您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页Discovery of the Millisecond X-Ray Pulsar HETE J1900.1-2455

Discovery of the Millisecond X-Ray Pulsar HETE J1900.1-2455

来源:意榕旅游网
5002 tcO 71 1v3840150/hp-ortsa:viXraDiscoveryoftheMillisecondX-RayPulsarHETEJ1900.1-2455

P.Kaaret1,E.H.Morgan2,R.Vanderspek2,J.A.Tomsick3

ABSTRACT

Wereportthediscoveryofmillisecondpulsationsfromthelow-massX-raybinaryHETEJ1900.1-2455whichwasdiscoveredbythedetectionofatypeIX-rayburstbytheHighEnergyTransientExplorer2(HETE-2).Theneutronstaremitscoherentpulsationsat377.3Hzandisinan83.3minutecircularorbitwithacompanionwithamassgreaterthan0.016M⊙andlikelylessthan0.07M⊙.Thecompanionstar’sRochelobecouldbefilledbyabrowndwarfwithnoneedforheatingornon-standardevolution.DuringoneintervalwithanunusuallyhighX-rayflux,thesourceproducedquasiperiodicoscillationswithasinglepeakat883Hzandonsubsequentdays,thepulsationsweresuppressed.Weconsiderthedistributionofspinversusorbitalperiodinneutronstarlow-massX-raybinaries.

Subjectheadings:pulsars:individual(HETEJ1900.1-2455)—stars:neutron—X-rays:binaries

1.Introduction

Shortlyafterthediscoveryofradiomillisecondpulsars,itwashypothesizedthattheneutronstarsinlow-massX-raybinaries(LMXBs)wererotat-ingathundredsofrevolutionspersecondandaretheprogenitorsofradiomillisecondpulsars(Al-paretal.1982).ThepresenceofrapidlyrotatingneutronstarsinLMXBswasnotconclusivelyes-tablisheduntilthediscoveryofcoherentmillisec-ondpulsationsfromLMXBs(Wijnands&vanderKlis1998;Chakrabarty&Morgan1998).Thisdiscoveryhasgreatlyadvancedourunderstand-ingofthesesystems.Theunambiguousmeasure-mentofneutronstarspinperiodswasessentialindefinitelyestablishingthatthequasiperiodicoscillationsfoundinthermonuclearX-raybursts(Strohmayeretal.1996)arelinkedtotheneu-tronstarspin.Thehighlyaccuratemeasurementsenabledbythestabilityoftheneutronstarspinhaveenabledthemostaccuratemeasurementsof

)120-s 2-m15c gre 1001-01( x5ulF03530

3540

35503560

3570

MJD - 50000

2.1

x2.0ednI1.9 noto1.8hP1.71.63530

3540

35503560

3570

MJD - 50000

1.51.0)Vek(0.5 Tk0.0-0.53530

3540

35503560

3570

MJD - 50000

Fig.1.—RXTE/PCAlightcurveofHETEJ1900.1-2455.Eachpointisthefluxinthe2-20keVbandderivedfromspectralfittingtoanindividualRXTEpointing.

withradiusexpansion.AdetectionintheHETE-2SoftX-RayCamera(SXC)(Villasenoretal.2003)localizedthebursttoan80′′accuracy.NoknownX-rayburstsourcewasconsistentwiththeSXCposition.AssumingthattheburstluminosityisequaltotheEddingtonlimitfora1.4M⊙neutron-starburninghelium,Kawai&Suzuki(2005)esti-matethedistanceas5kpc.

Followingdiscoveryofthesource,wetriggeredanRXTETarget-of-Opportunityobservingpro-gramwhichledtomultipleobservationsondatesfrom2005June16toJuly16(MJD53537to53567).ThefirstfewRXTEpointedobserva-tionsledtothedetectionofpulsationsat377.3Hz(Morgan,Kaaret,&Vanderspek2005)andfurtherRXTEobservationsenabledaninitialmeasure-mentoftheorbitalparameters(Kaaret,Morgan,&Vanderspek2005).ApositionwasdeterminedfromRXTEscanningobservations(Markwardtetal.2005)andthenapossibleopticalcounterpartwasidentified(Fox2005).Theopticalcounterpartwasconfirmedwithfurtheropticalobservationswhichshowedthatthesourcewasbrightcomparedwitharchivalplates,blueincolor,andemitsabroadHeiiemissionline(Steeghsetal.2005).AnimprovedX-rayposition,accurateto5′′,and

2.15

2.10

rewo2.05

P2.00

1.95400

600

800100012001400

Frequency (Hz)

Fig.2.—Leahynormalizedpowerspectrumshow-ingdetectionofasinglekHzQPO.ThesolidcurverepresentsthefitofaLorenztianplusaconstanttothedata.ThedashedlinesindicateplusandminusthespinfrequencyandplusandminushalfthespinfrequencyawayfromthekHzQPOcen-troidfrequency.

consistentwiththatoftheopticalcounterpartwasobtainedwiththeSwiftX-RayTelescope(Kong,Homan,&Lewin2005).VLAobservationswereperformed,butnoradiocounterpartwasdetected(Rupen,Mioduszewski,&Dhawan2005).

FortheRXTEobservations,weanalyzeddatafromtheProportionalCounterArray(PCA).Thefirstobservationusedtwosinglebitmodes,SB81sandSB141s,andaneventmode,E16B1s,toprovidehighresolutiontiming.Thesubsequentobservations

usedasingleeventmode,E

64M1s,forhighresolutiontiming.Forallobservations,theStandard-1low-resolution(0.125s)timingmodeandtheStandard-2spectroscopicmodewith16stimeresolutionwereavailable.

AlightcurvederivedfromthePCAStandard-2dataisshowninFig.1.WeusedonlydatafromPCU2becausethisPCUwasonduringalloftheobservationsandfollowedtheanalysispro-ceduresdescribedinKaaretetal.(2002).Aspec-trumwasextractedforeachindividualobserva-tion.Weassigna1%systematicuncertaintyon

2

eachspectralbin(Tomsicketal.1999).Wefitthespectratoamodelconsistingofthesumofapower-lawandablackbodywithinterstellarab-sorption.WefixedtheabsorptioncolumndensitytoNH=1.5×1021cm−2whichistheGalacticHicolumndensityalongthelineofsight.ThesourcehasaGalacticlatitudeofb=−12.87◦andlies1.1kpcoutoftheplaneifatadistanceof5kpc.Therefore,theGalacticHishouldmainlyliebetweenusandthesource.

ThediscoveryX-rayburstoccurredon2005June14(MJD53535).ThefirstRXTEpointingoccurred2dayslaterandshowsthesourceatafluxof6.6×10−10ergcm−2s−1.Thesourcefluxincreasesgraduallyoverthebeginningoftheout-burst,thereisoneobservationwithahighfluxatMJD53559,andsubsequentlythesourcefluxde-cays.Thephotonindexgraduallysoftens,whiletheblackbodytemperaturegraduallyincreases,untilafewdaysafterthepeakfluxwhenthetrendsreverse.Thefirsttwoobservationsmayhavehadsofterandcoolerspectra,buttheuncer-taintiesinthespectralfittingdonotpermitanyfirmconclusionsinthisregard.Wefindtempera-tureshigherthanthosereportedbyCampanaetal.(2005).Wedofindthatadditionofalowertem-peratureblackbodyimprovesthefitinsomecases.ThetruespectrumofHETEJ1900.1-2455mayin-cludetwoblackbodycomponents,ashasbeensug-gestedforothermillisecondpulsars(Gierli´nski&Poutanen2005).

Thespectralmodeldescribedabovewasinad-equateinfittingthehighfluxpointbecausethatspectrumshowsdistinctcurvatureathighener-gies.Atenergiesbelow14keV,thespectrumliesabovethosefromthepreviousorsubsequentday,whileatenergiesabove14keV,thespectrumliesbelow.Tofitthatspectrum,weaddedahighenergyexponentialcutoffandremovedtheblackbodycomponent.TheresultingspectralmodelisthesameasthatcommonlyusedforstandardX-raypulsars,i.e.thosewithspinperiodsof1-1000s(Pravdoetal.1978;White,Swank,&Holt1983).Thephotonindexwas1.88±0.05,thecutoffenergywas6.43±0.15keV,andthefold-ingenergywas5.87±0.20keV.Thecutoffen-ergyissimilartothatfoundfortheX-raypulsarsGS1843+00(Pirainoetal.2000)andSMCX-1(Naik&Paul2004),butthephotonindexissofterthanfoundforthoseorotherstandardaccreting

X-raypulsars.Weattemptedtofitthespectrumwithablackbody,thesumofablackbodyplusapower-law,andthesumoftwoblackbodiesandapower-law,allwithabsorption,butwereunabletoobtaingoodfitswithanyofthesemodels.TheRXTE/ASMlightcurvedoesnotshowunusuallyhighfluxnearthistime.TheaverageratearoundMJD53559iscloseto3c/s,equivalenttoroughly1.2×10−9ergcm−2s−1inthe2-20keVband.Itappearsunlikelythatthehighfluxpointispartofasuperburst.Weexaminedthelightcurveofthisobservationontimescalesof1,8and64s.Thelightcurveshowsnousualvariabilityonthesetimescales,butdoesshowakiloHertzquasi-periodicoscillation(kHzQPO).

WesearchedforhighfrequencyQPOsineachuninterruptedRXTEobservationwindowandincombinationsofthevariousdatasegments.Wecalculatedaveragesof16spowerspectraincludingeventswithenergiesbelow18keVfromallPCUs.AsinglekHzQPOappearsintheobservationbe-ginningMJD53559.447583,seeFig.2.Thedetec-tionhasasignificanceof9.2σ,withnoallowancefortrials.Evenallowingfor6×104trialsforallofthedistinctfrequencyrangesinallthepowerspectragenerated,thedetectionisstillhighlysig-nificant.TheQPOhasacentroidof882.8±1.0Hz,awidthof16.9±2.4Hz,andanrmsamplitudeof0.00787±0.00086.ThereisnoevidenceforQPOsatplusorminusthespinfrequencyoratplusorminushalfthespinfrequencyawayfromthesinglekHzQPO.

WeusedtheStandard-1datawhichhas0.125stimeresolutionandnoenergyinformationtosearchforX-raybursts.Wefoundoneburst-likeeventatMJD53538.76433.However,thiseventappearstobeadetectorbreakdowneventandnotanX-rayburstfromthesource.HETE-2hasreportedonlyoneadditionalX-rayburstontheHETEburstsummarypage1afterthediscoveryburst.TheadditionalburstwasonMJD53558,justbeforethepointinthelightcurvewithahighflux.

WeexaminedtheRXTEAll-SkyMonitor(ASM)lightcurveforHETEJ1900.1-2455.Theonlydetectionisofthecurrentoutburst.There-fore,therecurrencetimeofthetransientislikelylongerthan9years.

Table1

ParametersofHETEJ1900.1-2455

Parameter

Value

Note.—TheseparametersassumethepositionreportedbyFox(2005)ofα=19h00m08s.65andδ=-24◦55′13′′.7(J2000).Thetrailingnumbersinparenthesisindicatesthe1−σuncer-taintyinthefinaldigits.TTindicatesterrestrialtime.

Fig.3.—PulsetimingresidualsforHETEJ1900.1-2455.ThepointsalongthesinusoidalcurverepresentthetimingresidualswithouttheKeplerianorbitcorrection.ThepointscenteredaboutzeroarethethetimingresidualswiththeKeplerianorbitcorrectionincludedandaremulti-pliedby10.3.

Pulsations

Wesearchedforpulsationsusingthe125µstimeresolutiondatabycorrectingtheeventtimestothesolarsystembarycenterandthendividingthedatainto256sintervals,calculatingapowerspectrumforeventsinthe3–8keVband(channels8–32inthe0-255channelrange)foreachinter-val,andincoherentlysummingthepowerspectra

forallintervalswithinagivenpointing.Asig-nalat377.3HzwasdetectedinthefirstpointedRXTEobservationofHETEJ1900.1-2455,butnotatveryhighsignificance.However,signalsnearthatfrequencyweredetectedinthefollow-ingfourRXTEpointingsgivingdefiniteproofoftherealityofthepulsations(Morgan,Kaaret,&Vanderspek2005).

WesearchedtheobservationsbetweenJune17and22forpulsationsnear377.3Hz.Wedividedtheobservationsinto256sintervalsandfoundthepulsefrequencyineachinterval.Thepulsefre-quencieshadaclearsinusoidalmodulation,char-acteristicofmodulationbyorbitalmotion.Wefittedapreliminaryspin/orbitmodeltothefre-quencymeasurementstoenableapulsearrivaltimeanalysisasisstandardinthetiminganal-ysisofpulsars(Manchester&Taylor1977).Inthepreliminarymodel,wefixedtheorbitalec-centricityandpulsefrequencyderivativetozero.Wecorrectedthephotonarrivaltimesusingthepreliminaryspin/orbitmodel,andthencalculatedtheepochofthepulsepeakwithineachinterval.Wethenfittedthepulsearrivaltimesusingalin-earleastsquaresregressiontofindcorrectionstothespinandorbitalparameters.Theprocedurewasiteratedasmoreobservationsbecameavail-ableandeachsetofnewspinandorbitalparame-terswereusedtorecalculatethepulsearrivaltimesforthefulldataset.

Theorbitalandpulsetimingparameterspre-4

0.20

)i0.15

idar ralos0.10

( suidaR0.05

0.000.00

0.050.100.150.20

Mass (solar masses)

Fig.4.—Mass-radiusrelationforthecompan-ionstarinHETEJ1900.1-2455.Thesolidcurveindicatesthemass-radiusrelationforthecompan-ionasrequiredforaRoche-lobefillingcompanionwiththemeasuredorbitalperiod.Thedashedlinerepresentszero-agemainsequencestarswithsolarmetallicity.Thedottedcurvesrepresentbrowndwarfsofages0.1(top),0.5,1.0,and5.0(bot-tom)Gyr.Theverticaldash-dotlinesrepresentthelowermasslimitandthe95%confidenceup-permasslimit.

sentedinTable1werederivedusingthedatafromallobservationsbeforeMJD53558.Fig.3showstheresidualsofthepulsearrivaltimeswithandwithoutthecorrectionfororbitalmotion.Agoodfitwithχ2/DoF=1.03isobtainedwithoutaspinfrequencyderivativeororbitaleccentricity.Thetimingresidualsaretypicallylessthan500µs.TheupperboundontheeccentricityislistedintheTable.Wewereunabletoconstructaphase-connectedtimingsolutionincludingdatabeyondMJD53558.ObservationsonMJD53559showedthesourcefluxtohavebrighteneddramatically,seeabove,andtheobservedpulsefrequencywasshiftedto377.291596(16)Hz,∆ν/ν∼6×10−7.Insubsequentobservations,pulsationsweresup-pressed.ThermspulseamplitudeinobservationsbeforeMJD53558rangedfrom1.5%to5%,whileforobservationsafterMJD53559,weplaceanup-perlimitonthepulseamplitudeof1%.

5

Fig.5.—SpinversusorbitalperiodforneutronstarX-raybinarieswithspinfrequenciesgreaterthan20Hz–a‘milli-Corbet’diagram.Crossesaremillisecondpulsars,trianglesareburstoscillationsources,diamondsaresourceswithboth.4.

Discussion

Ourdiscoveryofcoherentmillisecondpulsa-tionsfromHETEJ1900.1-2455addsanothertothesixpreviouslyknownX-raymillisecondpul-sars(XMSPs).AsnowappearstypicalforXM-SPs,themassfunctionforthepulsarisverysmall,fx=2.0×10−6M⊙,implyingeitheraverylowmasscompanionoraveryimprobableorbitalin-clination.Theminimumcompanionmass,assum-inganeutronstarmassofMX=1.4M⊙andanorbitalinclinationi=90◦,ism2>0.016M⊙.The95%confidenceupperlimitonthemass,as-sumingauniformaprioridistributionincosiandMX=2.2M⊙,ism2<0.07M⊙.

IfthecompanionstarfillsitsRoche-lobe,thenthedensityofthecompanionstarisfixedbytheorbitalperiod(Frank,King,&Raine1992).Fig.4showsthemass-radiusrelationforthecompanionstar.FollowingBildsten&Chakrabarty(2001),wehaveplottedthemass-radiusrelationsforzero-agesolar-metallicitymainsequencestars(Toutetal.1996)andforbrowndwarfsofvariousagesfrom

Table2

NeutronStarSpinRatesandOrbitalPeriods

Object

SpinRate

OrbitalPeriod

Type

Reference

Note.—Pindicatesmillisecondpulsars,Bindicatesburstoscillationsources.

0.1to5Gyr(Chabrieretal.2000).Thepointsatwhichthestellarmass-radiusrelationsintersectthemass-radiuscurveofthecompanionstarindi-catepossiblestellarcompanionsallowedbytheob-servations.IncontrasttootherXMSPs,therearepossibleRoche-lobefillingcompanionstarswithstandardevolutionaryhistories.Therefore,heat-ingofthecompanionstar,assuggestedforSAXJ1808.4-3658(Bildsten&Chakrabarty2001),isnotrequiredtoexpandthecompanion’sradiusanddrivemasstransferinHETEJ1900.1-2455.Thecompanionstarislikelyabrowndwarf.

OneveryunusualaspectofourobservationsofHETEJ1900.1-2455isthedetectionofadra-maticbrighteningofthesourceonMJD53559,ac-companiedbyashiftinthepulsefrequencywith∆ν/ν∼6×10−7andthenthesuppressionofpul-sationsinsubsequentobservations.Duringtheintervalofhighflux,theX-rayspectrumisex-ponentiallycutoffathighenergies,asisseenforstandardX-raypulsars,wheretheaccretionspotisthoughttobequitecompact.Whatmecha-nismisresponsibleforthesuppressionofpulsa-tionsafterthehighX-rayfluxintervalisanopenquestion.Diamagneticscreeningofthemagneticfield,achangeintheaccretiongeometry,oren-hancedscatteringofthepulsesduetoaccumula-tionofmaterialaroundthepolesarepossibilities.Unfortunately,wedonothavegoodinformationconcerningthetotalfluenceinthehighfluxevent.However,thehighfluxpointcorrespondstoalu-minosityofonly1.5%oftheEddingtonluminosity,assumingthattheEddingtonluminosityisgivenbythebolometricfluxof9×10−8ergcm−2s−1reportedforthediscoveryX-rayburstbyKawai&Suzuki(2005).Cumming,Zweibel,&Bild-sten(2001)statethatdiamagneticscreeningofthemagneticfieldisnotpossibleforaccretionratesbelow2%oftheEddingtonrate,whichmayex-cludethispossibility.

InadditiontotheXMSPs,thespinperiodsofneutronstarsinX-raybinariescanbemeasuredviathedetectionof(quasiperiodic)oscillationsintypeIX-raybursts.Table2presentsthespinfre-quenciesandorbitalperiodsforneutron-starlow-massX-raybinarieswithspinratesgreaterthan20Hzandmeasuredorbitalperiods.Forthemil-lisecondpulsars,theorbitalperiodsaremeasuredviapulsetiming.FortheX-raybursters,theor-bitalperiodsaredeterminedeitherviadetection

6

ofperiodicdipsintheX-rayemissionorbyopticalobservationofellipsoidalmodulationorDoppler-shiftedabsorptionlines.X-raydipsaredetectedonlywhentheinclinationishigh.Thesameinfor-mationispresentedinFig.5;asimilarplotwaspresentedbySwank&Marshall(2004).Indef-erencetothenamecommonlyusedforplotsofspinversusorbitalperiodforstandardX-raypul-sars(Corbet1984,1986),werefertothisplotasa‘milli-Corbet’diagram.

Thereareapparentboundsonthedatapointsatlowspinperiodandatloworbitalperiod.Theoriginoftheapparentlowerboundontheorbitalperiod,andtheclusteringofsourcesnearthislimitof40min,isapuzzle.ThereareLMXBswithshorterorbitalperiods,buttheneutronstarspinfrequencyhasnotbeendefinitivelymeasuredinanyofthosesystems.Thelowerboundonthespinperioddistributionhasbeeninterpretedasevidencethatgravitationalradiationlosseslimitthemaximumaccretiontorquespinningupneu-tronstarsinLMXBs(Chakrabartyetal.2003).Thelongestspinperiod,forEXO0748-676,isafactorof4largerthanthesecondlongest.Theun-usuallyslowspinmaybeduetoanunusuallyhighmagneticfield(Villarreal&Strohmayer2004).Ifweconsidertheneutronstarswithspinratesfasterthan100Hz,thereappearstobealackofpointswithlongspinperiodsandlongorbitalpe-riods.ExcludingEXO0748-676,thelinearcor-relationcoefficientbetweenthelogarithmsofthespinandorbitalperiodsisr=−0.68whichhasachanceprobabilityofoccurrenceof2.5%.Thiscorrelationmayindicatesomecouplingbetweentheneutronspinandorbitalperiod,perhapsindi-rectlyifthemassaccretionratevarieswithorbitalperiod.However,whyEXO0748-676differssosig-nificantlyfromthebehaviorofthemorerapidlyrotatingneutronstarswouldneedtobeunder-stood.Thediscoveryofmoremillisecondpulsars,orthemeasurementoftheorbitalperiodsofad-ditionalX-rayburstoscillationsources,isneededtobetterunderstandtheevolutionofneutronstarspininlow-massX-raybinaries.

WegreatlyappreciatetheeffortsoftheHETE-2teamintheoperationoftheHETE-2satelliteandtheRXTEteam,particularlyEvanSmithandJeanSwankinperformingobservationsandCraigMarkwardtinpromptlycalculatingtheclockcor-rections.PKthanksJeanSwankforusefuldis-cussionsandacknowledgespartialsupportfromaNASAgrantandaUniversityofIowaFac-ultyScholarAward.JATacknowledgespartialsupportfromNASAgrantsNNG04GA49GandNNG04GB19G.REFERENCES

Alpar,M.A.,Cheng,A.F.,Ruderman,M.A.,&Shaham,J.1982,Nature,300,728Bildsten,L.&Chakrabarty,D.2001,ApJ,557,292Bradt,H.V.,Rothschild,R.E.,&Swank,J.H.1993,A&AS,97,355Campana,S.etal.2005,Astron.Telegram,No.535Chabrier,G.,Baraffe,I.,Allard,F.,&Hauschildt,P.2000,ApJ,542,464Chakrabarty,D.&Morgan,E.H.1998,Nature,394,346Chakrabarty,D.,Morgan,E.H.,Muno,M.P.,Galloway,D.K.,Wijnands,R.,vanderKlis,M.,&Markwardt,C.B.2003,Nature,424,42Corbet,R.H.D.1984,A&A,141,91Corbet,R.H.D.1986,MNRAS,220,1047Cumming,A.,Zweibel,E.,&Bildsten,L.2001,ApJ,557,958Fox,D.B.2005,Astron.Telegram,No.526Frank,J.,King,A.,&Raine,D.1992,AccretionPowerinAstrophysics(Cambridge).Galloway,D.K.,Chakrabarty,D.,Morgan,E.H.,&Remillard,R.A.2002,ApJ,576,L137Galloway,D.K.,Markwardt,C.B.,Chakrabarty,D.,&Strohmayer,T.E.2005,ApJ,622,L45Gierli´nski,M.&Poutanen,J.2005,MNRAS,359,1261Kaaret,P.,in’tZand,J.J.M.,Heise,J.,&Tom-sick,J.A.2002,ApJ,575,1018Kaaret,P.,Morgan,E.,&Vanderspek,R.2005,Astron.Telegram,No.538

7

Kawai,N.&Suzuki,M.2005,Astron.Telegram,No.534Kong,A.K.H.,Homan,J.,&Lewin,W.H.G.2005,Astron.Telegram,No.541Manchester,R.N.&Taylor,J.H.1977,Pulsars(SanFrancisco:W.H.Freeman)Markwardt,C.B.,Swank,J.H.,Strohmayer,T.E.,in’tZand,J.J.M.,&Marshall,F.E.2002,ApJL,575,L21Markwardt,C.B.,Smith,E.,&Swank,J.H.2003,IAUCirc.,8080Markwardt,C.B.,Juda,M.,&Swank,J.H.2003,IAUCirc.,8095Markwardt,C.B.,&Swank,J.H.2003,IAUCirc.,8144,1Markwardt,C.B,Kaaret,P,Vanderspek,R.,&Morgan,E.2005,Astron.Telegram,No.525Morgan,E.,Kaaret,P.,&Vanderspek,R.2005,Astron.Telegram,No.523Naik,S.&Paul,B.2004,A&A,418,655Piraino,S.etal.2000,A&A,357,501

Poutanen,J.&Gierli´nski,M.2003,MNRAS,343,1301Pravdo,S.H.etal.1978,ApJ,225,988

Ricker,G.R.etal.2003,in“Gamma-RayBurstandAfterglowAstronomy2001”,eds.G.R.Ricker&R.VanderspekRupen,M.P.,Mioduszewski,A.J.,&Dhawan,V.2005,Astron.Telegram,No.530Steeghs,D.etal.2005,Astron.Telegram,No.543Strohmayer,T.E.,Zhang,W.,Swank,J.H.,Smale,A.,Titarchuk,L.,Day,C.,&Lee,U.1996,ApJ,469,L9Swank,J.H.,Marshall,F.E.,&theRXTEUser’sGroup,Proposaltothe2004SeniorReviewofAstrophysicsMissionOperations&DataAnal-ysisProgramsTomsick,J.A.,Kaaret,P.,Kroeger,R.A.,Remil-lard,R.A.1999,ApJ,512,892

Tout,C.A.,Onno,R.P.,Eggleton,P.P.,&Zhan-wen,H.1996,MNRAS,281,257Wijnands,R.&vanderKlis,M.1998,Nature,394,344Vanderspek,R.,Morgan,E.,Crew,G.,Graziana,C.,&Suzuki,M.2005,Astron.Telegram,No.516Villarreal,A.R.&Strohmayer,T.E.2004,ApJ,614,L121Villasenor,J.N.etal.2003,in“Gamma-RayBurstandAfterglowAstronomy2001”,eds.G.R.Ricker&R.VanderspekWhite,N.E,Swank,J.H.,Holt,S.S.1983,ApJ,270,711

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务