行程问题:
这类问题涉及到三个数量:路程、速度和时间。它们的数量关系是:路程 =速度*时间。列分式方程解决实际问题要用到它的变形公式:速度=路程/ 时间,时间=路程/速度。
列1、 A,B两地相距135千米,两辆汽车从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟,已知小汽车与大汽车的速度之比为5:2,求两车的速度。
解:设大车的速度为2x千米/时,小车的速度为5x千米/时,根据题意得
答:大车的速度为18千米/时,小车的速度为45千米/时
列分式方程解应用题的一般步骤: (1)审清题意;
(2)设未知数(要有单位);
(3)根据题目中的数量关系列出式子,找出相等关系,列出方程; (4)解方程,并验根,还要看方程的解是否符合题意; (5)写出答案(要有单位)。
练习:
1、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自
行车从甲地出发,结果同时到达。已知B的速度是A的速度的3倍,求两车的速度。
1352x-
1355x=5—
12解之得 x=9
经检验x=9是原方程的解
当x=9时,2x=18,5x=45
2、我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。
3、两地相距360千米,回来时车速比去时提高了50%,因而回来比去时途中时间缩短了2小时,求去时的速度
4、某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米?
5、八年级(1)班学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车的1。5倍,求慢车的速度
工程问题:这类问题也涉及三个数量:工作量、工作效率和工作时间。它们的数量关系是:工作量=工作效率*工作时间。列分式方程解决实际问题用它的变形公式:工作效率=工作量/工作时间。特别地,有时工作总量可以看作整体“1”,这时,工作效率=1/工作时间。
例2 某校招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?
解 设乙每分钟能输入x名学生的成绩,则甲每分能输入2x名学生的成绩,根据题意得
264026402602xx 解得 x=11
经检验,x=11是原方程的解.并且x=11,2x=2×11=22,符合题意. 答:甲每分钟能输入22名学生的成绩,乙每分钟能输入11名学生的成绩. 练习:1、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽
量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?
2、打字员甲的工作效率比乙高25%,甲打2000字所用时间比乙打1800字的时间少5分钟,求甲乙二人每分钟各打多少字?
3、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。求A、B每小时各做多少个零件。
4、某车间需加工1500个螺丝,改进操作方法后工作效率是原计划的21倍,所以加工完比2原计划少用9小时,求原计划和改进操作方法后每小时各加工多少个螺丝?
5、有一工程需在规定日期内完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,求规定日期是几天?
因篇幅问题不能全部显示,请点此查看更多更全内容