您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页Stochastic Cellular Automata Model for Stock Market Dynamics

Stochastic Cellular Automata Model for Stock Market Dynamics

来源:意榕旅游网
APSpreprint

.

StochasticCellularAutomataModelforStockMarketDynamics

arXiv:cond-mat/0311372v2 [cond-mat.dis-nn] 24 Nov 2005M.Bartolozzi1andA.W.Thomas1

1

SpecialResearchCentrefortheSubatomicStructureofMatter(CSSM),

UniversityofAdelaide,Adelaide,SA5005,Australia

(Dated:February2,2008)

Abstract

Inthepresentworkweintroduceastochasticcellularautomatamodelinordertosimulatethedynamicsofthestockmarket.Adirectpercolationmethodisusedtocreateahierarchyofclustersofactivetradersonatwodimensionalgrid.Activetradersarecharacterisedbythedecisiontobuy,σi(t)=+1,orsell,σi(t)=−1,astockatacertaindiscretetimestep.Theremainingcellsareinactive,σi(t)=0.Thetradingdynamicsisthendeterminedbythestochasticinteractionbetweentradersbelongingtothesamecluster.Extreme,intermittentevents,likecrashesorbubbles,aretriggeredbyaphasetransitioninthestateofthebiggerclusterspresentonthegrid,wherealmostalltheactivetraderscometosharethesamespinorientation.Mostofthestylizedaspectsofthefinancialmarkettimeseries,includingmultifractalproprieties,arereproducedbythemodel.AdirectcomparisonismadewiththedailyclosuresoftheS&P500index.

PACSnumbers:05.45.Pq,52.35.Mw,47.20.Ky

Keywords:ComplexSystems,Percolation,StochasticProcesses,Multifractality,Econophysics

1

I.INTRODUCTION

SincethesuccessfulapplicationoftheBlack-Scholestheoryforoptionpricing[1]in1973moreandmorephysicistshavebeenattractedbytheideaofunderstandingthebehaviourofthemarketdynamicsintermsofcomplexsystemtheory,whereself-organizedcriticality[2,3]andstochasticprocesses[4,5]playimportantroles.Theaimofthemicroscopicmodelsproposedsofar(forgeneralreviews[6,7])istoreproducesomestylizedfacts[8]concerningthetemporalfluctuationsofthepriceindices,P(t).Inparticular,thelogarithmicpricereturns

R(t)=lnP(t+1)−lnP(t),

andthevolatility,definedinthepresentworkas

v(t)=|R(t)|,

(2)(1)

havebeenstudiedextensively[4]fromanempiricalpointofview.Theresultshaveshownthatwhilelongtimecorrelationsarepresentinthevolatility,aphenomenonknownasvolatilityclustering,theycannotbefoundinthetimeseriesofreturns.Moreoverthelattershowanintermittentbehaviourthatrecallsinsomeaspectshydrodynamicturbulence[9,10,11],characterizedbypowerlawtailsintheprobabilitydistributionfunction(pdf).Microsimulationshavedemonstratedthatthiskindofbehaviourcanoriginatebothasastochasticprocesswithmultiplicativenoise[12,13,14]andasapercolationphenomenon[15,16,17].

Inordertoreproducethesefeaturesofrealmarketsweintroduceastochasticcellularautomatamodel,representinganopenmarket.Thatis,amarketwherethenumberofactivetraders,definedascellswithspinstatedifferentfrom0,namelyσi(t)=±1,evolveintimeaccordingtoapercolationdynamics.Thepercolationdynamicsischoseninordertosimulatetheherdingbehaviourtypicalofinvestors[28].Accordingtothis,activetradersgatherinclustersornetworkswhere,followingastochasticexchangeofinformation,theyformulatethetradingstrategyforthenexttimestep.TheresultsobtainedbythesimulationsarethencomparedwiththetimeseriesofdailyclosuresoftheS&P500index[4,28,29,30,31,34,40,41,45]overaperiodofabout50years.

Moreover,recently,thefractalproperties[18]ofthepricefluctuationshavealsobeen

2

investigatedfordifferentmarkets[19,20,21,22].Acommonfeaturefoundinthesestudiesistheexistenceofanonlinear,multifractalspectrumthatexcludesthepossibilityofefficientmarketbehaviour[23].Theoriginofthemultifractalityofinthefinancialtimeserieshasalsobeenatthecenterofdiscussions[24,25,26,27].Inthispaperweconsiderthemulti-fractalspectrumofthepricefluctuationsasastylizedfactofthemarkettimeserieswithoutaddressinganyquestionabouttheunderlyingprocessabletogenerateit.Themultifractalspectrumisusedasafurthertestforourmodel.

Aparallelbetweenmultifractalandthermodynamicalformalismhasalsobeeninvesti-gated.Wefound,inagreementwiththepreviousworkofCanessa[45],thattheanaloguespecificheatcanprovideagoodtooltocharacterizeintermittency,thatisfinancialcrashesorbubbles,fromathermodynamics-equivalentpointofview.

II.THEMODEL

Inthepresentworkwesimulatethefinancialmarketdynamicsviaastochasticcellularautomatamodel.Theagentsofthemarketarerepresentedbycellsonatwodimensionalgrid,512x128.Theithagentatthediscretetimesteptischaracterizedbythreepossiblestatesorspinorientations,σi(t)=0,±1.Thevalueσi(t)=+1isassociatedwiththepurchaseofastockwhileσi(t)=−1withselling.Theformerstatesarecalledactive.Thecellswithspinvalueσi(t)=0areinactivetraders.Theactivetradersherdinnetworksorclustersviaadirectpercolationmethodrelatedtoaforestfiremodel[15].Theinformationcarriedbytheactivetraders,thatistheirspinstate,issharedwiththeothermembersofthecluster.Thepercolationdynamicsallowatimedependentherdingbehaviourandthemarketcanbeinterpretedasanopensystemnotboundedbyconservationlaws.Theclusteringprocesswillbediscussedindetailinthenextsubsection.

Thetradingdynamicsisinsteadrelatedtothesynchronousupdateofthespinsoftheactivetraders,ruledbyastochasticexchangeofinformationbetweenthem,similartoarandomIsingmodel[12,13].Aparticularfeatureofthepresentsimulationisthattheinformationisnotspreadalloverthegrid,asinothermulti-agentscenarios[12,13],butitislimitedbytheclustersofinteractionpreviouslydefined.Themechanismforthespindynamicsisexplainedin“stochastictradingdynamics”subsection.

3

A.PercolationClustering

Oneoftheaimsofourcellularautomatamodelistoreproducetheherdingbehaviourofactivetraders[28].Werefertoherdingbehaviourasthetendencyofpeopleinvolvedinthemarkettoaggregateinnetworksorclustersofinfluence.Thetradersthenusetheinformationobtainedbytheirnetworkinordertoformulateamarketstrategy.Evenifthetopologicalstructureofthesenetworksofinformationisnotimportant,sinceseveralkindsoflongrangeinteractionareavailablenowadays[13],thenumberofconnectionsforeachtradermustbe,inanycase,finiteandnotextendedoverthewholemarket.Inthisframeworkadirectpercolationmethodisusedtosimulateherdingdynamicsbetweenactivetraders.IfweassumethattheneighboursofinfluencearethoseofvonNeumann(up,down,left,right),thepercolationisfixedbythefollowingparameters:

ph:theprobabilitythatanactivetradercanturnoneofhisinactiveneighboursintoanactiveoneatthenexttimestep,σi(t)=0→σi(t+1)=±1.Thissimulatesthefactthatcertaininformationpossessedbyatradermayinduceapotentialtradertojointhemarketdynamics.

pd:theprobabilitythatanactivetraderdiffusesandsobecomesinactive,σi(t)=±1→σi(t+1)=0,duetoeachofhisinactiveneighbour.Thismimicsthefactthatonlytradersatthebordersofanetwork,thatistheweakerlinks,canquitthemarket.

pe:theprobabilitythatanontradingcellspontaneouslydecidestoenterthemarketdynamics,σi(t)=0→σi(t+1)=±1.

Thevaluesoftheadimensionalparameters,ph,pdandpe,influencethestabilityofthesystemandthepercentageofactivetradersonthegrid.Inordertotestdifferentmarketactivitieswefixthevaluespd=0.05andpe=0.0001whilewetunetheparameterph.Atthebeginningofthesimulationthegridisloadedrandomlywithasmallpercentageofactivetradersandthenthesystemispermittedtoevolveaccordingtothepreviousrules.Ifweareinastablerangeoftheparameterph,afteratransientperiodthatdependsbothontheparametervaluesandtheinitialnumberofactivecells,thenumberofactivetradersonthegridbeginstofluctuatearoundacertainaverage,asshowninFig.1(Top).Themarketcanbeconsideredopensincethenumberofagentschangesdynamicallyintime.Inthisregime,thecompetitionbetweenherdinganddiffusionproducesapowerlawdistributionoftheclustersize,asshowninFig.1(Bottom),ρ(S)≈S−λ,whereSistheclusterdimension,

4

20000Number of Active Traders15000ph=0.0493ph=0.0490ph=0.0488ph=0.0485ph=0.047510000500000200040006000Time Steps8000100001000λ∼1.1100ρ101110S1001000FIG.1:Top:DifferentvaluesoftheparameterHproducedifferentactivitiesoftradersonthegrid.Bottom:Clustersizedistributionforph=0.0485att=9000.

definedasthenumberofactivecellsbelongingtothesamecluster,andλ>0,creatingahierarchyofnetworks.Thishierarchyisnecessaryifwerearetotakeintoaccountarealaspectofthemarket,namelythatdifferenttradersalsohavedifferenttradingpowers.Areasonableassumptionisthatpeoplehavingalargernumberofsourcesofinformation,sobelongingtogreaterclusters,canbeassociatedwithprofessionalinvestorsthat,mostlikely,areabletomoveagreateramountofstockscomparedtotheoccasionalinvestor.Usingthisassumptionweareabletodefineaproperweightforthetradingpowerofdifferentcells,aswewilldiscussinthenextsubsection.

Asimilarpercolationmodelhasalsobeenusedtoreproducesomestatisticalandgeo-metricalfeaturesofsolaractivity[32,33].

B.StochasticTradingDynamics

k

Thedynamicsofthespinsoftheactivetraders,σi(t)=±1fori=1,...,Nk(t)(wherethe

superscriptk,fromnowon,referstothekthclusterofthegridconfigurationattimestept)followsastochasticprocessthatmimicsthehumanuncertaintyindecisionmaking[13].

kTheirvaluesareupdatedsynchronouslyaccordingtoalocalprobabilisticrule:σi(t+1)=+1kkkwithprobabilitypkiandσi(t+1)=−1withprobability1−pi.Theprobabilitypiis

5

determined,byanalogytoheatbathdynamicswithformaltemperaturekbT=1,by

pki(t)=

1

Nk(t)

Nk(t)

󰀂

kk

Akijσj(t)+hi.

(4)

j=1

k

TheAkij(t)aretimedependentinteractionstrengthsbetweenagentsandhi(t)isanexternal

fieldreflectingtheeffectoftheenvironment[13].Theinteractionstrengthsandtheexternal

kkkfieldchangerandomlyintimeaccordingtoAkij(t)=Aξ(t)+aηij(t)andhi(t)=hζi(t).

Thevariablesξk(t),ηij(t),ζik(t)arerandomvariablesuniformlydistributedintheinterval(-1,1)withnocorrelationintimeorspace.Themeasureofthestrengthsofthepreviousterms,A,aandh,areconstantandcommonforallthegrid.

Inthiscontestthedynamicsofthepriceindex,P(t),canbeeasilyderivedifweassumethattheindexvariationisproportionaltothedifferencebetweendemandandsupply,

dP

1050-5-1019501050-5-10200040006000Time Steps800010000196019701980Decimal Years19902000FIG.2:Top:NormalizedlogarithmicreturnsfortheS&P500.Bottom:Timeseriesofreturnsreproducedwiththesimulationwithph=0.0493,A=1.8andh=0.

analyzediscomposedbyofthedailyindicesfrom3/1/1950to18/7/2003foratotalof13468data.Thetimeseriesoftheindexprices,P(t),isconvertedintothelogarithmicreturns(1)andthennormalizedoverthetimeinterval,T,

r(t)=

R(t)−󰀊R(t)󰀋T

rrThestrengthAalsoplaysanimportantroleinthetradingdynamics.Withphfixed,thisparameterisrelatedtotheintermittencyofthesystem.Bothforlargevaluesoftheactivity(A>10)andforA→0weobserveanapproachofthepdftowardaGaussian-likeshape.Thatisvery,largefluctuationsbecomemoreandmorerare,andAcanberegardedasatemporalscaleforthesystem,similartotheactivityparameterintheCont-Bouchaudmodel[16].Inspiteofthissomelargefluctuationscanbestillidentified.ThisisprobablyoneofthemaindifferencesbetweentheCont-Bouchaudmodelandthepresent.InfactMonteCarlosimulationsoftheformer[17]showthatanincreaseoftheactivitybringsarapidconvergencetowardaGaussiandistributionbecausealargenumberofclustersaretradingatthesametimefollowingarandomprocedureofdecisionmaking[16,17]:therearenoclustersthatcaninfluencethemarketmorethanothersandsotheresultingglobalinteractionisnoise-like.Inourmodelfluctuationsarealwaysallowedbecauseoftheheatbathdynamics.Clustersofactivetraderscanalwaysbesubjectedtophasetransitions,independentlyofthestateofotherclusters,creatingadisplacementbetweendemandandsupply.

Inordertoreproducethebehaviouroffinancialtimeseriesweworkwith1.5Nowwediscusstheresultsofthecellularautomata.InFig.2(Top)andFig.2(Bottom)thenormalizedlogarithmicreturnsoftheS&P500andofthesimulationareshown,respec-tively.Theaveragenumberofactivetraders,inthestableregime,is≈16000,asshowninFig.1(Top).ThemodelreproducestheintermittentbehaviouroftheS&P500timeseries,asexpressedbytheleptokurticpdfofFig.3.Thetailsofthedistributionfollowapowerlawdecay,reflectingthefactthatlargecoherentevents,farfromtheaverage,arelikelytooccurwithafrequencyhigherthanexpectedforarandomprocess(wheretheshapewouldbeaGaussian).Theselargeeventsarerelatedtofinancialcrashesorbubblesofthemarketand,inourmodel,toaphasetransitioninthespinstateoflargenetworksofactivetraders,aswewilldiscussfurtheron.Fromapowerlawfit,ρ(r)≈r−1−γ(for|r|>2),wefindγ≈3

8

1S&P500ModelGaussian0.10.01ρ0.0010.0001-10-50r510FIG.3:ProbabilitydistributionfunctionfortheS&P500computedwithdailydatafrom31/1/1950to18/7/2003andthemodel.AGaussianisalsoplottedforcomparison.Theparametersusedareph=0.0493,A=1.8andh=0.

forboththeS&P500andthemodel,confirmingthegoodagreementbetweenthetwo.Theproblemoffindingthebestdistributiondescribingthepricereturnsisaveryimpor-tantissuefromapracticalpointofview[4].ThestandardBlack-Scholestheoryforoptionpricing[1,4,5]assumesthatthereturnsarenormallydistributed.Thisfacthasbeenproventobeempiricallyfalse,asshownalsoinFig.3(seeRef.[4]forageneralreference).Findingamoreappropriatedistributionwouldbeanimportantimprovementinthisfieldofresearch∗.Inordertounderstandthetradingdynamicsoftheautomatawealsoshowtwosnapshotsofthegridconfiguration,thefirstduringanormalsession,Fig.4(Top),andthesecondduringacrash,Fig.4(Bottom).Duringthenormalsessiontheorientationsofthespinsaredistributeduniformlyoverthevariousclustersandthereisnosharpdifferencebetweendemandandsupply.Thesituationisdifferentduringacrash.Inthiscasetheclustersatthetopofthehierarchy,thebiggerones,playafundamentalrole.Infacttheyundergoaphasetransitionwherethegreatestpartoftheirspinssharethesameorientation.Thecapacityoftheclusterstogenerateacoherentorientationofthespins,andhenceoftheirtradingstate,canbeinterpretedintermsofamultiplicativenoiseprocess[5,34],wherethecollectivesynchronizationarisesasaresultoftherandomlyvaryinginteractionstrengthsbetween

FIG.4:Top:snapshotofthegridduringanormaltradingperiod.Theblackcellsarethebuyerswhiletheorangeonesarethesellers.Theparametersusedinthissimulationareph=0.0493,A=1.8andh=0.Bottom:thesamesimulationduringacrash.Largeclustersofsellersareindicatedbyarrows.

agents.Thepeculiarityofourmodelisthatcrashesorbubbles(suddenpricechanges)arerelatednottoaphasetransitionofthewholemarket[12,13]butrathertoaphasetransitioninoneormoreofthelargerclustersthathaveagreaterinfluenceonthetradingsession.Thisbehaviourisprobablyclosertotherealmarketwherethesynchronizationoftradingopinionismorelikelytohappenbetweenlargegroupsoftradersthanoverthewholemarket.Thetemporalcorrelationsofthelogarithmicreturnsandofthevolatilityareinvestigatedviatheautocorrelationfunction,definedas

c(τ)=

T−τ󰀂t=1

x(t+τ)x(t),(8)

whereTisthelengthofthetimeseriesandτisatimedelayforthenormalizedvariablex(t).TheresultsforboththemodelandtheS&P500areshowninFig.5(Top)andFig.5(Bottom),respectively.Whilethetemporalcorrelationforthereturnsislostalmostimmediately,thevolatilitymanifestsaslowdecayintime,relatedtothephenomenonofvolatilityclustering.Theprevioustemporaldependencieshavebeenfoundinbothrealdataandinthesimulation.

10

1Autocorrelation0.80.60.40.200102030Time DelayReturns ModelReturns S&P5004050Autocorrelation10.10.01Volatility S&P500Volatility Model0.21Time Delay525FIG.5:Top:Autocorrelationfunctionforthepricereturns.Bottom:Autocorrelationfunctionforthevolatilities.Inboththegraphstheparametersusedforthemodelareph=0.0493,A=1.8andh=0.IV.

MULTIFRACTALANALYSIS

Itisalsoworthpointingoutthatfinancialtimeseriespresentaninherentmultifractal-ity[18].Inthepastfewyearstheworkofmanyauthors[19,20,21,22]hasbeenaddressedtothecharacterizationofthemultifractalpropertiesoffinancialtimeseries,andnowadaysmultifractalitycanbeconsideredasastylizedfact.Inordertostudythemultifractalprop-ertiesofourmodelweusethegeneralizedHurstexponent[35],H(q),derivedviatheq−orderstructurefunction,

Sq(τ)=󰀊|x(t+τ)−x(t)|q󰀋T∝τqH(q),

(9)

wherex(t)isastochasticvariableoveratimeintervalTandτthetimedelay.Thegener-alizedHurstexponent,definedin(9),isanextensionoftheHurstexponent,H,introducedinthecontextofreservoircontrolontheNileriverdamproject,around1907[18,36].Thistechniqueprovidesasensitivemethodforrevealinglong-termcorrelationsinrandompro-cesses.IfH(q)=HforeveryqtheprocessissaidtobemonofractalandHisequivalenttotheoriginaldefinitionoftheHurstexponent.ThisisthecaseofsimpleBrownianmotionorfractionalBrownianmotion.

IfthespectrumofH(q)isnotconstantwithqtheprocessissaidtobemultifractal.Fromthedefinition(9)itiseasytoseethatthefunctionH(1)isrelatedtothescalingpropertiesofthevolatility.ByanalogywiththeclassicalHurstanalysis,aphenomenonissaidtobe

11

1.5qH(q)1S&P5000.501.5qH(q)10.5001234Modelq5FIG.6:MultifractalspectrafortheS&P500intheperiod31/1/1950to18/7/2003(top)andthemodel(bottom).Forthelatterph=0.0493,A=1.8andh=0.

persistentifH(1)>1/2andantipersistentifH(1)<1/2.Foruncorrelatedincrements,asinBrownianmotion,H(1)=1/2.InFig.6acomparisonisshownbetweenthemultifractalspectraofthemodelandtheS&P500obtainedfromthepricestimeseries.Itisclearthatbothprocesseshaveamultifractalstructureandthepricefluctuationscannotbeassociatedwithasimplerandomwalkasintheclassicalefficientmarkethypothesis[23].

Themultifractalityofthetimeseriescanalsobediscussedintermsofthermodynamicequivalents,accordingtomultifractalphysics[42,43,44,45].Inthisapproachwedividethetimeseries,x(t),fort=1,...,LintoNequalsub-intervals.Thenwecanwritethefollowingmeasureforeachofthese,

µi(τ)=

|x(t+τ)−x(t)|

Ifweconsiderχqasthefreeenergyofoursystem,Eq.(12)providesalinkbetweentheclassicalthermodynamicalformalismandmultifractality.Assumingqasanequivalenttemperature,wecandefineananaloguespecificheat[42,44,45,46],

Cq=−

∂2χq

1

l+δ

󰀂δ−1ǫ(1,l⋆),

(15)

l⋆=l

forl=0,...,L−δ.Inthiscasewehaveascalingpropertyfortheensembleaveragewith

respecttothescaleδ:

󰀊ǫ(δ,l)󰀋∝δ−Kq.

(16)

InamultifractalprocesstheexponentKqisanonlinearfunctionofqrelatedtotheinter-mittencyofthetimeseriesandtothegeneralizeddimensionvia[48,49]

(q−1)Dq=q−1−Kq.

(17)

From(13)and(17)wehavethat[46],

Cq=

∂2Kq

0.6Cq0.40.20-60.6τ=1τ=100-4-20q24τ=1τ=1006Cq0.40.20-6-4-20q246FIG.7:Top:analoguespecificheatfortheS&P500from31/1/1950to18/7/2003fortwodifferenttimedelays,namelyτ=1andτ=100.Asharppeakisclearlyvisiblearoundq=−1.5.Thesecondpeakontherighthandsidedisappearsincreasingthetemporaldelay.TheCqcurveshavebeencomputedforthelogarithmofthepriceusingthealgorithmin[47]forKq.Bottom:analoguespecificheatforthemodelwithparametersph=0.0493,A=1.8andh=0.Thedoublehumpedshapedforsmalltemporaldelaysisvisiblealsohere.

andrecalltheHubbardmodelforsmalltointermediatevaluesofthelocalinteraction[43].Asalsosuggestedin[45],thesecondpeakisduetothelargefluctuationsatsmallscales,thatiscrashesandbubbles.Increasingthetimedelaymeansthatthefluctuationstendtobesmoothedandthetimeseriesofreturnsapproachanoise-likeregime.Forthisreasontheanaloguespecificheatshapesforτ=100arebasicallyindistinguishable.Fromthisargumentwecaninterprettheanaloguespecificheat,andinparticularthesecondpeakforlowtimedelays,asawaytocharacterizecrashes,oringeneralthedegreeofintermittencyinatimeseries.Thedifferenceintheshapesandheightsoftheshorterpeakforτ=1isduetoaslightlydifferentcorrelationofthefluctuationsinthetwotimeseries.Moreover,inthemodelwecanlinktheshorterpeaktothephysicalphasetransitioninthespinstateofanetworkoftraders.

14

V.CONCLUSIONS

Inthispaperwehaveintroducedastochasticcellularautomatamodelforthedynamicsofthefinancialmarkets.Themaindifferencebetweenourmodelandotherstochasticsimu-lationsbasedonspinorientationofagents[12,13]isthetemporalevolutionofthenetworksofinteractionandthereforetheconceptofan“open”market.Theactivetradersfollowadirectpercolationdynamicsinordertoaggregateinnetworksofinformation.Thismakesoursimulation,evenifstillarawapproximation,surelyclosertotherealmarket,wherenoconservationrulesforthenumberofagentscanbeclaimed.Crashesandbubblescanbeinterpretedasasynchronizationofthespinorientationofthemoreinfluentialnetworksinthemarket.Moreover,theintroductionofalimitationinthenumberofinteractingagentsreducesdrasticallythenumberofcomputationsonthegridpertimestep.Inasystemwhere

2

alltheagentsinteractwitheachotherthisnumbergoeslikeNa,beingNathenumberof

activeagents,whileinourmodel,consideringthedistributionoftheclusters,itiseasy

2−λtoseethatitgoeslikeNa.Thevalueofλfoundforseveralherdingparameters,ph,is

λ≈0.6÷1.4,sothatthecomputationalcostismuchlowerforthepresentmodel.Thisgivesonethepossibilitytosimulatethemarketusingaverylargerangeofagents.Themodelisabletoreproducemostofthestylizedaspectsofthefinancialtimeseries,supportingtheideathatcrashesandbubblesarerelatedtoacollectivesynchronizationinthetrad-ingbehaviouroflargenetworksoftraders,wheretheinformationisexchangedaccordingstochasticinteractionbetweenthem.

Acknowledgments

ThisworkwassupportedbytheAustralianResearchCouncil.

[1]F.BlackandM.Scholes,J.PoliticalEconomy81,637(1973);R.C.Merton,BellJ.Econom.

Manage.Sci.41,141(1973).

[2]P.Baketal.,Phys.Rev.Lett.,59,381(1987);P.Baketal.,Phys.Rev.A,38,3(1988);

P.Bak,HowNatureWorks,(Springer-Verlag,New-York,1999);H.J.Jensen,Self-Organized

15

Criticality:EmergentComplexBehaviorinPhysicalandBiologicalSystems,(CambridgeUni-versityPress,Cambridge,1998).[3]P.Baketal.,PhysicaA246,430(1997).

[4]R.N.MantegnaandH.E.Stanley,AnIntroductiontoEconophysics:CorrelationandCom-plexityinFinance,(CambridgeUniversityPress,Cambridge,1999);J.-P.BouchardandM.Potters,TheoryofFinancialRisk,(CambridgeUniversityPress,Cambridge,1999).

[5]W.PaulandJ.Baschnagel,StochasticProcesses:FromPhysicstoFinance,(Spriger-Verlag,

Berlin,1999).

[6]H.Levy,M.LevyandS.Solomon,MicroscopicSimulationsofFinancialMarkets,(Academic

Press,NewYork,2000).

[7]J.Feigenbaum,Rep.Prog.Phys.66,1611(2003).[8]D.Sornetteetal.,arXiv:cond-mat/9909439,(1999).

[9]R.N.MantegnaandH.E.Stanley,PhysicaA239,225(1997).[10]R.N.MantegnaandH.E.Stanley,Nature376,46(1995).

[11]U.Frisch,Turbulence,(CambridgeUniversityPress,Cambridge,1995).[12]T.Kaizoji,PhysicaA287,493(2000).

[13]A.Krawieckietal.,Phys.Rev.Lett.,158701(2002);A.Krawieckietal.,PhysicaA317,

597(2003).

[14]H.Takayasuetal.,Phys.Rev.Lett.79,966(1997);H.TakayasuandM.Takayasu,Physica

A269,24(1999).

[15]D.Stauffer,IntroductiontoPercolationTheory,(Taylor&Francis,London,1985).[16]R.ContandJ.-P.Bouchaud,Macroeconom.Dyn.,4,170(2000).[17]D.StaufferandT.J.P.Penna,PhysicaA256,284(1998).[18]J.Feder,Fractals,(PlenumPress,NewYork&London,1988).[19]C.RodriguesNetoetal.,PhysicaA295,215(2001).[20]A.Z.Gorskietal.,PhysicaA316,296(2002).

[21]M.AusloosandK.Ivanova,Comp.Phys.Comm.147,582(2002).[22]T.DiMatteoetal.,PhysicaA324183(2003).

[23]L.Bachelier,Ann.Sci.deL’EcoleNorm.Sup.III,21(1900).[24]T.Lux,QuantitativeFinance1(6),632(2001).

[25]B.B.Mandelbrot,QuantitativeFinance1(6),1(2001).

16

[26]B.LeBaron,QuantitativeFinance1(6),621(2001).

[27]E.H.StanleyandV.Plerou,QuantitativeFinance1(6),563(2001).[28]D.Sornette,Phys.Rep.378,1(2003).

[29]V.Plerouetal.,Phys.Rev.Lett.83,1471(1999).[30]P.Cizeauetal.,PhysicaA245,441(1997).

[31]P.Gopikrishnanetal.,Phys.Rev.E60,5305(1999);P.Gopikrishnanetal.,PhyscaA287,

362(2000).

[32]D.G.WentzelandP.E.Seiden,Astrophys.J.390,280(1992);D.G.WentzelandP.E.Seiden,

Astrophys.J.460,522(1996).

[33]L.Vlahosetal.,Astrophys.J.Lett.,575,L87(2002);L.Vlahos,EuroconferenceandIAU

Colloquium188on“MagneticCouplingoftheSolarAtmosphere”,Santorini,Greece,2002,downloadathttp://www.astro.auth.gr/.

[34]Y.Liuetal.,Phys.Rev.E60,1390(1999);P.Gopikrishnanetal.,Phys.Rev.E60,5305

(1999).

[35]B.Mandelbrot,FractalsandScalinginFinance,(Springer,NewYork,1997).[36]H.Hurst,Trans.Amer.Soc.CivilEng.116,770(1951).[37]C.Tsallis,J.Stat.Phys.,52,479(1988).

[38]C.Tsallis,BrazilianJournalofPhysics,29,1(1999);

[39]F.M.Rosaetal.,NonlineaAnalysis47,3521(2001);H.GuptaandJ.Campanha,Physica

A309,381(2002);F.MichaelandM.D.Johonson,PhysicaA320,525(2003).[40]MAusloos.andK.Ivanova,Phys.Rev.E68,046122(2003).[41]C.Tsallisetal.,PhysicaA324,(2003).

[42]J.LeeandH.E.Stanley,Phys.Rev.Lett.61,2945(1988).[43]D.Vollhardt,Phys.Rev.Lett.78,1307(1997).[44]E.Canessa,Phys.Rev.E47,R5(1993).

[45]E.Canessa,J.Phys.A:Math.Gen.33,3637(2000).[46]K.Ivanovaetal.,PhysicaA308,518(2002).[47]A.Davisetal.,J.Geophys.Res.99,8055(1994).

[48]H.G.E.HentschelandI.Procaccia,PhysicaD8,435(1983).[49]T.C.Halseyetal.,Phys.Rev.A33,R1141(1986)

17

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务