEngineeringandMedicalPhysics(Reading,UK,2005),pp.21–22.

26.H.Liang,S.L.Bressler,E.A.Buffalo,R.DesimoneandP.Fries,Empiricalmode

decompositionoffieldpotentialsfrommacaqueV4invisualspatialattention,Biol.Cybern.92(6)(2005)380–392.

242R.K.Niazyetal.

27.Z.WuandN.E.Huang,Ensembleempiricalmodedecomposition:anoise-assisted

dataanalysismethod,Adv.Adapt.DataAnal.1(1)(2009)1–41.

28.N.E.Huang,M.-L.C.Wu,S.R.Long,S.S.Shen,W.Qu,P.GloersenandK.L.Fan,

AconfidencelimitfortheempiricalmodedecompositionandHilbertspectralanalysis,R.Soc.Lond.Proc.Ser.AMath.Phys.Eng.Sci.459(2037)(2003)2317–2345.29.G.Rilling,P.FlandrinandP.Gon¸calv`es,Onempiricalmodedecompositionandits

algorithms,inIEEE-EURASIPWorkshoponNonlinearSignalandImageProcessingNSIP-03(Grado,Italy,2003).

30.Z.WuandN.E.Huang,Astudyofthecharacteristicsofwhitenoiseusingthe

empiricalmodedecompositionmethod,R.Soc.Lond.Proc.Ser.AMath.Phys.Eng.Sci.460(2046)(2004)1597–1611.31.P.FlandrinandP.Gon¸calv`es,Empiricalmodedecompositionsasdata-drivenwavelet-likeexpansions,Int.J.Wavelets,Multiresol.Inform.Process.2(4)(2004)477–496.32.P.Flandrin,G.RillingandP.Gon¸calv`es,Empiricalmodedecompositionasafilter

bank,IEEESig.Proc.Lett.11(2)(2004)112–114.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务