教学准备
1. 教学目标
1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念。 2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力。由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新。
3.初步体会类比和逆向思维的数学思想。
2. 教学重点/难点
教学重点 掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。
教学难点 多项式的次数
3. 教学用具 4. 标签 教学过程 一、复习引入: 1.列代数式:
(1)长方形的长与宽分别为a、b,则长方形的周长是 ; (2)某班有男生x人,女生21人,则这个班共有学生 人; (3)图中阴影部分的面积为_________;
(4)鸡兔同笼,鸡a只,兔b只,则共有头 个,脚 只。 (由于本课的主题是多项式,通过列代数式引入多项式,既是对前面知识的回顾,又由此导入新课,既符合学生的认知水平,又能为学生学习新知提供丰富的素材。)
2.观察以上所得出的四个代数式与上节课所学单项式有何区别。
(1)2(a+b) ; (2)21+x ; (3)a+b ; (4)2a+4b 。
二、讲授新课: 1.多项式:
板书由学生自己归纳得出的多项式概念。上面这些代数式都是由几个单项式相加而成的。像这样,几个单项式的和叫做多项式(polynomial)。在多项式中,每个单项式叫做多项式的项(term)。其中,不含字母的项,叫做常数项(constant term)。例如,多项式其中5是常数项。
一个多项式含有几项,就叫几项式。多项式里,次数最高项的次数,就是这个多项式的次数。例如,多项式一个二次三项式。 注意:(1)多项式的次数不是所有项的次数之和;(2)多项式的每一项都包括它前面的符号。 2.例题: 判断:
(1)多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;错 (2)多项式3n4-2n2+1的次数为4,常数项为1。 对
(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中。另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数。)
有三项,它们是3x2,-2x,5。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务