ChineseJo 液晶与显示
urnalofLiquidCrystalsandDisplay
s
V ol.33De Nc.2o0.1128
文章编号:1007G2780(2018)12G0982G07
彩色电子纸的基础物理与操作原理
张雅帝,王(中山大学电子与信息工程学院 力,王毓成,杨柏儒∗
,广东省显示材料与技术重点实验室,
光电材料与技术国家重点实验室,广东广州510006)
摘要:电泳式电子纸作为一种重要的反射式显示技术,已被广泛应用于电子阅读器等低功耗的显示器件中.单色电泳式电子纸从实验室走向产业化的成功催生了彩色电子纸的发展,以满足人们对反射式显示器的多样需求.然而,在成功实现彩色化之前,还有许多挑战性的问题仍待克服.为了实现电子纸的彩色化显示,本文首先介绍电泳式电子纸的基本操作原理、包括粒子带电机制,粒子表面改性等.然后,针对电子纸在驱动过程中产生的“鬼影”现象和反射率峰突现象进行了驱动波形的分析设计与优化,消除了峰突的同时仅牺牲了,并首次提出将转印工艺技术与电泳式电子纸相结合,成功制备了边长为4%的峰值反射率.最后,我们对电子纸彩色化方案进行讨论300μm的方块彩色微胶囊子像素阵列,实现了空间混色的彩色电泳式电子纸,测得其子纸的NTS较于已报道的基于C键3中图分类号 .1词4%有明显提升.
C的色域在三色子像素结构下为13.7%,F彩色电关 :电泳电子纸;驱动波形;彩色化
:TN27 文献标识码:A doi:10.3788/YJYXS20183312.0982
FundamentalfpohryfsiucllsGcaonldoroepGepraatp
ieornalprincip
lesZHANGYaGdi,WANGLi,WANGYuGcheng
,YANGBoGru∗yLyofOphnologiesGuan(StateKeaboratortoelectronicMaterialsandTecgdongProvinceKeyLaboratoryofDisplayMaterialandTechnolog,yandSchoolofElectronicsandInformationTechnology,
SunYatGSenUniversity,Guangzhou510006,China),
Abstracta:Asapromisingreflectivedisplaytechnology,electrophoreticdisplay(EPD)hasbeenwidely
sopfmplieodnoicnhlroowmipcEowPerDc,otnhseufmutputiroenddisipslpalyayapdpelviiccaetsiosnnuchaeedssetGorebaedefrul.lGDceoslp
oirte.Hofotwheevecro,mmsoemrecicahlaslluecnceg
sessttmailllenoobtpe.rsTatrhtiueocnnttthmheeecddheriavvneiilnsogmpmwoafEentvefoPofrDcmi,osmmsudcihaercscusialsspfeadrutltilGoclcieosclormp
rhEoavrPD.eEgingThisPDm’escphapeap
rnefirwosrmilmaalnnfcdirseptiainorntitroducefundamenGrcdleessrtourrfeascoetlveretahtGe 收稿日期: 基金项目:2国家高技术研究发展计划018G06G15;修订日期:2018G(0N8oG2.2101.
5AA033408);国家自然科学基金(No.61307027
)2S0u1p5pAorAte0d334b0y8)N;aNtiaotnioalnalNHigathuraTleScchinenolcoeFgyouRnedsaetiaornochfCanhdinaDe(vNeolo.6p1m30e7nt027
P)rog
ramofChina(No. ∗通信联系人,EGmail:paulyang
68@me.com.com.cn. All Rights Reserved.第12期
等:彩色电子纸的基础物理与操作原理 张雅帝,
983
microcasulessubGixelarrandrealizedacolorelectrohoreticEPD.TheNTSCratioofourEPDppyap
,reached13.7%forthreesubixelsstructurewhichislarerthan3.14%ofthecolorfilterbasedEPDpgreortedelsewhere.p
:;;Keordselectrohoreticdisladrivinchemefullcolorrealizationppygsyw
colorEPDarepresentedaswellasatransfermethod.Wesuccessfullreared300×300μmcolorypp
hostinndreflectanceovershootinhenomenon.WemanaedtoeliminatethereflectanceoverGggagpg
,shootintthecostofonlfthepeakreflectance.AlsodifferentstrateiesforachievinullGgay4%oggf
1 引 言
之于透射式 纸张作为一种被频繁使用的阅读媒介,
较或自发式显示器[1G3]
光环境下的可读性和反射式显示,具独有有在的室不外易强视疲劳的优点.但是,一次性的印刷纸读物过于浪费资源,不符合现代的环保理念.而电泳式显示器的特性与普通纸张十分类似,其双稳态特性使得长时间稳态不耗电,而且其显示效果如同普通报纸一般,因此具有替代纸张成为新一代阅读媒介的潜力.
电泳显示器的原理是利用带电粒子的电泳原理,即两种异性带电粒子在电场的驱动下,运动到显示器的两极,使得透明电极的一侧显示出一种带电粒子的色彩.若无电场作用,带电粒子将悬停于液体之中保持不动,该特性称为双稳态特性,电泳显示器也因此具有功耗低的特点,仅需在图像切换时消耗电能.近来日益兴起的物联网,电子纸作为柔性显示的终端也逐渐展现其广阔的市场前景.
在电泳式显示器中,每个像素点的反射光会随着其包含的带电微粒的物理位置发生改变.带电微粒驱动至越靠近微胶囊顶端时,反射率越大.一般的电泳式显示的微胶囊包含一个稳定的胶体系,其中包含两种带电微粒的被称为双微粒体系,对于黑白双微粒体系一般由二氧化钛微粒作为白色反射微粒,以碳黑为黑色吸光微粒.当带电微粒被驱动至微胶囊两端时,面向观察者的一端就会显示不同颜色的反射光,达到显示效果.
随着市场需求的不断提高,彩色电子纸比黑白电子纸更能提供丰富的信息和视觉体验,因此电子纸的彩色化研究具有十分重要的学术意义和商业价值.研究人员在实现彩色电子纸的工作中已经投入了大量的研究.
目前,彩色电子纸的制作方案包括:彩色滤光膜、横向驱动、多粒子体系以及微胶囊子像素方案.在上述几种方案里,添加彩色滤光膜于黑白电子纸上是最为成熟、适合于量产的方
案[4G5]
光,这让依.然而赖,于彩色滤光膜会反射自然光过显滤示掉的7电0子%的环境
纸看起来十分的暗淡.对于横向驱动方案,彩色带电
粒子被横向驱动而非传统的竖直方向[
6]
例如粒子团聚、迁移、控制,以及小的开.口一率些和电场的有效驱动等问题仍待解决.多粒子方案是将中.4种不同颜色的带电粒子封装于一个盒这些不同颜色的粒子带有不同的电荷量,
在电场的作用下以减法混色的模式呈现出彩
色[
7]
面,遗憾的是这种.多色粒子的原型方案的机技表术现要出求丰较富高多,彩精的确画控制各种粒子的空间位置以及较长的图像更换时间延迟了它的上市,其在柔性显示上的应用尚未可知.
彩色微胶囊子像素方案类似于彩色滤光膜方案,同样是采用空间加法混色的模式,但与之不同的是将各色的微胶囊以子像素阵列的方式相嵌布置,不再需要彩色滤光膜,这将大大提高反射光强和显示效果;每个子像素彩色微胶囊仅需包裹两种不同的颜色颗粒,提高了粒子响应速率,降低了工艺和驱动技术方面的要求,是具备潜力的彩色电子纸的技术方案,本文将提出一种便捷有效的工艺实现此彩色化方案.
本文首先介绍电泳式电子纸的基本操作原理、包括粒子带电机制,粒子表面改性等.然后,针对电子纸在驱动过程中产生的“鬼影”现象和反射率峰突现象进行了驱动波形的分析设计与优化.最后,我们对电子纸彩色化方案进行讨论,为了解决微胶囊图形化的技术难点,首次提出利用转印的工艺技术与电泳式电子纸相结合,制备以彩色微胶囊为子像素的电子纸.
.com.cn. All Rights Reserved.984
液晶与显示
第33卷
2 电子纸的操作原理
在微胶囊胶体体系内部,微粒表面通过表面活性剂处理后形成带化学键的壳核结构,微粒彼此之间的团聚,使其更好地分散在胶囊内G从而阻止.另外,由于一般的微胶囊内部溶剂通常为非极性有机溶剂,使得微粒的带电机理与水相极性溶剂有所
不同[
8
].图1为实现电子纸彩色化的方案.图Fig1.1 实现电子纸彩色化的方案
FullGcolorEPDstrategies其中一种经典的带电机制被称为“电双层”机
制[9G10]
粒和表面活性剂,如图2所示.非极性溶剂中混有颜料微
,在电场下,表面活性剂电离后其
疏水的一端朝内,附在颜料微粒表面,使得中性颜料微粒带电形成内核层.并经过其后进一步的库伦力作用,吸附了相反的电性物质形成扩散层,使微粒整体呈电中性.当在电场作用下,受较弱的库伦力吸引的扩散层将被极化,最终导致由库仑力形成的扩散层的带电物质脱离微粒表面,使得微粒净电荷不为动从而达到改变反射率的效果0,因此微粒将.
受电场力作用移图Fig.2 Chargingme2c ha“ni电双层smofe”l机制
ectricaldoublelay
er另一种带电机制称为微胞(理论[11G12]
,该理论认为表面活性剂的电离不会发
InverseMicelle
)生在非极性体系中,表面活性剂由于亲疏水性不同而聚集,形成一个中性的微胶团结构,称为微胞,在微胞和微粒的碰撞过程中,发生电荷交换,从而带电,如图3所示.
图Fig.3 Charging3me ch“a微胞nismo”起电机制
finversemicelletheory
两种理论都建立在稳定分散的胶体体系前提
下,这同时也意味着电泳式显示具备双稳态特性,也即在无外加电场的情况下,微胶囊内部微粒将保持原位.宏观上即,撤去电压后,显示内容维持稳定不变.为了实现双稳态特性,需要平衡微粒受到的重力、浮力、胶囊壁作用力以及微粒间作用
力,因此,这样的胶体体系设计难度颇大[
13]
. 驱动波形的设计
.1 “
鬼影”现象机理和波形设计解决方案为了显示精确的灰度值,需要精确操控微粒移动至微胶囊中的不同物理位置,其中涉及到复杂的作用力,可能会导致性能的退化,因此需要设计合适的驱动波形以保证系统稳定可控.年,EGink公司首先提出了不同驱动波形对2应00不3同灰度的概念,探究了脉冲宽度和电压大小对其的影响,并针对多灰度电泳式显示,定义了由于灰度转换不完全造成的“鬼影”现象(Ghostingi
mG灰度历史路径造成的g
e).进一步的提出了插入重置波形以解决由于“鬼影”现象[
14
]另一篇文献[15]
中,则通过模拟的方法探究了
.微粒运动行为和电泳显示性能的关系.为了提高
显示性能,许多波形被设计并应用于电泳显示中.
例如用于改善“鬼影”现象的强脉冲波形[16
]加快画面更新速度以适应视频播放的短脉冲宽度;用于
波形,以及对应的灰阶波形表和进一步加速更新
的区域更新方案[17];
针对驱动过程中由于表面活
.com.cn. All Rights Reserved.33a第12期
等:彩色电子纸的基础物理与操作原理 张雅帝,
985
性剂电离造成的电流凸起现象,文献中研究了其和脉冲宽度的关系,并设计了对称波形进行验
证[18
]常见,.如图在这些波形中4所示[
19G21]
,一般来说,振动波形通过引导微粒的.重置波形和振动波形最为上下运
动增加了微粒间的电荷交换,被广泛应用于微粒的起电.起电后的微粒,需要首先被驱动至同样的初始状态以达到统一的灰阶转换,此时一般用到重置波形,先将微粒驱动至微胶囊壁上,使微粒间的带电状态和物理位置都能保持一致.
图Fig.4 4 常见驱动波形Commondr.(a)振动波形;(b
)重置波形.Shakingw
avievfionrgmw
;(avbef)orremsesotwfEavePfoDrsm..(a)在我们的实验中,通过施加重置波形,灰阶的历史路径影响被成功消除,其原理如图第一步,将具有不同初始灰阶的黑白双色电子纸5所示.驱动至特定灰阶灰阶黑态.尽管第二步的灰阶切换路径相同G1,接着第二步将其切换至相同,但受到第一步时的历史灰阶路径不同的影响,最终导致电子纸的光电响应不同,灰阶出现偏差,如图5所示.而当在每一次灰阶转换前先施加重置波
形,如图6所示,则可以使得电子纸的光电响应即灰阶更加精确.
图Fig.5 History5d ep“e灰阶历史路径ndenceingray”s示意图
caleswitching
3.2 光响应峰突现象机理及波形设计解决方案
另一个现象称作光响应峰突,也称反射率峰突(Reflectanceovershooting)[15]
射率的突变将会导致画面的闪烁,,
降低显示性能驱动过程中反.其原理解释如图7所示,对于黑白电子纸,在初始状态为黑色时,由于双稳态特性,黑白双色粒子均
图6 重置波形消除“灰阶历史路径”影响换;(b
)施加重置波形后转换..(a)直接转Fig.6 Obyptdicalresponseswitching
fromG1toRstateresetwirecatvleyfosrwmitc(hb
in)g(a)andswitchinga
fter匀分散电极两侧,如图场后,白色带电粒子会被加速驱动至上电极7(a)所示.当施加外加电,并与上电极处部分残留的中性黑色粒子碰撞,如图(7
积b
),所白态出现极大值示.因此,白色,如图粒子会在上电极处电极带电微粒形成內建屏蔽电场7(c)所示,最终抵消了外.其后紧,密两侧堆加电场,阻止了带电微粒的运动.此时被推开的中性黑色微粒又将重新分散,填入上电极处白色微粒的空隙之中,与白色微粒混合,导致白态反射率的下降.
为了验证此机理,本文测试了黑白电子纸在不同外加电压下的光电响应,如图上文关于粒子运动的分析保持一致7,(e即当外加电)所示.与压越高时,带电微粒移动速度越快,內建的屏蔽电场形成越早,因此导致反射率峰突的出现时间变得更早,佐证了本文的机理解释.
为了解决峰突带来的性能退化,本文提出了.com.cn. All Rights Reserved.986
液晶与显示
第33卷
图7 “(态b反射率峰突);粒(下的反射率峰突d)子反运射动”率碰机理及实验验证降撞低;粒(c子)最状大态反.(a
)原始状态;;(e射)率各时驱粒动子电状压Fig.7 OMreicg
hinaanlissmtatoef.
;(“rbeflectaniscieoonbveertswhoeeotninpg
ar”t;(icleas)(c)Maximumrefl)ecCtoallnce;(d)Decreasingo
f;freerfleencttavnoclteaag
ned.;(e)Overshootingu
nderdifG一种间歇推动波形,如图中插入若干个零电平间隔8,(b期间不受外加电场加)所示.在脉冲过程速的带电微粒会由于胶体内部的阻力而减速.通过牺牲一定的转换速度,微粒将有序低速地抵达上电极,消除了反射率峰突的影响,如图示.在未加入零电平间隔时,反射率8(c骤)所降
1骤降的峰突717%,
而在采用间歇推动波形,而且仅牺牲了4%的峰值反射率后,不仅消除.了4 实现彩色电子纸的方案
为了实现空间混色的彩色微胶囊电子纸,我们提出了以转印的方法来制备彩色微胶囊的子像
图8 “原始波形间歇推动;(”波b)形TP消波形除“反;(射c
)率光响应对比图峰突”影响..(a)Fig.8 Dweasvigefnorofpushingwaveforms.(a)Orig
inalsonofopmti;(calbr)esTp
Pwonseasve.form;(c)compariG素阵列.转印技术已被广泛应用于柔性电子领域,一个典型的转印过程包括一个“施予衬底”和一个“接受衬底”.通过一个弹性印章(例如:聚二甲基硅氧烷至接受衬底.PD粘附功被认为是一个决定转印成功MS)
,将“墨水”从施予衬底转移与否的关键性因素,其中粘附功函数:
Wij=2γiP
γP
2γiD
γD
其中:γ是表面能,
下标膜,上标ij和+j代表两j种不同的薄量.为确保转印的顺利实施P和D分别表示表面能的极性和色散分,墨水与施予衬底的粘附功应小于其与转印章的粘附功.除了考虑施予衬底应具有的低表面能,可逆的粘附,即将墨水由转印章释放到接受衬底上的能力,也是转印过程中另一重要的因素.因此,一些诸如动力学控
制[22]23]24助[25]、以及气压驱动剪切力增强[[26、]
等转印方法被引入到制程
表面离型结构[]
、激光辅里.然而,由于微胶囊相对较大的尺寸和其成膜后粗糙的表面,转印章很难与微胶囊薄膜形成很好的粘附,最终导致转印的失效.
胶带是日常生活中常用的粘贴工具,涂覆于其上的高分子处于粘流态.与弹性体相比,胶带具有强的粘合能力,非常适合微胶囊这类膜材的转印.热释放胶带是一种常温下为压敏胶,高温下失去粘附能力的胶带,可作为可逆粘附的转印媒介.
.com.cn. All Rights Reserved.第12期
张雅帝,
等:彩色电子纸的基础物理与操作原理987
在此,热释放胶带将被用于替代列和章作为转印媒介.整个微胶囊转印工艺流程可分PDMS转印
4色子像素阵列结构下对应的为最终7%和,我们成功制备出了6.04%.
NTSC色域为13.具有微凹结3个主要部分:(构的P1D)M利用光刻和倒模工艺S阴模以用于微胶囊,制作的图300μm×300μm和
形化;(5的方形子像素线宽可以达到00μm×500μm的微胶囊子像素阵列,
其中最小中,利用热释放胶带粘附并转移已图形化的微胶2)将调配好的微胶囊悬浮液填充至阴模显示需求.进一步,我们将所得微胶囊子像素阵列150μm,可满足基本囊阵列;(集成,制备出空间混色的彩色化电泳式电子纸.
涂有光学透明胶的3)将热释放胶带上的微胶囊阵列贴附到温,使得热释放胶带失去黏性PET衬底上,同时温度升至高,微胶囊脱离热释放5 结胶带完全转移至目标衬底.最后可通过重复如上 论
步骤,多次套印,即可得到基于空间混色的彩色微在本报道中,我们回顾了电泳式电子纸的基胶囊阵列,如图9所示.此外,以上步骤可与溶液础物理和操作原理,提出新的驱动波形以消除反态的卷对卷制程兼容.
射率峰突现象,并提出转印工艺技术与电子纸技术相结合以实现彩色电子纸.首先,本文分析了双粒子胶体体系的带电机理,解释了电双层理论和微胞理论导致粒子带电的原理.其次,本文探究了驱动波形对于胶囊中不同粒子的操控作用以及对电泳式电子纸性能的影响.包括震荡波形使粒子带电,重置波形使所有粒子驱动到基态以消除残影等.进一步的,本文提出一种新的驱动波
图Fig9.9 转印技术用于形成彩色电子纸[27]形,解决了电子纸反射率的峰突问题,避免了在灰 Transferringp
rocessofcolorEPD阶转换过程中白态的失真,在消除峰突问题的同时,仅牺牲了为了表征彩色电子纸的色域,我们将单色的4%的峰值反射率.最后,本文首次提出将转印工艺技术与电子纸制程相结合,成功微胶囊子像素阵列转印到黑色(或白色)纸张上,制备出了借此来模拟电子纸每个像素点中的一个子像素显300,实现了空间混色的彩色电泳式电子×300、500×500m2的彩色微胶囊子像素阵列μ示单色,其他为显示为黑(或白色)的情况,并利用纸,并测得其爱色丽(4色子像素阵列下分别为NTSC的色域在13.73色子像素阵列和
模式环形光源下测得所得电子纸在EyeGone)分光光度仪进行测3色子像素阵量.在反射子纸彩色化领域具有较大的发展潜力%和6..
04%,在电参 考 文 献:
[1] 陈志坚,李福山,龚旗煌CHENZJ,LIFS,GO.新型蓝光NGQH,eOtLalED材料和器件[.NovelblueorgJa]ni.发光学报,clightGemi2t0ti0n5g,2d
i6o(d6es):a7n4dm3G74a7te.
rials[J].Chi[2] ofLuminescence中国科学院长春物理研究所第,2005,26(6)十:7研43究G74室7..电(i致nC发hi光ne显se示)neseJournal器的国内外发展现状和研究动向[69G77.
J].发光学报,1981(4)
:rTehseea1r0th
chwReosrko.Difve.loefctCrohlaunmgcinheusnceInntstditisutelaofPehvyicseicss,[JC]h.iCnehsieAneseJcadoeumrnyaolfoScienucemsin.eTshceenscteat,es19o8f1ar(t4a)n:d6t9rGe7n7d.s(oinf[3] C周忠伟hinese
,)pydfL孟长军,王磊,等Z.液晶显示器广色域技术的研究[J].发光学报,2015,36(9):1071G1075.
[4] LChHOAiIYnesUZeJHoW,uCr,nHAaMlEoNCCfNGCJLum,iHWUn,eWAscenNcKLeGL,,2e0,t1eta5al,l.3L6.R(9es)e:a1rc0ho71Gfw107i5de.c(ionClorhgianemsuet)technologyforliquidcrystaldisplay[
J].iblecolorelectrophoreticdisplays[J].SIDSaytemGnpeowsisupmostDeirge:sdtiroefctTpehcohtnoilciatlPhogarapp
ehrisc,c2ol0o1r2fi,lt4e3r(f1o)r:1143.16G5iGn1c3h6f7le.xG.com.cn. All Rights Reserved.988
液晶与显示
第33卷
[5] CHANGCM,CHIUCH,LEEYZ.Directprinte[6] LSyEmNpSoSsiEuNmKMDigeHst,oBfATEeScJhOniUcalPPJa,pBerUsD,Z2E0L11A,A4RFP2(d1p)l:asticcolorfilterforcolorelectrophoreticdisplay
s[J].SIDM15,4e5tG1a5l4.7N.ovelconcetforfullGcolorelectronic][7] TJournaloftheS[8] MOPaEpLeFrsE,RSJ2016,,Mo47CcietyforInformationDisplay,2009,17(4):383G388.ppap
er[J.(C1R)E:5A7R4GY57M7.D.AfullGcolorelectrophoreticdisplay[J].SIDSymposiumDigestofTechnical[9] BneeErRiRnRTgISTAsO,pNIDecEStsD.,M1E9lE9ecT3tr,iH7ca1lD.(c1h)aT:rgh1eGe3sm7innic.onaqueousmedia[J].ColloidsandSurfacesA:PhysicochemicalandEngiGroscopicphysicsofelectronicpaperrevealed[J].Displays,2003,24(3):[[1101]] B103 EG1R1T0.
T,DESMETHD.Dielectrohoresisinelectronicpaer[J].Dislas,2003,24(4/5):2[12] SCVoAAlIlNoNiIdaDESSKnRdIHO,nGteEErfVRaMAcEeSNIcPNienCVce,L,,M1YE9KpJ9LEMAJ.ElectrostaticsptabilizationipnnyonGaq
ueousmedia[J23]G.2A3d0v.ancesinE2A,NCO42:20,5Get27a7l..Electrostaticinteractionsofcolloidalarticlesinnonolarsol[13] LveUntsC:rMol,eCofHsEuNrfaHceHch,eLmIisAtrOJSyand,ecthaarlg.ePceornftorromlaangceeantscti[vJem].Laatnrigxmumiircr,oG2c0u0p8e,l2e4ct(r4o)p:pho1r1e6ti0cdG11i6s4pl.p
Gay][14] ZSyEmHNposEiuRmRD,igAMUestofNDTSecOhNnicKalP,KaNpeArIsA,N20A09,,eta40l(1.)D:[
J.SIDri1v5ew01G1a5ve0f4or.msforactivematrixelectrophoreticdislas[15] K[J[16] YSIO]ADSD.SAMAIDSyNGSympHoHms,i,puTosLmAiINDKumiEFCgeSDsHitIg,oTesHUfAtoTAeK.fTcNhGnCeioccYamhnilPpuctaP,aalPptieornasaplmersetal.,G2h0o,o0ds5e2l0ti,in3n03,g6gr(oe1f34(1):842G845.py
d)puc:it1gio6mnd7e0nGtr1i6dv7isin3pg.ersionsinanelectrophoreticdisplay
[J].methodinelectrophoreticdislas[17] KSIADSOyWmCpo,siLuImUDCigHes,toLIfOTUecSChnica,lPapersetal.Tow,a2r0d1sv2,i4d3eod(1)is:p1py[J].l3a6y1Go1ne36l4ec.tronicpapersTechnology,
2016,12(2):129G135.[J].JournalofDisplay[18] KAOWC.ElectrohoreticdislaontrollerinteratedwithrealGtimehalftoninndpartialreionudate][19] HUJourAnaNlGofYPDis,pLlIapNFCyTech,noWUSlogypyI,2,e0ct10al,6.M(1ec)h:a3n6iGgs4ma4.gagp
[J.ndimrovementofcharedGarticlestransition[20] WUSelectrophoreticdisplays[J].JournalofDisplayTechnolopgy,2013,9(8):61g9G62pinmicrocu5.p
[21] K[I,LIIMJM,yNFC,HUAKIMK,LEESgNGYfPT,etal.ElectrokineticsofcharJ].SIDSmgedGparticlesinmicrocupelectrohoreticdislasposiumDiestoechnicalPapers,2011,42(1):1559G1562.ppy
[22] MresEpIoTnsLeMchaAra,cZteHUristicZsT[J,]W.MultileveldrivingwaveformfK.EUMAlectroRnicVsL,etaettelrs.T,r2a0n1s4fe,r5p0ri(2ornt5in)e:l1ec9t2r5oGphoreticdisplaystoimprovegreylevelsandi1n9e2ti7cc.ontrolofadhesiontoa[23] CstaAmRpLS[JO]N.NAat,uKreMIMGaLtEerEialHJs,,20WUJ11,5,e(t1a)l:3gbyk
nelastomeric.S3Gh3e8ar.Genhancedadhesivelesstransferprintinforuseindeterministi[24] Em[25] SibIalSteAeEriEdNalIrHAsasDyPaOdhUseUeRmRsiEJDbly[AonZA[J,JRR].X]AI.ETApp,CLSA,liVedPAhysicsLetters,2011,98(26):264104.g
cIRp,pLlIYiRedGHMEHa,tSeeEStriaall,s&etal.Microstructuredshaememorolmersurfaceswit.LasIenrGtedrrfiavceenms,i2c0r1o3tr,a5ns(1pfe6r)p:ypyhreversGl7a7c1e4mGe7n7t17of.prefabricatedmicrostruc[26] CturAeRsL[SJO].NJoAur,nalofMicroelectromechanicalSystems,,2012,21(5):G
1049G1058.[27] WAfordNetGLermi,nLisItUicWAGSassNeGSD,mWAbly,ELNbGYCytraVnIsKISP,etal.A,feetraplri.nTtirnagnsf[Jer]ctive.pAprog
rammableelastomericsurfaceswithridntviancedFunctionalMaterials,2012,22(2t1u)n:ab4l4e7a6dhesionnaloftheSocietyforInformationDisplay,2017,25(n6g):forfabricationofflexibleRGBcoloreG384G390.pap
er[J]G4.J4o8u4r.G作者简介:张雅帝(杨柏儒(11999749--)
)
,男男,,湖南常德人台北人,,硕士研究生教授,博士生导师,主要从事电子纸和液晶显示的相关研究,主要从事柔性电子、传感技术、柔性显示.研究.EGmail:pau,lyang
68@me.com、电子纸技术的.com.cn. All Rights Reserved.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务