Comp.Anim.VirtualWorlds2004;15:27–38(DOI:10.1002/cav.5)
******************************************************************************************************
Specifyingandanimatingfacialsignalsfordiscourseinembodiedconversationalagents
ByDougDeCarlo*,MatthewStone,CoreyRevillaandJenniferJ.Venditti
******************************************************************************************************
Peoplehighlighttheintendedinterpretationoftheirutteranceswithinalargerdiscoursebyadiversesetofnon-verbalsignals.Thesesignalsrepresentakeychallengeforanimatedconversationalagentsbecausetheyarepervasive,variable,andneedtobecoordinatedjudiciouslyinaneffectivecontributiontoconversation.Inthispaper,wedescribeafreelyavailablecross-platformreal-timefacialanimationsystem,RUTH,thatanimatessuchhigh-levelsignalsinsynchronywithspeechandlipmovements.RUTHadoptsanopen,layeredarchitectureinwhichfine-grainedfeaturesoftheanimationcanbederivedbyrulefrominferredlinguisticstructure,allowingustouseRUTH,inconjunctionwithannotationofobserveddiscourse,toinvestigatethemeaningfulhigh-levelelementsofconversationalfacialmovementforAmericanEnglishspeakers.Copyright#2004JohnWiley&Sons,Ltd.Received:8April2003;Revised:8April2003
KEYWORDS:
facialanimation;embodiedconversationalagents
Introduction
Whenpeoplecommunicate,theysystematicallyemployadiversesetofnon-verbalcues,andhighlighttheintendedinterpretationoftheirutterances.ConsidertheexampleinFigure1(a),thefinalsegmentofabriefnewsstoryasreadbyJudyFortinonCNNheadlinenewsinOctober2000:
NASAscientistshavespottedsomethingfloatinginspacethat’sheadedourway.Butthey’renotsureifit’sanasteroidorpartofanoldspacecraft.TheoddsareoneinfivehundredtheunidentifiedobjectwillcollidewithEarth—fargreaterthananysimilarob-jecteverdiscovered.
JudyFortin’sexpressivemovementsinFigure1(a)includeatiltingnodtoherleftinsynchronywithwordsfargreaterwhichsheuttersasasinglespeechunit;raisedeyebrowsonthephraseanysimilarobject,alongwithabriefdownwardnodonsimilar;andanupward(andalsoslightlyrightward)headmotiononever.Weusethetermfacialconversationalsignalstorefertomovementssuchasthese.Incontext,thesemovementslinktheutterancewiththerestofthestory.Theyjuxtaposethe
*Correspondenceto:DougDeCarlo,DepartmentofComputerScienceandCenterforCognitiveScience,RutgersUniversity,Piscataway,NJ08854-8019,USA.E-mail:decarlo@cs.rutgers.edu
unidentifiedobjectwithalternativespaceobjects,em-phasizethewiderangeofobjectsbeingconsidered,andhighlighttheunidentifiedobject’suniqueness.Theytherebycallattentiontothepointofthestory—whythispossiblecollisionwithEarth,animprobableeventbyordinarystandards,remainsnewsworthy.
Thesemovementsarequitedifferentincharacterfromtheinterpersonalandaffectivedimensionsthathavebeeninvestigatedinmostpriorresearchoncon-versationalfacialanimation.Forexample,Cassellandcolleagues1,2havecreatedagentsthatuseanimatedheadandgazedirectiontomanagespeakingturnsinface-to-faceconversation.NagaoandTakeuchi3andPoggiandPelachaud4,5havecreatedagentsthatpro-ducespecificemblematicdisplays(thatis,completeexpressionsinvolvingbrows,mouth,eyesandhead,withasinglemeaning)toclarifyinteractionwithauser.Animatedemotionaldisplays(andcorrespondingdif-ferencesinpersonality)havereceivedevenwideratten-tion.6–10ThemovementsofFigure1(a)donotengagetheseinterpersonaloraffectivedimensions;theysignalinternalsemanticrelationshipswithinJudyFortin’spresentation.
Althoughthesesignalsandtheirinterpretationshavenotbeenmuchstudied,webelievethattheyrepresentakeychallengeforanimatedconversationalagents,be-causetheyaresopervasiveandsovariable.Inexplora-torydataanalysiswehavefoundthat,asinFigure1(a),smallheadmovementsrelatedtodiscoursestructure
******************************************************************************************************
Copyright#2004JohnWiley&Sons,Ltd.
D.DECARLOETAL.
******************************************************************************************************
Figure1.Naturalconversationalfacialdisplays(a,top),ahigh-levelsymbolicannotation(b,middle),anda
synthesizedautomaticallyfromtheannotation(c,bottom).andinterpretationareamongthemostcommonnon-verbalcuespeopleprovide.AndFigure1(a)alreadyshowsthreequalitativelydifferentheadmovementswhicheachsuitthesynchronousspeech.
Inthispaper,wedescribeafreelyavailablecross-platformreal-timefacialanimationsystem,RUTH(forRutgersUniversityTalkingHead),whichanimatessuchsignalsinsynchronywithspeechandlipmovements.RUTHadoptsanopen,layeredarchitectureinwhichfine-grainedfeaturesoftheanimationcanbederivedbyrulefrominferredlinguisticstructure.RUTHthereforeac-ceptsinputsimplyandabstractly,asacompactsym-bolicdescriptionofconversationalbehavior.Humananalystscanproducesuchspecificationsforobserveddata,throughtheprocesswerefertoascodingorannotation.
Forexample,Figure1(b)givesasenseofRUTH’sinputbypresentingtheannotationthatagroupoffouranalystsarrivedatincodingtheoriginalCNNfootagefromFigure1(a).TheintonationisspecifiedaccordingtheTonesandBreakIndices(ToBI)stan-dard;11,12LþH*,!H*andLþ!H*markaccentsonsyllables,whileH-,L-andL-L%recordtonesattheboundariesofprosodicunits.Theconversationalbrowmovementsarecategorizedintermsofthefacialactionunit(AU)involved,followingEkman;131þ2istheactionunitfortheneutralbrowraise.Finally,theheadmovementsarelabeledbynewcategoriesthatweobservedfrequentlyinourdata:TLforatiltingnodonaphrase;D*foradownwardnodaccompanyingasinglesyllable;andU*foranupwardnodaccompany-ingasinglesyllable.
RUTH
animation
TheannotationofFigure1(b)exhibitsatypicalpar-allelbetweenverbalandnon-verbalchannels:unitsofmotioncoincidewithunitsofspeechphrasingandpeaksofmovementcoincidewithprominentsylla-bles.13–16RUTH’sanimationretainsthisunity,becauseRUTHorchestratestherealizationofnon-verbalsignalsandspeechsoundsandmovementsaspartofasingleprocesswithaccesstorichinformationaboutlanguageandaction.Figure1(c)displaysstillshotsfromRUTH’srenditionoftheannotation.ThecomparisonisnotthatthemotionsofFortinandRUTHareidentical—thesym-bolicinputthatdrivesRUTHismuchtooabstractforthat—butthatthemotionsaresufficientlyaliketomeanthesame.
RUTHimplementsapipelinearchitecturewithwell-definedinterfaceswhichcanlinkupeitherwithinternalmodulesorexternalapplications.Atthelowestlevel,RUTHanimatesascheduleofanimationinstructionsforourlifelikecharacter(thoughnotananatomicallyrea-listicone),byapplyingdeformationstoapolygonalmesh,inpartusingadominance-basedco-articulationmodel.17–19Ahigherlevelderivesascheduleofanima-tioninstructionsfromannotatedtext,byinstrumentingtheinternalrepresentationsofthepublic-domainspeechsynthesizerFestival20tokeeptrackofsynchro-nousnon-verbaleventsandfleshthemoutintoanima-tioninstructionsusingcustomizablerules;furtherutilitieshelpsupportRUTH’susefordialogueresearchandinconversationalsystems.RUTHisavailableforuseinresearchandeducationfromourwebsite:
http:==www:cs:rutgers:edu=evillage=ruth
******************************************************************************************************
Copyright#2004JohnWiley&Sons,Ltd.28Comp.Anim.VirtualWorlds2004;15:27–38
SPECIFYINGANDANIMATINGFACIALSIGNALS
******************************************************************************************************
easilyachievesreal-timeframerates(i.e.,30persecondorbetter)onanymoderndesktopcomputerwith3Dgraphicshardware.
RUTHrequiresannotatedinputratherthanplaintextbecauseintonation,facialexpressionsandheadmove-mentscanoftenaddsomethingnewtotheinterpreta-tionofanutterance;theyarenotalwaysredundant.BavelasandChovil21offerarecentsurveyofthepsy-chologicalevidenceforsuchanintegratedmessagemodelofface-to-facecommunication.Onthisview,theindependentcontributionoffacialsignalscannotbederivedfromtext(automaticallyorotherwise);ithastobespecifiedseparately.ThusourperspectivecontrastswithapproachestofaceanimationsuchasPerlin’s22,23orBrand’s,24andanimatedagentssuchasSmidandPandzic’s,25whereanimationisdrivenfromgenerativestatisticalmodelsbasedsolelyonthetext.RUTH’sannotatedtextinputenablesresearcherstoexpe-rimentwithmeaningfulwaysofselectingintonation,facialexpressionsandheadmovementstocomplementsimultaneousspeech.RUTHisalsocompatiblewithtextinput,ofcourse.Forexample,RUTHcanbeusedwithsystemsthatautomaticallyannotatetextforembodieddelivery,suchasCassellandcolleagues’BEATsys-tem.26Alternatively,simpleheuristicstoannotatetextcanbequiteeffectiveinconstraineddomains.Never-theless,humanjudgmentsarestillnecessarytovarythesignalsofembodiedconversationmeaningfully.
RUTH
Implementation
Architecture
ThearchitectureofRUTHisdiagramedinFigure2.Theprogramconsistsofatierofindependentthreadsthat
usequeuestocoordinateandcommunicate.Thequeueimplementationenforcesmutualexclusionforqueueoperations,andallowsthreadswaitingonthequeuetosuspenduntilthestateofthequeuechanges.Thissema-nticsmakesthemultithreadedimplementationofstagesinthepipelinesimpleandelegant.
Thehighest-levelthreadisthecommandthread,whichinterfaceswithinteractiveapplications.Thecommandthreadacceptsandpostsabstractrequestsforanima-tion,suchastofollowapre-computedscript,tosynthe-sizespeechandcontrolinformationforanewutterance,ortointerruptanongoinganimation.
Nextistheloaderthread,whichsupportsflexibleprocessinginlinkinganimationwithspeechdata.Theloaderthreadisresponsibleforpopulatingarealizationqueuewithspecificactionstoanimateatprecisetimesrelativetothestartofspeech.Itimplementsanumberofalternativestrategiesformarshalingtherequiredinfor-mation,includingcommunicationwiththeFestivalspeech-synthesisserver20andaccesstopre-computeddata.
Finally,thedisplaythreadandthesoundthreadcoordi-natetorealizetheanimation,throughcarefuldeploy-mentofoperating-systemsprimitivesforconcurrency.Thedisplaythreadupdatesmodelgeometryandren-dersframesonareal-timescheduledrivenbyaglobalanimationclock.Thesoundthreadsendsdatatotheaudiodeviceinsmallunits(enablinggracefulinterrup-tion),andmonitorstheresultstokeeptheplayingsoundandtheanimationclockinagreement.
Model
supportsdeformablepolygonalmodels.Wecom-bineacommonunderlyinggeometryofthemodelwithasetofdeformations,parameterizedfrom0(represent-ingnodeformation)to1,whichrepresentindependentqualitativechangestothemodel.Currentdeformationsdescribethemouthmovementsandtonguemovementsinvolvedinspeech,asinFigure3;seealsoCohenandMassaro.17Therearealsodeformationsforbrowactionunits1(innerraise),2(outerraise),and4(frowning),smilingandblinking.Weapplyadeformationbyadd-ingoffsetstotheunderlyinggeometry;theoffsetisinterpolatedfromkeyoffsetvaluesasapiecewiselinearfunctionofthedeformationparameter.RUTHalsoper-mitsrotationsandtranslationsoverpartsofthemodel:theeyesrotate;theheadrotatesandtranslates,main-tainingasmoothjoinwiththeneck.Attheboundariesofparts,theeffectofthetransformationfadesoutgradu-allyacrossapre-specifiedregion.
RUTH
Figure2.ThearchitectureofRUTH.
******************************************************************************************************
Copyright#2004JohnWiley&Sons,Ltd.29Comp.Anim.VirtualWorlds2004;15:27–38
D.DECARLOETAL.
******************************************************************************************************
Parameterrotatejawstretchmouthlowercornersroundupperlipraiseupperlippoutlowerliplowerlowerliptucklowerlipraisetonguesticktongueout
Effect
opensthemouthusedforlowvowelstightensthelips
commoninmanyvisemes
givesthelowerlipanarchedlookseenparticularlyinp,bandm
givestheupperliparoundedshape
seenforexamplewithroundedconsonantwraiseslipwithlessroundingseenforexampleinshbringslowerlipforwardseenforexampleinsh
givesthelowerliparoundedlookseenforexampleinw
drawsthelowerlipbackundertheteethseenparticularlywithfandvdrawsthetongueuptothepalateseenparticularlywithtandd
drawsthetongueoutoverandpasttheteethseenparticularlywithth
Figure3.DeformationsforvisiblespeechinRUTH.
Ourmodelandsomeofitsdeformationsareillu-stratedinFigure4.Indesigningthemodel,wehaveadoptedtheaestheticofillustrationratherthanthatofphotorealism,inordertoobtainanattractiveandbeliev-ableresultwithinreasonablecomputationaldemands.Inall,themodelhassome4000polygons;appearanceisdeterminedbyvaryingmaterialpropertiesratherthantexture.Wehave,moreover,attemptedtokeepthemodelrelativelyambiguousastosex,race,andage(e.g.,elementaryschooltoyoungadult);thisway,aswidearangeofusersaspossiblecanregardthemselvesandRUTHasmatched,animportantaspectofusability.27RUTHimplementsmouthmovementsforspeechusingadominance-basedco-articulationmodel;17–19seeKing18forexplanationandfurtherreferences.Theani-mationschedulespecifiesvisemes,categoriesoffacial
appearancethatcorrespondtoparticularcategoriesofspeechsounds.Visemeshavegoals,particularpara-metersforoffsetdeformationsatpeak;anddominancefunctions,whichcharacterizehowvisiblethesedeforma-tionsareinarticulationasafunctionoftime.Deforma-tionsthataffectthelips(suchassmiling)alsosupplydominancefunctionswhichfactorintothecomputationofspeechlipshapes.Mouthoffsetsineachframearecomputedbyapplyinggoalsforactivevisemesinrelativeproportiontotheircurrentdominance.
Animationforotherfacialactionscombinesagoalwithaparameterizedanimationtemplate,whichdirectlydescribesthedegreetowhichthegoalisachievedovertime.Individualactionsarethenspecifiedintermsofstarttime,endtime,peakintensity,attackanddecay.Figure5showshowwesynchronizetheseparameters
Figure4.RUTH’sunderlyinggeometry;deformationsfor1þ2,jawopening,puckeringmouthcornersandraisingupperlip.
******************************************************************************************************
Copyright#2004JohnWiley&Sons,Ltd.30Comp.Anim.VirtualWorlds2004;15:27–38
withprosodicfeaturesinspeech.Actionsthatspanprosodicunitspeakfromthestartofthefirstaccentinaphrasetotheendofthelastaccentinthephrase;theyrampupgraduallyatthestartofthephraseandfalloffgraduallyattheend.Actionsthathighlightindividualwordspeakjustonanaccentedsyllable.Thesetem-plateslinkcoarsespecificationsforconversationalac-tionstoconcreteanimationparameters,andthusunderlieRUTH’sabilitytoacceptqualitative,symbolicspecifications.Weofferahigher-levelperspectiveonthissynchronyinanimationwhenwedescribetheuseofRUTHlater.ThegeometrythatRUTHrendersforeachframeofanimationaddsthecomputedmouthoffsetsandthecomputedactionoffsetsforthattimetotheunderlyinggeometryofthemodel.
InterfacingwithSpeech
Keepingtrackofanimationduringtheprocessofspeechsynthesisisaperennialproblem.Wehaveinstrumentedtheopen-sourceFestivalspeechsynthesissystem20sothatitsynthesizestimingdataforspeechandanimationasanintegratedwhole.RUTH’sloaderthreadincludesaclientfortheresultingtext-to-timed-animated-speechserver,andRUTH’scommandthreadacceptsa‘synthe-size’commandwhichinstructstheloadertosendspecificmarked-uptexttoFestivalandtoanimatetheresults.
Festivalrepresentslinguisticstructuresusinggeneralgraphrepresentations.Nodesinthesegraphscorre-spondtoutteranceelements,includingsuchconstructsaswords,phrases,phonemesandtones.Aseparategraphdescribestherelationshipsamongelementsateachlinguisticlevel;elementscanalsohavearbitraryfeatures,includingfeaturesthatestablishlinksbetween
levelsoflinguisticanalysis.Inpututterancesarelistsofmarked-upwords;eachlistelementspecifiesawordand(optionally)alistofattribute–valuepairswhichspecifyhowthewordistoberealized.Forexample,suchattribute–valuepairscanspecifytheprosodywithwhichtorealizetheutterance.Theprocessoftext-to-speechinvolvesrepeatedlyenrichingthelingui-sticrepresentationofthisinput,byaddingnewrelation-ships,elementsandfeatures.Thisprocessismanagedbyafullycustomizableflow-of-controlininterpretedScheme.Eventually,thisprocessdeterminesacompletephoneticdescriptionofanutterance,includingpho-nemes,pitch,junctures,andpausesandtheirtiming;synthesisiscompletedbyacousticoperations.
Festival’sflexible,openarchitecturemeshesnaturallywiththerequirementsofanimation.WespecifyFestivalinputwithfeaturesonwordsforheadandbrowactionsaswehavecodedthem.Figure6givesanexampleofsuchinput.WeaddrulesfortimingtheseactionstoFestival’stext-to-speechprocess.BecauseofFestival’sdesign,theserulescandrawonstructuralandphoneticconsiderationsintheutterance(asinFigure5)byexploringitsfinalphoneticdescription.Wecanalsocustomizeremainingquantitativeparametersforspeci-ficanimationactions.Weaddafinaltraversalofutter-ance’sphoneticrepresentationsothattheservercanoutputaseriesofvisemesandanimationcommandscorrespondingtoasynthesizedwaveform.ForRUTH,wehavealsoreinstrumentedFestival(debuggingandex-tendingthestandardrelease)tocontrolpitchbyannota-tion;28,29weuseOGICSLUsynthesisandvoices.30AnimationschedulesandspeechwaveformsoutputbyFestivalcanbesaved,reusedandmodifieddirectly.Thismakesiteasytovisualizelow-levelvariationsintimingandmotion.(Inthecommandthread,a‘save’instructionconstructsfilesforinputthatwillreproduce
D.DECARLOETAL.
******************************************************************************************************
Figure6.TaggedspeechinputtoFestivalcorrespondingtoFigure1(b);filesuse‘jog’forheadmotionsandsingletags(e.g.
‘(jog)’)tosignalendsofmovements.themost-recentlyrealizedanimation;the‘canned’in-structionreplaystheanimationfromaspecifiedfile.)Wealsosupportsimilarvisualizationsinvolvingre-cordedspeech,drawingonoff-the-shelftoolstoputwaveformsintemporalcorrespondencewiththeirtran-scriptsandtoannotatetheresults.
downstepped(annotatedby!asin!H*)toalowerpitchvalue(andlowerprominence).Pitch‘accents’arespe-cifiedtoRUTHasvaluesofaword’s‘accent’attribute.WordsaregroupedintotwohierarchicallevelsofprosodicphrasinginEnglish:thesmallerintermediatephraseandthelargerintonationphrase.Anintermedi-atephraseismarkedbyahigh(H-)orlow(L-)toneimmediatelyafterthelastaccentedsyllableinthephrase,andanintonationphraseisadditionallymarkedbyahigh(H%)orlow(L%)toneattherightphraseedge.CommonpatternsforintonationphrasesthusincludethefalloftenfoundindeclarativestatementsL-L%,theriseoftenfoundinyes–noquestionsH-H%,andacombinedfall–riseL-H%associatedgenerallywithcontributionstodiscoursethataresomehowin-complete.PhraseandboundarytonesarespecifiedtoRUTHasvaluesofthe‘tone’attribute,whichaccompa-niesthefinalwordinaphrase.
ToBIofferssophisticatedresourcesforcharacterizingthepitchcontourofEnglishutterances,intermsthatcorrelatecloselywiththemeaningsthatprosodicvaria-tioncanconveyinparticulardiscoursecontexts;seePierrehumbertandHirschberg.31Researcherscancallupontheseresourcesindecidingtorealizeembodiedutteranceswithsuitableintonation.However,richvar-iationisnotalwaysnecessary;forexample,itworksquitewelltojustputanH*oncontentwordsthathavenotbeenusedbeforeinthediscourse,32andtoputanL-orL-L%atnaturalboundaries,aftereveryfewcontentwords.Thesestrategiesofferasimplealterna-tiveforpreparingspecificationsforRUTHbyhand,orforwritingalgorithmsthatconstructthemautomatically.AnotherimportantaspectofEnglishprosodyispitchrange,theextremesofhighandlowthatareattainedoverawholephrase.Thisisalsoknownastheregisterofspeech.ToBIlabelsdescribethequalitativechangesinpitchwithrespecttowhateverpitchrangehappenstobeineffect.Butchangesinoverallpitchrangehelptosignaltheorganizationofdiscourse:atthebeginningsofdiscoursesegments,pitchrangeisexpandedandatthe
DrivingRUTHwithAnnotatedText
ThemostabstractwaytospecifyananimationforRUTHistosupplyRUTHwithtextthathasbeenmarked-uptospecifytheheadmotionsandotherfacialactionsthatshouldoccurasthetextisuttered.ThissectiondescribestherangeofdeliverythatRUTHsupportsandgivessomehintsabouthowtouseRUTH’sanimationcapabilitiesinthemostmeaningfulway.
RUTHInputanditsMotivation
Tospecifyprosody,RUTHusestheTonesandBreakIndices(ToBI)modelofEnglishintonation.11,12InToBI,prosodicstructureisdescribedintermsofphrasing,clusteringofwordsintogroupsdelimitedbyperceiveddisjuncture,andaccentuation,theperceivedprominenceofparticularsyllableswithinagroupofwords.Intona-tionaltuneisspecifiedbysymbolicannotationsthatdescribethequalitativebehaviorofpitchataccentsandphrasalboundaries.IntheToBIlabeling,eachutteranceisrequiredtoconsistofoneormorephrases.Eachphrasemustendwithappropriatephraseorboundarymarkers,andeachphrasemustcontainatleastoneaccentedword.
TheEnglishtonalinventoryincludespitchaccentssuchashigh(H*),low(L*),orrisingaccentsthatdifferinwhethertheriseprecedes(LþH*)orfollows(L*þH)thestressedsyllable.Accentswithahightonalcompo-nentaregenerallyrealizedhighinthespeaker’spitchrangeforthephrase,butcansometimesbe
******************************************************************************************************
Copyright#2004JohnWiley&Sons,Ltd.32Comp.Anim.VirtualWorlds2004;15:27–38
SPECIFYINGANDANIMATINGFACIALSIGNALS
******************************************************************************************************
endsofdiscoursesegmentspitchrangeiscontractedandgenerallylowered.33Inaddition,thegenerallevelofpitchisasignalofaspeaker’sinvolvementinwhattheysay:moreimportantcontributionsaredeliveredwithhigherpitch.34Varyingpitchrangeisthusessentialtogivethevariabilityandorganizationofnaturalspeech.RUTH’sconventionisthata‘register’attributeonthefirstwordofaphrasesetsthepitchrangeforthewholephrasetooneofafewqualitativevalues.(Theconven-tionappliesforallintermediatephrases,notjustintona-tionphrases.)RUTH’squalitativevalues,asgiveninFigure7,arederivedfromtheworkofMoehlerandMayer.29,35RUTH’smodelsoffacialconversationalsignalsbuildonthisspecificationofprosody.Ournewmovementsmayfunctionasunderlinersthataccompanyseveralsuccessivewords,orasbatonsthathighlightasingleword.13Incalculatingthetemporaldynamicsofunder-linersandbatons,RUTHbuildsfromtheclosesynchronythatresearchers13–16havefoundbetweenembodiedactionandsimultaneousspeechinconversation.WeanticipatedthisalreadyindiscussingFigure5.RUTHassumesthatunderlinersspancompleteintermediateorintonationphrases.ThisallowsRUTHtoensureauto-maticallythatthemovementappearstopeakinsyn-chronywiththefirstprosodicemphasisinaphraseandtobereleasedafterthelastprosodicemphasisinaphrase.Similarly,RUTHassumesthatbatonsonlyoccuronwordsthatarespecifiedforaccent,andtimesthepeakofthebatontosynchronizewiththestressedvowel.
Aligningconversationalfacialsignalswithspeechthiswaycanhelptosettledifficultannotationdecisionsinaprincipledway.Itisquitedifficulttoannotatebeginningsandendsofbrowmovements,forexamplebylookingatavideorecordofaconversation.Thetypicaldifficultyisjudgingwhereamovementstartsorendswithinaseriesofshortunaccentedwords.
HH^HH^LLL^LHLHL^Hprimaryhighregister(default)expandedhighregistercompressedhighregisterprimarylowregistercompressedlowregisterexpandedregisterincludinglowsandhighsfullpitchrange
Figure7.PossiblespecificationsofpitchrangeforRUTH.29,35Figure1isrepresentative:thephrasethananysimilarobjectbeginsandendswithunstressedsyllables.Coderswhohavetochooseseparatelywhethertoincludethanoranyasmarkedwithabrowraisefaceadifficultandprobablymeaninglessjudgment.
InRUTH’sinput,aseparateattributeofwordscontrolseachindependentdimensionoffacialmovement.Foreachattribute,RUTHpermitsatmostoneunderlinerandatmostonebatonatatime;alabeledwordeithermarksthebeginningortheendofanunderlinerorcarriesabaton.RUTHadoptstheconventionthatbatonlabelsendin*,whilecorrespondingunderlinerlabelsomitthe*.RUTHfollowsEkmaninclassifyingbrowmovementsintermsofthefacialactionunit(AU)involved;AUsarepatternsofchangeinthefacethattrainedexpertscancodeandsometimesevenperformreliably.13BrowmovementsaremadeupofAU1,whichraisestheinsideofthebrow;AU2,whichraisestheoutsideofthebrow;andAU4,whichnarrowsanddepressesthebrow.RUTHcurrentlyimplementsaneutralraise,speci-fiedasvalues‘1þ2’or‘1þ2*’fortheattribute‘brow’,andaneutralfrown,specifiedasvalues‘4’or‘4*’.RUTH’ssmileisspecifiedwithanattribute‘smile’,andmaybeusedasanunderliner‘S’orbaton‘S*’.
RUTHallowsgeneralheadmovementsasfacialcon-versationalsignals.Theheadcannodupanddown,rotatehorizontallyleftandrightandtiltattheneckfromsidetoside;itcanalsobetranslatedfront-to-backandside-to-sidethroughmotionattheneck.Likebrowmovements,theseactionsmaygettheirmeaningsin-dividuallyorincombination;theymaysynchronizewithindividualwords,givingEkman’sbatonsorHadaretal.’srapidmovements,36ortheymaysynchronizewithlargerphrases,givingEkman’sunderlinersorHadaretal.’sordinarymovements.Headmovementsarespeci-fiedusingvaluesoftheattribute‘jog’.
Nostandardsymboliccodingofheadmovementsexists.Wehavedevelopedourown,drawingonourpreliminaryanalysisofvideotapedembodiedutter-ancesandinformalobservationsofeverydayconversa-tion.ThelabelsforheadmovementsthatwecurrentlysupportaregiveninFigure8,togetherwithsomeroughspeculationsaboutthefunctionsthatthesedifferentmovementsmightcarry.Weemphasizethatthisinven-toryisprovisional;categorizingthemovementsthataccompanyconversationalspeechandaccountingfortheirfunctionremainsanimportantproblemforfutureresearch.AtleasttwofurtherstepsarerequiredtovalidateasystemlikethatsuggestedinFigure8.Em-piricalresearchmustshowthatthecategoriesfitobservedconversationacrossarangeofindividuals
******************************************************************************************************
Copyright#2004JohnWiley&Sons,Ltd.33Comp.Anim.VirtualWorlds2004;15:27–38
D.DECARLOETAL.
******************************************************************************************************
ValueDUFBRLJCDRURDLULTLTR
Effectandpossibleuse
nodsdownward
generalindicatorofemphasisnodsupward
perhapsindicatesa‘widerperspective’bringsthewholeheadforward
perhapsindicatesneedfor‘acloserlook’bringsthewholeheadbackward
perhapsemblemofbeing‘takenaback’turnstomodel’sright
perhapsindicatesavailabilityofmoreinformationturnstomodel’sleft
perhapsindicatesavailabilityofmoreinformationtiltswholeheadclockwise(aroundnose)
perhapsindicatesexpectationofengagementfrompartnertiltswholeheadcounterclockwise
perhapsindicatesexpectationofengagementfrompartnernodsdownwardwithsomerightwardmovementmeaningseemstocombinethatofDandRnodsupwardwithsomerightwardmovementmeaningseemstocombinethatofUandRnodsdownwardwithsomeleftwardmovementmeaningseemstocombinethatofDandLnodsupwardwithsomeleftwardmovementmeaningseemstocombinethatofUandLtiltsclockwisewithdownwardnoddingperhapsindicatescontrastofrelatedtopicstiltscounterclockwisewithdownwardnoddingperhapsindicatescontrastofrelatedtopics
Figure8.Possibleheadmovement(jog)codesin
RUTH.
acrossarangeofcontexts.Andempiricalresearchmustconfirmthatinterlocutorsalsoaresensitivetothedif-ferencesamongcategories.Sucheffortisproceeding;seeKrahmerandcolleagues,37,38forexample.
Finally,RUTHwillsynchronizeablinkjustattheendofanaccentedvowelwhenthewordcarriesthesimpleattribute‘(blink)’.
UsingRUTHinApplications
AssimpleillustrationsoftheuseofRUTH,wehaveimplementedtwoapplications:aversionofWeizen-baum’sfamousElizaprogram39whichoutputsspecifi-cationsforanimatedspeech;andademonstrationofconversationalfeedbackthatanimatesRUTHperforminganindefinitesequenceofrandomizedacknowledgmentbehaviors:nods,browraises,andnoiseslike‘mm-hmm’and‘uh-huh’.Bothprogramsareavailableaspartofthe
standardRUTHrelease;seealsoStoneandDeCarlo.40Theprogramsshareaconvenientoverallarchitecturethatasystem-buildercanusetoaddanimatedoutputtoanexistingapplication—pipingtheoutputofanordin-aryinteractivesystemasinputtoaRUTHprocessrun-ninginparallel.(TheElizaprogramalsoprintsouteachcommandbeforesendingittoRUTHsoyoucanseeexactlywhattheinputistotheanimation.)
OurElizaillustratessomeconvenientheuristicsforannotatingplaintexttosendittoRUTH.LikeallElizasystems,themeatoftheprogramisaseriesofcondition–responserulesthatdescribepossiblere-sponsesthatthesystemcouldgive.(OuranimatedversionofElizaextendsatextimplementationrealizedasaPerlscriptbyJonFernquistbutmodeledonaLispversionofElizadescribedbyNorvig.41)Theconditionlooksforaspecifiedsequenceofwordsintheuser’sutterance,andrecordsallthewordsfollowingthe
******************************************************************************************************
Copyright#2004JohnWiley&Sons,Ltd.34Comp.Anim.VirtualWorlds2004;15:27–38
SPECIFYINGANDANIMATINGFACIALSIGNALS
******************************************************************************************************
matchedsequence.Theresponseisatexttemplateforananimatedutteranceandcanincludeapositionwheretherecordedwordsfromtheuser’sutterancecanbecopiedandpresentedbacktotheuser,perhapswithnewintonationorfacialdisplays.Tomark-uptheuser’sutterancesforprosody,templatescaninvokeproce-duresthatrealizeitwithoutaccents,realizeitjustwithasingleaccentonthefinalcontentword,orrealizeitwithaccentsonallcontentwords.
Ourfeedbackdemonstrationillustrateslow-levelin-teractionwithRUTH;itcreatesinstructionsforanima-tionson-the-fly.Tocreatethefeedbackapplication,werecordedanddigitizedanumberofsamplesofac-knowledgmentsounds,andloggedwhenthesoundstarted,whenthesoundreacheditspeakintensity,andwhenthesoundfinished.Wealsotooknotewhetherthesoundshouldbeanimatedwiththemouthclosed(like‘mm-hmm’)orwiththemouthopen(like‘uhhuh’),andwhetherthesoundofferspositivefeed-back,expressingunderstanding,ornegativefeedback,expressingconfusion.Everyfewseconds,thefeedbackprogramwakesupandinstructsRUTHtoplayoneofthesoundfilesandanewanimationtimingfilethatgoeswithit,includingarandomizedselectionofactions—blinking,therightmouthshapestogowithwhateversoundfileisbeingplayed,perhapsaheadjog,andperhapsabrowaction.
Discussion
Conversationbringsmotionsandrequirementsbeyondthethelip-synchandemotionalexpressionemphasizedinsuchpriormodelsasCohenandMassaro’s17andKing’s.18Butmoregeneralmodels,definedintermsofmusculature42,43orsimulation,44introducecomplica-tionsthatcanstandinthewayofreal-timeperformanceandeasycustomization.Wehaveconstructedanewalternative,RUTH,byorganizingthedesignandimple-mentationofafaceanimationsystemaroundthein-vestigationofconversationalsignals.
Inparticular,RUTHisdesignedwithcodinginmind;RUTHacceptstextwithopen-endedannotationsspecify-ingheadmotionsandotherfacialactions,andpermitstheflexiblerealizationoftheseschedules.Manyappli-cationsdemandcoding.Inautonomousconversationalagents,forexample,arichintermediatelanguagebe-tweentheutterancegenerationsystemandtheanima-tionsystemhelpsorganizedecisionsaboutwhatmeaningtoconveyandhowtorealizemeaninginanimation.(SeetheworkofCassellandcolleagues45ongeneratingmeaningfulhandgesturesandcoordinat-ingthemwithothercommunicativeactions46.)RUTHstilllacksmanymeaningfulexpressions,includingemblemsofemotionsuchasdisgustandemblemsofthoughtsuchaspursingthelips.However,thefacialsignalsofprioragents26,47,48arejusteyebrowmovementsandareplannedindependentlyofothercommunicativedeci-sions;soRUTHalreadymakesiteasiertotakethenextsteps.
Likewise,indevelopingandtestingpsycholinguistictheoriesofconversation,predictable,rulegovernedrea-lizationofabstractdescriptionsmakescomputeranima-tionanimportantmethodologicaltool.45,47,49Coding-basedanimationsystemsallowanalyststovisualizedescriptionsofobservedevents,sothatanalystscanobtainamorespecificfeelforalternativemodels.Coding-basedsystemscanalsogeneralizeawayfromobservationsarbitrarily,sothatanalystscan,forexam-ple,exploreanomalousbehaviorswhichmightbeverydifficultorimpossibletogetfrompeople(orstatisticalmodelsfittopeople).Thesameflexibilityandcontrolmakecoding-basedanimationanaturalingredientofempiricalstudiesofperception;Massaroandcollea-gues’explorationsofhumanspeechperceptionthatusemismatchedsoundandanimationaretheclassicexample.49Krahmerandcolleaguesareconductingpsycholinguisticstudiesofconversationalbrowmove-mentsusingcoding-basedanimation.37InformulatingRUTH’sinputasthisabstract,mean-ingfullayer,wedonotdiscounttheimportanceofquantitativevariablesinconversationalagents.Wesim-plyassumethatrangeofmovementandotherquanti-tativeaspectsofmotiondonotcontributetothesymbolicinterpretationofdiscourse.Rather,theypro-videquantitativeevidenceforspeakervariablessuchasinvolvementandaffect.Thisisalreadythenormforintonation,whereLaddetal.34presentsevidence(andCahn50providesanimplementation)linkingperceivedemotiontopitchrangeandvoicequalityofspeech;andformanualgesture,whereChiandcolleagues51modeltheemotionalvariablesthatquantitativelymodulatesymbolicaction.Badlerandcolleagues52,53areexploringasimilarapproachtomodulatefacialanimation.Integratingsuchmodality-independentspecificationsofaffectandpersonalitywithconversationalsignalsfordiscourseremainsimportantfutureworkforfacialanimation.Tothisend,weareextendingRUTHsothatplannedmotionscanundergoprobabilistictransformations,asinPerlin’swork,22,23soastoachievegreatervariabilitywithinRUTH’scoding-basedframework.
******************************************************************************************************
Copyright#2004JohnWiley&Sons,Ltd.35Comp.Anim.VirtualWorlds2004;15:27–38
D.DECARLOETAL.
******************************************************************************************************
Withthesurgeofinterestininterfacesthatengageinnaturalembodiedconversation,asseeninrecentsur-veysofembodiedconversationalagents,54weexpectthatRUTHwillprovideahelpfulresourceforthescien-tificcommunity.Inparticular,mostembodiedconver-sationalagentscreateabstractschedulesforanimationthatneedtoberealized;RUTHnaturallyfitsintosuchanarchitectureandenhancesitsfunctionality.Noristhereanyobstacle,atleastinprinciple,tointegratingtheinsightsofRUTH’sdesignandarchitectureintootherframeworksandanimationsystems.
ACKNOWLEDGEMENTS
ThisresearchwassupportedinpartbyNSFresearchinstru-mentationgrant9818322andbyRutgersISATC.DanDeCarlodrewtheoriginalRUTHconcept.RaduGruianandNikiShahhelpedwithprogramming;NathanFolsom-KovarikandChrisDymek,withdata.ThankstoScottKingfordiscussion.
References
1.CassellJ,BickmoreT,BillinghurstM,CampbellL,Chang
´lmssonH,YanH.EmbodimentinconversationalK,Vilhja
characters:Rea.InProceedingsofCHI,1999;pp520–527.
´rissonK.Thepowerofanodandaglance:2.CassellJ,Tho
envelopevs.emotionalfeedbackinanimatedconversa-tionalagents.AppliedArtificialIntelligence1999;13(3).
3.NagaoK,TakeuchiA.Speechdialoguewithfacialdis-plays:multimodalhuman–computerconversation.InPro-ceedingsofACL1994;pp102–109.
4.PoggiI,PelachaudC.Performativefacialexpressionsinanimatedfaces.InEmbodiedConversationalAgents,CassellJ,SullivanJ,PrevostS,ChurchillE(eds).MIT:Cambridge,MA,2000;155–188.
5.PelachaudC,PoggiI.Subtletiesoffacialexpressionsinembodiedagents.JournalofVisualizationandComputerAni-mation2002;13(5):301–312.
´E,RistT,vanMulkenS,KlesenM,BaldesS.The6.Andre
automateddesignofbelievabledialoguesforanimatedpresentationteams.InEmbodiedConversationalAgents,CassellJ,SullivanJ,PrevostS,ChurchillE(eds).MIT:Cambridge,MA,2000;220–255.
7.BallG,BreeseJ.Emotionandpersonalityinaconversa-tionalagent.InEmbodiedConversationalAgents,CassellJ,SullivanJ,PrevostS,ChurchillE(eds).MIT:Cambridge,MA,2000;189–219.
8.DeCarolisB,PelachaudC,PoggiI,deRosisF.Behaviorplanningforareflexiveagent.InProceedingsofIJCAI,2001.9.LesterJC,TownsSG,CallawayCB,VoermanJL,FitzGeraldPJ.Deicticandemotivecommunicationinanimatedpedagogicalagents.InEmbodiedConversationalAgents,CassellJ,SullivanJ,PrevostS,ChurchillE(eds).MIT:Cambridge,MA,2000;123–154.
10.MarsellaSC.Sympathyfortheagent:controllingan
agent’snonverbalrepertoire.InProceedingsofAgents,2000.11.BeckmanM,ElamGA.GuidelinesforToBIlabelling,
version3.0.Technicalreport,OhioStateUniversity,1997.http://ling.ohio-state.edu/Phonetics/etobi_homepage.html.
12.SilvermanKEA,BeckmanM,PitrelliJF,OstendorfM,
WightmanC,PriceP,PierrehumbertJ.ToBI:astandardforlabelingEnglishprosody.InProceedingsoftheInterna-tionalConferenceonSpokenLanguageProcessing,1992;pp867–870.
13.EkmanP.Aboutbrows:emotionalandconversationalsig-nals.InHumanEthology:ClaimsandLimitsofaNewDisci-pline:ContributionstotheColloquium,vonCranachM,FoppaK,LepeniesW,PloogD(eds).CambridgeUniver-sityPress:Cambridge,UK,1979;169–202.
14.McNeillD.HandandMind:WhatGesturesRevealabout
Thought.UniversityofChicagoPress:Chicago,1992.
15.BullP,ConnellyG.Bodymovementandemphasisin
speech.JournalofNonverbalBehavior1985;9(3):169–187.16.EngleRA.Towardatheoryofmultimodalcommunication:
combiningspeech,gestures,diagramsanddemonstrationsininstructionalexplanations.PhDthesis,StanfordUniver-sity,2000.
17.CohenMM,MassaroDW.Modelingcoarticulationinsyn-theticvisualspeech.InModelsandTechniquesinComputerAnimation,ThalmannNM,ThalmannD(eds).Springer:Berlin,1993;139–156.
18.KingSA.Afacialmodelandanimationtechniquesforani-matedspeech.PhDthesis,OhioStateUniversity,2001.19.Lo¨fqvistA.Speechasaudiblegestures.InSpeechProduction
andSpeechModeling,HardcastleWJ,MarchalA(eds).Kluwer:Dordrecht,1990;289–322.
20.BlackA,TaylorP.Festivalspeechsynthesissystem.Tech-nicalReportHCRC/TR-83,HumanCommunicationResearchCenter,1997.
21.BavelasJB,ChovilN.Visibleactsofmeaning:an
integratedmessagemodeloflanguageinface-to-facedia-logue.JournalofLanguageandSocialPsychology2000;19(2):163–194.
22.PerlinK.Layeredcompositioningoffacialexpression.In
SIGGRAPH,1997.TechnicalSketch.
23.PerlinK.Noise,hypertexture,antialiasingandgestures.In
TexturingandModeling:AProceduralApproach(2ndedn),EbertD(ed.).AcademicPress:London,1998;209–274.24.BrandM.Voicepuppetry.InSIGGRAPH,1999;pp21–28.25.SmidK,PandzicIS.Conversationalvirtualcharacterfor
theweb.InComputerAnimation,2002;240–247.
´lmssonH,BickmoreT.BEAT:thebeha-26.CassellJ,Vilhja
vioralexpressionanimationtoolkit.InSIGGRAPH,2001;pp477–486.
27.NassC,IsbisterK,LeeE-J.Truthisbeauty:resarching
embodiedconversationalagents.InEmbodiedConversa-tionalAgents,CassellJ,SullivanJ,PrevostS,ChurchillE(eds).MIT:Cambridge,MA,2000;374–402.28.JilkaM,Mo¨hlerG,DogilG.Rulesforthegenerationof
ToBI-basedAmericanEnglishintonation.SpeechCommuni-cation1999;28:83–108.29.Mo¨hlerG,MayerJ.Adiscoursemodelforpitch-range
control.InProceedingsofthe4thISCATutorialandResearchWorkshoponSpeechSynthesis,2001.
******************************************************************************************************
Copyright#2004JohnWiley&Sons,Ltd.36Comp.Anim.VirtualWorlds2004;15:27–38
SPECIFYINGANDANIMATINGFACIALSIGNALS
******************************************************************************************************
30.MaconM,CronkA,KainA,WoutersJ.OGIresLPC:
diphonesynthesiserusingresiduallinearpredictioncoding.TechnicalReportCSE-97-007,OregonGraduateInstitute,1997.
31.PierrehumbertJ,HirschbergJ.Themeaningofintonational
contoursintheinterpretationofdiscourse.InIntentionsinCommunication,CohenP,MorganJ,PollackM(eds).MITPress:Cambridge,MA,1990;271–311.
32.HirschbergJ.Pitchaccentincontext:predictingintona-tionalprominencefromtext.ArtificialIntelligence1993;63(1–2):305–340.
33.HirschbergJ,NakataniC.Aprosodicanalysisofdiscourse
segmentsindirection-givingmonologues.InProceedingsofACL,1996.
34.LaddDR,SilvermanK,TolkmittF,BergmannG,Scherer
K.Evidencefortheindependentfunctionofintonationcontourtype,voicequalityandF0rangeinsignalingspeakeraffect.JournaloftheAcousticalSocietyofAmerica1985;78:435–444.35.Mo¨hlerG,MayerJ.Amethodfortheanalysisofprosodic
registers.InProceedingsofthe6thEuropeanConferenceonSpeechCommunicationandTechnology(EUROSPEECH),1999.
36.HadarU,SteinerTJ,GrantEC,RoseFC.Headmovement
correlatesofjunctureandstressatsentencelevel.LanguageandSpeech1983;26(2):117–129.
37.KrahmerE,RuttkayZ,SwertsM,WesselinkW.Pitch,eye-browsandtheperceptionoffocus.InSymposiumonSpeechProsody,2002.
38.KrahmerE,RuttkayZ,SwertsM,WesselinkW.Audiovi-sualcuestoprominence.InInternationalConferenceonSpo-kenLanugageProcessing,2002.
39.WeizenbaumJ.ELIZA:acomputerprogramforthestudy
ofnaturallanguagecommunicationbetweenmanandmachine.CommuncationsoftheACM1966;9(1):36–45.40.StoneM,DeCarloD.Craftingtheillusionofmeaning:
template-basedspecificationofembodiedconver-sationalbehavior.InComputerAnimationandSocialAgents,2003.
41.NorvigP.ParadigmsofArtificialIntelligence:CaseStudiesin
CommonLisp.MorganKaufmann:SanFrancisco,1992.42.PlattSM.Astructuralmodelofthehumanface.PhD
thesis,UniversityofPennsylvania,1985.
43.WatersK.Amusclemodelforanimatingthree-dimensionalfacialexpressions.ComputerGraphics1987;21(4):17–24.
44.TerzopoulosD,WatersK.Physically-basedfacialmodel-ing,analysisandanimation.JournalofVisualizationandComputerAnimation1990;1(2):73–80.
45.CassellJ,StoneM,DouvilleB,PrevostS,AchornB,
SteedmanM,BadlerN,PelachaudC.Modelingtheinter-actionbetweenspeechandgesture.InProceedingsoftheCognitiveScienceSociety,1994.
46.CassellJ,StoneM,YanH.Coordinationandcontext-dependenceinthegenerationofembodiedconversation.InFirstInternationalConferenceonNaturalLanguageGenera-tion,2000;pp171–178.
47.PelachaudC,BadlerN,SteedmanM.Generatingfacial
expressionsforspeech.CognitiveScience1996;20(1):1–46.
48.PoggiI,PelachaudC.Eyecommunicationinaconversa-tional3Dsyntheticagent.AICommunications2000;13(3):169–181.
49.MassaroDW.PerceivingTalkingFaces:FromSpeech
PerceptiontoaBehavioralPrinciple.MIT:Cambridge,MA,1998.
50.CahnJE.Thegenerationofaffectinsynthesizedspeech.
JournaloftheAmericanVoiceI/OSociety1990;8:1–19.
51.ChiD,CostaM,ZhaoL,BadlerN.TheEMOTEmodelfor
effortandshape.InSIGGRAPH,2000;pp173–182.
52.BadlerN,AllbeckJ,ZhaoL,ByunM.Representingand
parameterizingagentbehaviors.InComputerAnimation,2002;pp133–143.
53.ByunM,BadlerN.FacEMOTE:qualitativeparametric
modifiersforfacialanimations.InACMSIGGRAPHSym-posiumonComputerAnimation,2002;pp65–71.
54.CassellJ,SullivanJ,PrevostS,ChurchillE(eds).Embodied
ConversationalAgents.MIT:Cambridge,MA,2000.
Authors’biographies:
DougDeCarloisanAssistantProfessorofComputerScienceatRutgers,andreceivedhisPh.D.fromtheUniversityofPennsylvaniain1998.Heco-directsTheVILLAGEandholdsajointappointmentintheRutgersCenterforCognitiveScience.Hisresearchfocusesonthecognitivescienceofvisualinteraction,whichbridgesthefieldsofgraphics,visionandHCI.Headvocatesinteractivesystemsthatleverageusers’existingabilitiesofvisualperceptionandcommunication.
CoreyRevillaispursuingaMastersdegreeattheEntertainmentTechnologyCenteratCarnegieMellonUniversity.HehasaB.S.inComputerScienceandMathematicsfromRutgers,andworkedasaresearchassistantonthedevelopmentofRUTH.
******************************************************************************************************
Copyright#2004JohnWiley&Sons,Ltd.37Comp.Anim.VirtualWorlds2004;15:27–38
D.DECARLOETAL.
******************************************************************************************************
MatthewStoneisanAssistantProfessorofComputerScienceatRutgers,withajointappointmentintheCenterforCognitiveScience.HereceivedhisPh.D.fromtheUniversityofPennsylvaniain1998,workingonknowledgerepresentationandreasoningforconver-sationalagents.Hisresearchinterestsincludecomputa-tionalapproachestoface-to-facedialogue,naturallanguagegenerationincomputationallinguistics,andtheoriesofthemeaningandcontext-dependenceoflanguage.Heco-directstheVILLAGElabatRutgers.
JenniferJ.VendittiisaPostdoctoralResearchScientistinComputerScienceatColumbiaUniversity.Shere-ceivedherPh.D.fromOhioStateUniversityLinguisticsin2000,specializinginphoneticsandintonation.Herresearchinterestsincludeintonationaltheoryandmod-eling,spokenlanguageprocessingindiscourse,andspeechsynthesis.
******************************************************************************************************
Copyright#2004JohnWiley&Sons,Ltd.38Comp.Anim.VirtualWorlds2004;15:27–38
因篇幅问题不能全部显示,请点此查看更多更全内容