您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页Traffic Engineering in backbone Networks in the presence of Heterogeneous Streams. Under Pr

Traffic Engineering in backbone Networks in the presence of Heterogeneous Streams. Under Pr

来源:意榕旅游网
TrafficEngineeringinBackboneNetworksinthe

PresenceofHeterogeneousStreams

ShekharSrivastava,DeepMedhiandAppievandeLiefvoort

ComputerScience&ElectricalEngineeringDepartmentUniversityofMissouri-KansasCity,KansasCity,MO

differentAbstract—Differentmulti-mediatrafficsourcescanhaveofissuewhethertrafficcharacteristicswhichcanraisetheissueinmadeabecomestomultiplex(someof)thesesources.Thisbackboneevennetworkmoreimportantintrafficengineeringconstraintsonwhichwhenadecisionneedstoberequirementsontunnelingsourcestomultiplexwhenthereareastreamsmeasureoffordistortiontunnels.andIncapacityalongwithroutingbetweenthispaper,wefirstpresentfactortheinandtrafficshowengineeringtheireffectiveness.twoofbackboneNextdifferentweusetrafficthispresentingpresenceoftunnelingandcapacityconstraintsnetworksinawheretwoanoptimizationformulation.Wethenpresentbytwothesubproblemsinphasetheheuristicfirstandphaseapproachinthethesecondproblemtosolvephaseisdecoupledthisproblemweshowhowintobepresentsimplifiednon-linearproblem(foroneofthesubproblems)canapproachnumericaltodevelopaduality-basedmethod.Wethentohelpsresultstoshowwhereandhowourcapacitymultiplexdependingindeterminingonwhetherwhentheandtunnelingwhichsourcesand/orming/Optimization,IndexconstraintTermsisdominant.—MathematicalProgram-constraint,CorrelatedTrafficTraffic,LagrangianEngineering,Decomposition.

TunnelingI.INTRODUCTION

Packetleveltrafficfordifferentapplicationstendtohavedifferentcharacteristics.Thisfacthasbeenobservedforemergingapplicationssuchasvideoconferencing,peer-to-peer,multimediaapplications[2],[3],[6],[15].Moreover,trafficgeneratedbysuchheterogeneoussourcesaremultiplexedtogetherandsharethesameserverorlink.Whentrafficofdifferentcharacteristicsaremultiplexedtogether,trafficdistortioncanoccurthatcanbesignificantdependingonthechar-acteristicsoftheinputsources[17],[10].Forexample,

ThisworkhasbeensupportedinpartbyNSFgrantANI-0106640.dmedhi@umkc.edu

CorrespondingAuthor:Tel:+18162352006,e-mail:suchimpactscanbefairlystrongwhenoneormoreofthemarecorrelatedinnature.

Inordertominimizedistortion,apossibleapproachwouldbetomultiplex“like-minded”sourcesintodiffer-entstreamswhereeachstreamistunneledseparately.Suchtunnelscanavoidinter-tunneldistortionifthenetworkhasthecapabilitytodoso.Forthispurpose,weconsideranMPLS(multi-protocollabelswitching)net-workwheretrafficofdifferentcharacteristicsareoffered.MPLSallowslabelswitchedpath(LSP)tunnelstobesetupbetweensourceanddestinationnodes;suchtunnelscanbeusedfor“like-minded”sources.Atoneextreme,justonetunnelcanbesetupforallheterogeneoussourceswhichaddstodistortion.Ontheotherextreme,wecanconceivablysetupaseparatetunnelforeachpossiblesourcetoavoiddistortion;thedifficultywiththisscenarioisthatthenumbertunnelscanbeprohibitivelylargethatcannotonlyslowdownprocessingatanMPLSnetwork,butalsocanbeadministrativelydifficulttomanageinanetworksetting.Ourworkismotivatedbythetrafficengineeringissueofthetrade-offbetweendistortionandlimitingthenumberoftunnels,especiallyinanetworksetting.

Thecontributionofthepapercanbesummarizedasfollows.Wefirstpresentadistortionmetricwhichcapturesthedistortionsufferedbyasteamwhensharingaserverwithanotherstream.Themetricisderivedusingthequeueingmodelpresentedin[17],[10].Next,usingthismetric,weconstructanoptimizationformulationwhichminimizesthedistortionsufferedbyindividualstreamsfordifferentsource-destinationnodeswhilere-strictingthemaximumnumberofallowedtunnelsonalinkwhilekeepinginmindcapacityconstraint.Theformulationisgeneralinthesensethatitistransparenttothemethodusedtocomputethevalueofdistortionmet-ric.Theexactformulation(shownbelow)isnon-linearinnatureandhasalargenumberofbinaryvariablesandconstraints;tosolvethisformulation,wepresentatwophasesolutionapproach.Inthefirstphase,wedecouple

theproblemintotwoseparateformulationsandmakeitpossibletoavoidthenonlinearityintheobjectivefunc-tion.Inthenextphase,weuseaLagrangianrelaxationbasedapproachtosolvetheformulation.Themethoddecomposestheproblemintosmallercomponentsandarrivesatthesolutionbyiterativelysolvingthesmallercomponentsandupdatingthedualusingsubgradientoptimization.Usingnumericalresults,wedemonstratetheutilityoftheformulationtowardsallocatingstreamstotunnelswhileminimizingthedistortionsufferedbytheindividualstreams.Wealsoshowthatthecapacityandtunnelingconstraintscoupletogethertoeffecttheoverallflowcarriedandtheoveralldistortionsuffered.Animportantquestioniscollectionofdatafordiffer-enttrafficsourcestodeterminefirstandsecondorderstatistics,forexample,tostudycategorizationofdistor-tion.Thisishoweveroutsidethescopeofthispaper.Inotherwords,wefocusonthefactthatgivendifferenttrafficsourceswithdifferentcharacteristics,howdowebalancebetweenminimizingdistortion,thelimitationonnumberoftunnelsandcapacity.

Therestofthepaperisorganizedasfollows.InsectionII,wepresenttheframeworkusedtocapturedistortionssufferedbythestreamssharingatunnel.InsectionIIIwepresenttheformulationasanquadraticintegerprogrammingproblem.InsectionIV,wepresentoursolutionapproachwhichdecouplesanddecomposestheproblemintosmallerproblems.InsectionV,wepresentanddiscussnumericalresults.WeconcludeinsectionVI.

II.FRAMEWORK

FOR

destination.Allpacketsofatrafficstreamassumetofollowthesamepath.Here,thefirst-andsecond-ordercharacteristicsofatrafficstreamarespecifiedbythemean,andeitherthesquaredcoefficientofvariationformarginalsorthecorrelationdecay(orboth)asthesecond-orderparameterintheconstructionofthearrivalprocesses.Wewillfirstbrieflyreviewthemodelpresentedin[17],andthendiscussimpactofmultiplexingusingthismodeltodetermineadistortionscore.

A.ConstructionofStreams

Inthissection,wereviewtheconstructionoftheinterarrivalprocessofpacketsofthestreamwithagivenfirstandsecondorderstatistics.SincewefollowLinearAlgebraicQueueingTheory(LAQT)representation[9],wefirstbrieflyreviewLAQTdefinitionsandnotations.Amatrixexponential(ME)distribution[9]isdefinedasaprobabilitydistributionwhosedensitycanbewrittenas

(1)

DISTORTION

Inthissection,wepresentawaytocapturedistortionsinducedinatrafficstreambyotherstreamswithwhichitismultiplexed.Ourdiscussionhereisextendedfromamodelpresentedin[17].Weconsiderasingleserver

Departing q packets

(Source q)

µ

νν

(Source p)

q

whereisthestartingoperatorfortheprocess,istheprocessrateoperator,andisasummingoperatorconsistingofavectorofall1’s.Themomentofthematrixexponentialdistributionisgivenby

,whereistheinverseof.Theclass

ofmatrixexponentialdistributionsisidenticaltotheclassofdistributionsthatpossessarationalLaplace-Stieltjestransform.Assuch,itismoregeneralthanthecontinuousPhasetypedistribution.

Thejointdensityfunctionofthefirst-successiveeventintervalsdescribesamatrixexponentialprocess(MEP):

exp

exp

p

Departing p packets

Fig.1.Diagramofthemultiplexerunderconsideration

sharedbetweentwotrafficstreams(and).Atrafficstreamisunderstoodashavingasourceandadestinationwherethesourcegeneratespacketsbasedonthearrivalprocess,whicharecarriedbythenetworktotheintended

(2)

where,thematrixistheeventgeneratormatrix.Ex-amplesforsuchprocessesareaPoissonprocess(=[],=[]),arenewalprocess(therankofis1,=

),andaMarkovArrivalProcesses(MAP).NotethatandarenotlimitedtobeingMarkovianratematrices,sothateveryMAPisanMEP,butnotviceversa,seealso[7].Weassumetheprocesstobecovariancestationary,sothatisthestationaryvectorfortheprocessatembeddedeventpoints(i.e.,

).Theexpressionforthelag-covariance,the

covariancebetweenthefirstintervalandthe,is

(3)

2

Hence,theauto-correlationatlag-,r[]canbefoundbydividing[]bythevariance

(4)

Finally,themarginalprocessismatrixexponentialwithdensityasgiveninequation(1).

Now,wediscusstheapproachusedtoconstructthearrivalprocessessuchthatwehaveindependentcontroloverthecoefficientofvariation()andcoefficientofcorrelation().When,weusethePoissonprocess

and.Fornon-exponentialwith

renewalprocesses,weuseMarie’sconstruction[11]fordistributions(validfor)whichisderivedbyfittingtheparametersofaCoxiandistributionandwiththirdmomentequalto

(5)

Theprocesswehavejustdescribedleadstouncorre-latedrandomvariables.Inordertoconstructcorrelatedprocessesthatsharethesamemarginals,weusetheapproachpresentedin[12]toconstructprocesseswith

forgeometricallydecayingcovariance.Define

as:

(6)

Theconstructedintroducesgeometricallydecayingcorrelationsintheprocess,whileleavingthemarginalsinvariant:

Weconsiderthethreetypesofarrivalprocesses:(1)Poisson(=1),(2)high,butuncorrelatedand(3)

andcorrelated.Now,wewilldiscusshowtohigh

formanycombinationsofanddecidethevalueof

streamtypes.

Overallmismatchbetweenstreamsandhascon-tributionsfrommismatchintheiraveragerates(),valuesofcoefficientsofvariation()andcorrelation().Hence,wedefinethemismatchbetweenstreamsandas

;

,,):Whenoneofthestreams,

butissay,isnotPoissonandhasahigh

uncorrelatedandissameasthepreviouscase,i.e.

,then,wepresentresultsin

Figure3,whereisderivedfrom8.Forpresented

andforresults,weuse

stream,wehad.

2)

0.950.94P[Queuelength > 0]--->0.930.920.910.90.890.880.87

where,isthecontributionofratestotheoverall

iscon-mismatchbetweenthestreams,andsimilarlytributionofandthatofcoefficientofcorrelation.Wedefine

(8a)

stream pstream q(8b)(8c)

and

0.86

10.5

1111.51212.513

pq

13.51414.515

IncaseboththestreamsarePoisson,,sincenodistortionoccurs.Bothstreamshaveforanyratioofrates.1)Poisson;,,):Whenoneofthestreams,say,isPoisson()andishavinghighandisalsocorrelated(i.e.

),then,wepresentresultsinFig-ure2,whereisdeterminedbasedon(8)and

.

Increasing Λ ----->

Fig.3.

forstreams

and

forincreasing

0.940.930.92P[Queuelength > 0]--->0.910.90.890.880.870.860.850.840.83

5.5

stream pstream q

66.577.58

pq

8.599.510

Increasing Λ ----->

Fig.2.

forstreams

and

forincreasing

Observethatwedoobservedistortions.Since,isminimal(forbothstreams)forlowervaluesof,metric(8)isameaningfulmetrictobeminimizedinordertoensurethatthedistortionsinthestreamsareminimal.Similarpatternswereobservedforothervalues

and.of

Observethat,forthepresentedscenario,thesuggested

measureisadequatelycapturingthetrendofdistor-tioninboththestreams.Therefore,weseeitasagoodmetrictobeminimizedsothatthestreamscarriedbythenetworksufferminimaldistortion.Similarresultswereobtainedforstreamswithdifferentandandstreamwithothervaluesof.3):Inthefinalcase,boththestreamshavehighandarealsocorrelated().InFigure4,wepresentresultsforthe

forbothandstreams.We

choosethestreamwith,and.Thestreamhas.Weseethatforthevaluesunderconsideration,thechosenformofadequatelycapturestheextentofdistortioninthestreamsand.Similarbehaviorswereobservedfordifferentvaluesof,andofthestreamandforstream.

Torecap,wenowhaveametric()whichisreadilyavailableforvariouskindsofstreamsunderconsidera-tiontobemultiplexedandcanbedeterminedwithoutfindingthesolutionofthemultiplexerfirst.However,itperfectlyreflectsthenegativeimpactofsharedstreamsonbehaviorfurtherinthenetwork.So,byminimizingthismetricinthetrafficengineeringprocess,onemin-imizestheoverloadandthesystemtimes.Themetricwasdeterminedbyaccountingforthedelaysobservedinthestreamsofstreamsafterdepartingfromtheserver

4

0.9350.930.925P[Queuelength > 0]--->0.920.9150.910.9050.90.8950.890.885

13

stream pstream q

13.51414.51515.5

pq

1616.51717.518

Increasing Λ ----->

Fig.4.

forstreams

and

forincreasing

(multiplexer)ataqueue.

Wepointouttothereaderthatthisisnottheonlywaytoconstructthedistortionmetric,ratheritisoneoftheways.Moresophisticatedmethodscouldbeusedtodefineanothermetricwhichmoreaccuratelyreflectstheimpactofhighvarianceandlongtermcorrelations.Theseremainforfurtherstudy.However,wewillshowintheremainderofthispaper,thebenefitsofincorporatingthisnotionofdistortionintrafficengineering.Evenotherrequirementscanbeincorporatedbycarefullyadjustingthevaluesof.Inthenextsection,wewillshowhowthevalueofdistortionmetric()canbeincorporatedinthetrafficengineeringformulation,independentoftheapproach/criteriausedtocomputethevalueofthedistortionmetric.

Thefollowingparametersareassumedtobeknown:,,,,,and.Forevery,wealso

,and.Weassumethatbasedontheknow

isprecomputeddiscussionsinsectionII,thevalueof

and.Weassumethatapathforevery

generator(suchasthek-shortestpathalgorithm)isusedtogeneratethepaths,.Letbethenumberofcandidatepathsgeneratedfordemand.Wenow

associatedwiththeintroducethedecisionvariable

,pathofdemand.It’sstream

valueis1ifthetrafficofstreamselectsthepath;otherwise,itsvalueis0.Asdiscussedearlier,duetocapacityrestriction,itisquitepossiblethatademandmaynotberouted(networkdesigneroftenavoidsuchsituationsbyover-engineering;fromatrafficengineeringmodelingstandpoint,itisnecessarytoincorporatesuchasituation).Toconsiderthisaspect,weintroducethefollowingconstraints

(9)(10)

Toaddresstheflowofastreamofademandoneachlink(foreachpath),wenowintroducetheindicatornotationtomapbetweenthedemandandthelink,astheyrelatetopathsasfollows:

ifpathofdemanduseslinkotherwise.

III.TRAFFICENGINEERINGFORMULATIONWeconsideranaggregated-flowbasednetwork,wheredataarrivingtoasourceforaspecificdestinationneedstobesentoveroneoftheactiveLSPsbetweenthesourceandthedestination.EachsourcedestinationpairmaintainsitsownsetofLSPs.ThetotalLSPschosentobeactivatedacrossthenetworkaresuchthatthetotalnumberofLSPsflowingthrougheachlinkarerestricted.Wefirstpresentthenotations:

Thebandwidthneededonanylink(denotedby)tocarryflowfordifferentdemandscannowbecapturedbytheamount

Foreaseofrepresentation,weusetomean,,.Sinceeachlinkhascapacity,wehavethefollowingconstraintsforeachlink:

:

:::::::::SetofNodesintheNetwork

SetofdemandpairsgeneratingtrafficinthenetworkSetofstreamsfordemandpairSetoflinksinthenetworkUnitrevenuefromtraffic

Arrivalrate(inMbps)ofthestream,ofthestreamandofthestreamand

MaximumnumberoftunnelsallowedonlinkCapacityoflink(inMbps)

(11)

Next,welimitthenumberofactiveLSPsonanylink

tobelessthan.Furthermore,weneedtointroduceavariablethatcapturesifanygivenpathisbeingusedornot.Thevaluetakenbysuchavariabledependsonthevaluetakenbythecorrespondingflowvariables.Hence,

astunnelactivityvariable,whichis1wedefine

ifanyofthestreamsusethepathand0otherwise.

5

Suchafunctionalitycanbeachievedbyincorporatingthefollowingconstraint:

(16d)(16e)(16f)

(12)

Theconstraintincorporatesandforcesthedependencybetweenandvariables.Whenis0,constraint(12)forcestobe0forall,whenis1,couldbe0or1.Havingobtainedavariablewhichcapturesthetunnelactivity,wearereadytoformulatethetunnelconstraintby

(13)

IV.SOLUTIONAPPROACH

Problem(P)isadiscretequadraticoptimizationprob-lemwhichcanbesolved,forexample,usingapproachespresentedin[14],[8].Althoughtheseapproachesareuseful,webaseoursolutionapproachonthespecialstructureoftheobjectivefunctionandtheconstraintswhichsimplifiesthesolutionapproach.Suchasimplifi-cationisachievedbydecouplingtheobjectivefunctionandconstructingtheformulations(P)and(P)(pre-sentedinthefollowingsubsection).

(14)

Thegoaloftrafficengineeringistomaximizerevenuebyflowingthedemandundervariousconstraintswhileminimizingtheoverallmismatchduetotrafficstreamssharingtunnelsinthenetwork.Thefirstcomponentwhichmaximizesthetotalweightedflowacceptedbythenetworkcanbeexpressedas

A.DecouplingPhase

Observethattheobjectivefunctionofproblem(P)hastwocomponents.Firstcomponentneedstobemaximized(totalcarriedflow)andisintegerlinearinnature.Thesecondcomponentneedstobeminimized(themismatchbetweenthestreamssharingaLSP)andisquadraticintegerinnature.Hence,wesplittheobjectivefunctionintotwopartsanduseatwo-tierapproachsimilartotheonepresentedin[13].Problem(P)maximizesthefunction

f(17)

Nowweformthesecondcomponentwhichminimizes

themismatchbetweenthestreams.Noticethatween-counterdistortionsonlywhenfordemandtherearetwostreamsandwhichsharethesamepath.Inotherwords,onlywhen,wehavea

).Summingitacrossallthecostduetomismatch(

demandsandallthestreams,weget

where.Wenowassimilatealltheprevi-ouslydiscussedobjectivesandconstraintstopresentthecompleteformulationofProblem(P)as:

f

(15)

Thisobjectivefunctionisconstrainedbythesetofequations(16).Thisobjectivefunctionmaximizesthetotalweightedcarriedflowbythenetwork.Letthesolutionoftheproblembef.

Next,weminimizethesecondordermismatchbe-tweentheflowssharingatunnelwhilekeepingtheweightedcarriedflowatitsminimalvalue.Wecanalsosetasideapriceintermsofcompromiseincarriedweightedflow()willingtobeacceptedinordertominimizethesecondordermismatchbetweenthestreamssharingatunnel.ThefunctiontobeminimizedbyProblem(P)willbe

Subjectto:

f

(18)

(16a)

(16b)(16c)

6

Thisobjectivefunctionisrestrictedbyconstraint

(19)

alongwiththesetofconstraints(16).

NotethatFormulation(P)isaquadraticintegerprogrammingproblem.Theadditionalconstraint(19)ensuresthatthevalueofvariablesxareonlyadjustedinsuchawaythattheweightedacceptedflowdoesnotdecreasefrombymorethan.Theproblemonlymovesthevariablesxandwaroundinsuchawaythatweightedacceptedflowstillremainsinthevicinityoftheoptimalsolution.

Thecostfunction(18),modeledasaquadraticintegerfunctionmakestheabovepresentedformulationhardtosolve.Notehowever,theproductofandtakesonlytwopossiblevalues,makingitpossibletocapturethesamebehaviorusingalinearfunctionbyusingoneextravariable(),Thisapproachbuildsuponthespecialstructureoftheproblem;itnotonlyavoidsthenon-linearitybutalsotheaddedvariableisfoundtobecontinuous.Notethatifweintroducetheconstraint

foreveryproducttermandminimizethesumof,thenthenon-linearitycanbesuccessfullyavoided.InTableI,weshowthetranslationbetweenthenon-lineartermandtheconstraintonthevalueofandtheeventualvalueofvariableduetominimizingnatureoftheproblem.Weusetheabove

TABLEI

Cons.on

(value)

where,

subjectto(16b),(16c),(21a),(19),(16e)and(21b),and

subjectto(16d)and(16f).HenceinordertosolveProblem(P),weusethefollowingalgorithm.

AlgorithmicSteps

Thealgorithmrequiressolvingthreesmallerproblemsnamely,,and.Inthefollowingsubsections,wepresentourapproachforsolvingthesethreeseparateproblems.

Solving

ProblemisaspecialcaseofMultipleKnapsackProblem(MKP).MKPisknowntobeNPcomplete.Thus,solvingtheGeneralMKPproblembydirectmeth-odsimposesasevereconstraintonthescalabilityofthesolutionapproach.Inourcase,thevolumeofeachitemisequaltoorinalltheknapsacksandsizeofeachknapsackisintegral,makingthisspecialcaseeffectivelysolvablebyfasterapproaches.BelowweshallshowthattherealwaysexistsanintegralsolutionfortheLPversionofMKP.Moreover,atleastonefeasibleoptimum

solutionoftherelaxed

isintegralandhencetheuseoftheSimplexalgorithmwillgiveustheintegral

solutions.

(RelaxedMKP)canbewrittenas:

subjectto

whereAisathe

xmatrixwithbinaryentries(is

resourcescolumnrequiredofAbycapturingobjectthe’s,theamountofinsack),wisan-vectorofvariables(,),banonnegativeintegercomponents.

,...,

-vectorwithTheorem1:RelaxedMultipleKnapsackProblem(RMKP)withandintegerhasatleastonebinarysolutioninthesetofalloptimalsolutions.

Proof:See[16]forproof.

setset

whichistherelaxedversionofproblemwiththegivenvalueof,membersofthesetascontinuous

asfixedtothealreadyvariablesandelementsof

decidedvalues.

done0change1

whiledone=0ANDchange=1do

solve

isinfeasible

(itreturnsNULL),thenweincreasethevalueofbymultiplyingitwithandsolvetheproblemagain.We

tillwegetasolutionofgoonincreasingthevalueof

if

then

else

doneendifendwhileendif

1

.Werepeattheproceduretill

wefindvariablesoftypes(a)and(b)i.e.problemsizereductionisachieved.

Notethatitispossiblethatwhenthevalueof

oftype(a)aresetto1,andtheproblemisrerun,thesolutionmightbeinfeasiblebecausethecapacityconstraint(16c)isgettingviolated(duetoincreaseofthevalueofto1.0).Forsuchascenario,increasingthevalueofwillnotmaketheproblemfeasible.Toavoidsuchapitfall,wekeeptrackofcurrentstateofallocationonlinkcapacitiesandtunnels(theresources).Whiledecidingthevalueofoftype(a),weincreasethevalueonlyifnoneofthelinksaregettingviolated,andaccordinglyupdatethesetsand.Otherwise,wedonotupdatethesetsandletstillbeavariable.Suchacomplicationdoesnotarisewhendecidingfortypes(b)and(c).

Finally,whenweareunabletogetanymorereductioninthesizeoftheproblem,wesolvetheMIPproblemusingdirectbranch-and-boundmethods.Duringexperi-mentsitwasobservedthatthesizeofsuchareducedproblemisfairlysmallandhencedoesnotprovetobealimitation.Hence,wehaveafeasiblesolutionwithall

.

Solving

,9

Observethattheproblemisanunconstrainedoptimizationproblemwithvariableu.Thefunctiontobe

minimizedisnonsmooth,weusesub-gradientapproachtosolvethedualproblem.Thismethoditeratesonthedualvariableu.Thusgiventhevalueofu,once

andarethesolutionstothesubproblems

,forisobtained,adualsubgradient,

computedusing

24

16

35

(28)(29)

Fig.5.SampleNetwork

Thenthedualmultiplier

isupdatedusing

max

wherethestepsizes,

,isgivenby

forachosenvalueof.

Regardingthegenerationofafeasiblesolution,itisknownthatthefinalsolutionderivedfromthealgorithmpresentedabovemightnotbefeasible(someoftheconstraintsmightbeviolated).Hencefeasiblesolutionneedstobederivedfromthegivenvaluesofxandw.Wetakethevaluesofwasgivenandadjustthevaluesofxsoastomakethesolutionfeasibleandrecomputethevalueofobjectivefunction.Westorethevaluesofxandwcorrespondingtothemaximumencounteredduringalltheiterations.

V.RESULTS

AND

DISCUSSION

Inthissection,westudythebehaviorofformulation(P)andsubsequentallocationofstreamsundervariousscenarios.Wehaveimplementedoursolutionmethodin

usingCPLEXlibrariestosolvethesubproblems.

Weevaluatetheperformanceoftheformulation(P)viz-a-vizanaiveformulation(P)whichwasintroducedinsubsectionIV-A.Observethattheformulation(P)doesnotaccountforsecondordercharacteristicsofthestreamsandonlyensuresthattheallocationisrestrictedbythecapacityandthenumberoftunnels.WesolvetheformulationusingasimilarsuccessiveapproximationtechniqueasthatpresentedinAlgorithm1.Theobtained

solutionisthenevaluatedforpresenceofcorrelationsjustasthe(P)solutioni.e.,basedonthemetric.

WepresentresultsforastudyconductedonthesamplenetworkgiveninFigure5.Whilewehaveconductedourstudyforotherexamplenetworks,wewilllimitourdiscussiontojustthissamplenetworkduetolackofspace.Here,weassumedthatthelinksofthesamplenetworkhaveacapacityofMbps,referredtoasbaselinecapacity.Fortheseexperiments,weonlyassumeonedemandbetweennode1andnode6andgenerate8pathsbetweenthetwonodes.Weassumethatthedemandhas20sourcestoroute.Thesesourcesarevariedinnatureintermsoffirstandsecondordercharacteristics.Foursourceswithaveragerate10,15,20and25havewithnocorrelation.Foursourceswithaveragerates10,15,20and25haveand

.Otherfoursourceshaveaveragerates10,15,

20and25havewith.Foursourceswithaveragerates10,15,20and25haveand

.Finally,foursourceswithaveragerates10,15,

20and25haveand.Wecomparethevolumeofacceptedflows()andthecorrelationcost()inthefinalsolutionofformulations(P)and(P)inthefollowingexperimentalscenariosforthesamplenetwork.

Inthefirstscenario,allthelinkshavebaselinecapacityandthenumberofallowedtunnelsare3foreachlink.WepresentresultsinFigure6.Observethatbasedonthechosencapacityandtunnels,thenetworkisunder-provisionedandhenceinthefinalsolution,allthetrafficstreamsarenotaccepted.Bothformulations(P)and(P),onlyactivatetwotunnels(duetotunnelingconstraint)andhadtoroutetheacceptedsourcesonthemonly.Althoughboththeformulationschoosesamevolumeofflowonboththetunnels(about100Mbpseach),formulation(P)choosessourceswhileaccountingfortheirsecondordercharacteristicsalsoandachievessignificantreduction(about75%)inthetotalcorrelationcost().

10

120 100----- f1 ----> 80 60 40 20 0 0

(P)(P1)

----- f2 ----> 1 2 3 4 5 6 7

450 400 350 300 250 200 150 100 50 0

(P)(P1)

----- f1 ----> 50 40 30 20 10

(P)(P1)

----- f2 ----> 0 1 2 3 4 5 6 7

0

0 1 2 3 4 5 6 7

90 80 70 60 50 40 30 20 10 0

(P)(P1)

0 1 2 3 4 5 6 7

# of paths for the demand pair ---------># of paths for the demand pair ---------># of paths for the demand pair ---------># of paths for the demand pair --------->

Fig.6.

and

with

and100%capacity

160 140 120----- f1 ----> 100 80 60 40 20

0

1 2

3 4 5 6 7 0 0

Fig.7.

and

with

and100%capacity

200 150 100 50 0

(P)(P1)

----- f2 ----> 1600 1400 1200 1000 800 600 400 200 0

(P)(P1)(P)(P1)

----- f2 ----> 0 1 2 3 4 5 6 7 1 2 3 4 5 6 7

900 800 700 600 500 400 300 200 100 0

(P)(P1)

----- f1 ----> 0 1 2 3 4 5 6 7

# of paths for the demand pair ---------># of paths for the demand pair ---------># of paths for the demand pair ---------># of paths for the demand pair --------->

Fig.8.

and

with

and300%capacityFig.9.

and

with

and300%capacity

Inthenextscenario,weincreasethenumberofacceptabletunnelsto7.Observethatthenetworkisover-provisionedintermsoftunnelswhereasstillconstrainedinavailablecapacityonlinks.InFigure7,wepresenttheresults.Duetocapacityrestrictions,boththeformu-lationscouldnotacceptallthesources.However,sincemoretunnelsareavailable,correlationcostforboththeformulationshasdecreased.Interestingly,formulation(P)activatesonly4tunnelswhile(P)chooses5tunnels.But,sincetheapproachusedby(P)todistributethetrafficstreamsoverthesetunnelsonlyaccountedforca-pacityconstraint,itaccumulated600%morecorrelationcostascomparedtoformulation(P).

Next,weincreasethecapacityoflinksto300%ofthebaselinecapacityandrestricttheallowednumberoftunnelsto3.Observethatthenetworkisover-provisionedincapacitybutconstrainedinnumberoftun-nels.WepresentresultsinFigure8.Duetoavailabilityofcapacity,formulation(P)activatesonly2tunnelsandmultiplexesallthesourcesontothese2tunnels,whereasformulation(P)activates5tunnelsanddistributesthesourcesonallthefivetunnels.Boththeformulationsacceptallthesourcesandleadtoextensivemultiplexingoftrafficstreams,resultinginhighcorrelationcost.Forthisscenario,formulation(P)doesnotgivesignificantreductionincorrelationcostoverformulation(P)(stillhas10%decrease).

Next,weincreasethecapacityoflinksto300%ofbaselinecapacityandthenumberofacceptabletunnelsto7.Notethatthenetworkisover-provisionedinbothcapacityandthenumberofavailabletunnels.WepresentresultsinFigure9.Observethatformulation(P)activates

7(oftotal8)tunnels,whereasformulation(P)selectsonly5tunnels.Since,formulation(P)hasnoknowledgeofcorrelationcost,itwouldnotinitiateanewtunnelalthoughtheintermediaryrouterscaneasilysupportit.Itwillrathermultiplexthesourcesintothesametunnelsaslongasitdoesnotviolatethecapacityconstraint.However,formulation(P)spreadsallthesourcesoverthemaximumavailabletunnelsleadingtoflowallocationwith70%lesscorrelationcost.

Fortheaboveconsideredscenarios,wepresentthetotalacceptedflowandtotalaccumulateddistortionfortheoveralldemandpairinTableII.Inthefirstcolumn,wehavethecapacityoflinkswithreferencetobaselinecapacity(100%and300%).Inthesecondandthirdmeta-column,wehaveequalto3and7,respectively.Foreachcombinationoftunnelsandcapacity,wepresentthevaluesofacceptedflowvolume()andaccumulatedcorrelationcost()fortheformulations(P)and(P).Observethattheformulation(P)alwaysensuresabetter

TABLEII

TOTAL

AND

FORTHEFOURSCENARIOS

(P)

(P)

200

300%

1505

195

1660

185

800

185

1145

flowallocationthanthatofthenaiveallocationstrategyof(P).Thevalueoftotalcorrelationisdrasticallyreducedwhileacceptingoverallsamevolumeofflows.However,theextentofimprovementachieveddepends

11

uponthestateofthenetworkintermsofprovisioningofcapacityandtunnels.Thereductioninthecostofcor-relationrangesfrom80%to10%whilemaintainingthesametotalvolumeofacceptedflows.Wealsoobservedsimilarresultsforothernetworks.

Insummary,theaboveresultsshowthatindeedtheformulationispowerfulandthatitcapturesthebasicmotiveofminimizingdistortioninthepresenceoftun-nelingandcapacityconstraints.Moreso,itadequatelyrespondstovariouspossiblescenariosoftunnelandcapacityrestrictions.

VI.CONCLUSION

Wepresentanapproachtowardseffectivetrafficen-gineeringofabackbonenetworkwithheterogeneoussourcesandtunnelingconstrainttoaddressfortrafficdistortion.Weevaluatethetrade-offbetweendistortionssufferedbyindividualstreamsandtherequirednumberoftunnelsforeachlink.Towardsthisend,wefirstconstructametric()whichcapturesthedistortionsencounteredwhentwostreamsshareatunnel.Usingthemetric,weformulatetheproblemofdeterminingtheroutingofstreamssuchthatthedistortioninindi-vidualstreamsareminimal.Theproblemissolvedbydecouplingtheproblemintotwophases.Thefirstphasesolutionformsaconstraintinthesecondphase.ThesecondphaseissolvedusingLagrangiandecomposition.Wepresenttheresultsforasamplenetwork.Theresultsshowthattheformulationisinfactpowerfulandthatthesolutionminimizesthedistortionswhilehonoringthetunnelingconstraint.Thesolutionalsoprovidestheroutingofsourcesandthecapacityrequirementoftheallocatedtunnels.

REFERENCES

[1]N.Akar,N.C.OguzandK.Sohraby,Anoverviewof

TELPACK,IEEECommunicationsMagazine,vol.36,No.8,pp.84–87,1998.

[2]A.LaCorte,A.Lombardo,G.Schembra,Modelingsu-perpositionofON-OFFcorrelatedtrafficsourcesinmul-timediaapplications,IEEEINFOCOM,pp.993-1000,1995.

[3]Q.He,M.Ammar,G.Riley,H.Raj,R.Fujimoto,Map-pingPeerBehaviortoPacket-LevelDetails:AFrameworkforPacket-LevelSimulationofPeer-to-PeerSystems,proceedingsofIEEE/ACMMASCOTS,pages71-78,October2003.

[4]A.Heindl,K.Mitchell,A.vandeLiefvoort,Thecor-relationregionofsecondorderMapswithapplicationstoQueueingNetworkDecomposition,proceedingsofTOOLS(LNCS2794),pp.237-254,IL,2003.

[5]M.Held,P.WolfeandH.Crowder,ValidationofSub-GradientOptimizationMathematicalProgramming,Vol6,pp62-88,1974.

[6]D.P.Heyman,T.V.Lakshman,andA.Tabaabal,Sta-tisticalanalysisofMPEG2-codedVBRvideotraffic,inProc.SixthInt.WorkshopPacketVideo,Sept.1994.[7]Y.Lee,A.vandeLiefvoort,V.Wallace,Modelingcor-relatedtrafficwithgeneralizedIPP,PerformanceEvalu-ation,pages99-114,40(2000).

[8]Y.Li,P.M.Pardalos,K.G.Ramakrishnan,M.G.C.

Resende,LowerBoundsfortheQuadraticAssignmentProblem,AnnalsofOperationsResearch,50(1994),pp.387-411.

[9]L.Lipsky,Queueingtheory:Alinearalgebraicapproach

MacMillan,NewYork,1992.

[10]L.Lipsky,P.Fiorini,W.Hsin,A.vandeLiefvoort,

Auto-correlationoflag-kforcustomersdepartingfromsemi-MarkovProcesses,TechnicalReport,TUM-,

TechnicalUniversityMunich,1995.[11]R.Marie,M´ethodesiterativesderesolutiondemod´eles

mathematiquesdesyst´emesinformatiques,R.A.I.R.O.Informatique/Comput.Sci.,12,(1978),107-122.

[12]K.Mitchell,ConstructingCorrelatedSequenceofMa-trixExponentialswithInvariantFirst-OrderProperties,OperationsResearchLetters,vol.28,pages27-34,2001.[13]D.MitraandK.G.RamakrishnanTechniquesforTraffic

EngineeringofMultiservice,MultipriorityNetworks,BellLabsTech.JournalVol.6,No.1,pp139-151,Jan2001.[14]P.M.Pardalos,Y.Ye,C-G.Han,Algorithmsforthe

solutionofquadraticknapsackproblems,LinearAlgebraanditsApplications,152(July,1991),pp.69-91.

[15]S.L.ScottandP.Smyth,TheMarkovModulatedPoisson

ProcessandMarkovPoissonCascadewithApplicationstoWebTrafficData,inBayesianStatistics7,OxfordUniversityPress,pp.671-680.

[16]S.Srivastava,B.Krithikaivasan,D.Medhi,M.Pioro,

TrafficEngineeringinthepresenceofTunnelingandDiversityConstraints:FormulationandLagrangianDe-compositionApproach,proceedingsof18InternationalTeletrafficCongress,pages461-470,Berlin,2003.

[17]S.Srivastava,K.Mitchell,A.Liefvoort,Correlations

InducedinaPacketStreambyBackgroundtrafficinaMultiplexedEnvironment,proceedingsof18Interna-tionalTeletrafficCongress,pages511-520,Berlin,2003.[18]S.R.Thirumalsetty,D.Medhi,TrafficEngineeringfor

SurvivableBook-AheadGuaranteedServices,TechnicalReport,SICE,UniversityofMissouri-KansasCity,MO.

12

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务