专利名称:基于深度学习与复数特征的模拟电路故障诊断方法专利类型:发明专利发明人:杨成林,何安东申请号:CN201610812697.1申请日:20160909公开号:CN1083449A公开日:20170308
摘要:本发明公开了一种基于深度学习与复数特征的模拟电路故障诊断方法,采用仿真软件对无故障状态和各个故障状态进行仿真,依次设置不同的代表性工作频点,在每个测点处分别测得无故障信号的幅值和相位,计算得到信号的实数值和虚数值,将实数值和虚数值构建样本向量,并根据故障状态进行标签标记;采用自编码网络和分类器构成分类网络,采用样本向量和对应标签进行训练,然后在模拟电路需要进行故障诊断时,依次设置不同的代表性工作频点,在各个测点处测得当前的幅值和相位,按照同样式构建样本向量,然后输入训练好的分类网络,得到的分类结果即为故障诊断结果。本发明采用自编码网络并结合信号的复数特征,提高模拟电路故障诊断的准确率。
申请人:电子科技大学
地址:611731 四川省成都市高新区(西区)西源大道2006号
国籍:CN
代理机构:成都行之专利代理事务所(普通合伙)
更多信息请下载全文后查看
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务