一、选择题
1. “互联网”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A.10 B.20 C.30 D.40 2. 定义在R上的奇函数f(x)满足f(x+3)=f(x),当0<x≤1时,f(x)=2x,则f (2015)=( ) A.2
B.﹣2
C.﹣
D.
3. 设定义在R上的函数f(x)对任意实数x,y,满足f(x)+f(y)=f(x+y),且f(3)=4,则f(0)+f(﹣3)的值为( ) A.﹣2 B.﹣4 C.0 4. 已知函数
D.4
,,若,则( )
A1 B2 C3 D-1
5. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示.若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为( )
A. B. C. D.
6. 已知m,n为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A.m⊂α,n∥m⇒n∥α
B.m⊂α,n⊥m⇒n⊥α
C.m⊂α,n⊂β,m∥n⇒α∥β D.n⊂β,n⊥α⇒α⊥β
7. 设x∈R,则x>2的一个必要不充分条件是( ) A.x>1 B.x<1 C.x>3 D.x<3
第 1 页,共 18 页
8. 已知a,b,c为ABC的三个角A,B,C所对的边,若3bcosCc(13cosB),则sinC:sinA.2︰3 B.4︰3 C.3︰1 D.3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力.
A( )
9. 若定义在R上的函数f(x)满足f(0)=﹣1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是( ) A.
B.
C.
D.
10.直角梯形OABC中,ABOC,AB1,OCBC2,直线l:xt截该梯形所得位于左边图 形面积为,则函数Sft的图像大致为( )
11.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )
A.123 B.163 C.203 D.323 12.已知x,y满足约束条件A.﹣3 B.3
C.﹣1 D.1
,使z=ax+y取得最小值的最优解有无数个,则a的值为( )
二、填空题
13.球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,平面SAB⊥平面ABC,则棱锥S﹣ABC的体积的最大值为 .
第 2 页,共 18 页
14.已知||=1,||=2,与的夹角为,那么|+||﹣|= .
15.当x时,函数fxex1的图象不在函数g(x)x2ax的下方,则实数a的取值范围是(0,1)___________.
【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.
16.如图,在三棱锥PABC中,PAPBPC,PAPB,PAPC,△PBC为等边三角形,则PC 与平面ABC所成角的正弦值为______________.
【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力. 17.在数列
中,则实数a= ,b= .
18.已知x1,x3是函数fxsinx0两个相邻的两个极值点,且fx在x处的导数f3 230,则21f___________. 3
三、解答题
19.已知p:2x2﹣3x+1≤0,q:x2﹣(2a+1)x+a(a+1)≤0 (1)若a=,且p∧q为真,求实数x的取值范围. (2)若p是q的充分不必要条件,求实数a的取值范围.
第 3 页,共 18 页
20.如图,椭圆C1:的离心率为
2
,x轴被曲线C2:y=x﹣b截得的线段长等于椭
圆C1的短轴长.C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点, (Ⅰ)求C1、C2的方程;
(Ⅱ)记△MAB,△MDE的面积分别为S1、S2,若
,求直线AB的方程.
21.已知函数f(x)=ax2+2x﹣lnx(a∈R). (Ⅰ)若a=4,求函数f(x)的极值;
(Ⅱ)若f′(x)在(0,1)有唯一的零点x0,求a的取值范围;
(Ⅲ)若a∈(﹣,0),设g(x)=a(1﹣x)2﹣2x﹣1﹣ln(1﹣x),求证:g(x)在(0,1)内有唯一的零点x1,且对(Ⅱ)中的x0,满足x0+x1>1.
第 4 页,共 18 页
22.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分别记为A,B,C,D,E,其频率分布直方图如下图所示.
(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;
随机选出2名团员为主要协调负责人,求选出的2名团员均来自C组的概率.
23.(本题满分14分)
(Ⅱ)该团导游首先在C,D,E三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中
在ABC中,角A,B,C所对的边分别为a,b,c,已知cosC(cosA3sinA)cosB0. (1)求角B的大小;
(2)若ac2,求b的取值范围.
【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.
第 5 页,共 18 页
24.一艘客轮在航海中遇险,发出求救信号.在遇险地点A南偏西45方向10海里的B处有一艘海 难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东75,正以每小时9海里的速度向 一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.
(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间; (2)若最短时间内两船在C处相遇,如图,在ABC中,求角B的正弦值.
第 6 页,共 18 页
灵寿县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】B 【解析】
试题分析:设从青年人抽取的人数为x,考点:分层抽样.
2. 【答案】B
【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3, 所以f(2015)=f(3×672﹣1)=f(﹣1); 所以f(﹣1)=﹣f(1)=﹣2, 即f(2015)=﹣2. 故选:B.
x800,x20,故选B. 50600600800
x
又因为函数f(x)是定义R上的奇函数,当0<x≤1时,f(x)=2,
【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f(3×672﹣1)=f(﹣1).
3. 【答案】B
【解析】解:因为f(x)+f(y)=f(x+y), 令x=y=0,
则f(0)+f(0)=f(0+0)=f(0), 所以,f(0)=0; 再令y=﹣x,
则f(x)+f(﹣x)=f(0)=0, 所以,f(﹣x)=﹣f(x), 所以,函数f(x)为奇函数. 又f(3)=4,
所以,f(﹣3)=﹣f(3)=﹣4, 所以,f(0)+f(﹣3)=﹣4. 故选:B.
【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f(x)为奇函数是关键,考查推理与运算求解能力,属于中档题.
第 7 页,共 18 页
4. 【答案】A
【解析】g(1)=a﹣1, 若f[g(1)]=1, 则f(a﹣1)=1, 即5|a﹣1|=1,则|a﹣1|=0, 解得a=1 5. 【答案】C
【解析】【知识点】样本的数据特征茎叶图 【试题解析】由题知:所以m可以取:0,1,2. 故答案为:C 6. 【答案】D
【解析】解:在A选项中,可能有n⊂α,故A错误; 在B选项中,可能有n⊂α,故B错误; 在C选项中,两平面有可能相交,故C错误;
在D选项中,由平面与平面垂直的判定定理得D正确. 故选:D.
【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
7. 【答案】A
【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是, x<1是x>2的既不充分也不必要条件, x>3是x>2的充分条件,
x<3是x>2的既不充分也不必要条件, 故选:A
【点评】本题主要考查充分条件和必要条件的判断,比较基础.
8. 【答案】C
【解析】由已知等式,得c3bcosC3ccosB,由正弦定理,得sinC3(sinBcosCsinCcosB),则
sinC3sin(BC)3sinA,所以sinC:sinA3:1,故选C.
9. 【答案】C
【解析】解;∵f′(x)=f′(x)>k>1,
第 8 页,共 18 页
∴即当x=即f(故f(所以f(故选:C.
10.【答案】C 【解析】
>k>1,
时,f())>)<
,
>k>1,
)+1>﹣1=
×k=,
,一定出错,
试题分析:由题意得,当0t1时,ft1t2tt2,当1t2时, 2t2,0t11ft12(t1)22t1,所以ft,结合不同段上函数的性质,可知选项C符
22t1,1t2合,故选C.
考点:分段函数的解析式与图象. 11.【答案】C 【解析】
考点:三视图. 12.【答案】D
【解析】解:作出不等式组对应的平面区域如图:(阴影部分). 由z=ax+y,得y=﹣ax+z,
若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件. 若a>0,则目标函数的斜率k=﹣a<0. 平移直线y=﹣ax+z,
第 9 页,共 18 页
由图象可知当直线y=﹣ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个, 此时﹣a=﹣1,即a=1.
若a<0,则目标函数的斜率k=﹣a>0. 平移直线y=﹣ax+z,
由图象可知当直线y=﹣ax+z,此时目标函数只在C处取得最小值,不满足条件. 综上a=1. 故选:D.
【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键.注意要对a进行分类讨论.
二、填空题
13.【答案】
【解析】解:由题意画出几何体的图形如图
由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大. ∵△ABC是边长为2的正三角形,所以球的半径r=OC=在RT△SHO中,OH=
OC=
OS
CH=
.
.
∴∠HSO=30°,求得SH=OScos30°=1, ∴体积V=故答案是
Sh=.
×
×2×1=
2
.
第 10 页,共 18 页
【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.
14.【答案】
. ,
=
【解析】解:∵||=1,||=2,与的夹角为∴
=
=1×
=1.
=
∴|+||﹣|=故答案为:
.
=.
【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.
15.【答案】[2e,)
x21x2ex1x2ex(0,1)【解析】由题意,知当x时,不等式e1xax,即a恒成立.令hx,
xxx1x1exxxx.令,.∵,∴h'xkxx1ek'x1ex0,1k'x1e0,∴kx2x在x0,1为递减,∴kxk00,∴h'xx1x1exx20,∴hx在x0,1为递增,∴
hxh12e,则a2e.
16.【答案】 【
21 7解
析
】
第 11 页,共 18 页
17.【答案】a=
,b=
.
【解析】解:由5,10,17,a﹣b,37知, a﹣b=26, a+b=15, 解得,a=故答案为:
,b=,
; .
由3,8,a+b,24,35知,
【点评】本题考查了数列的性质的判断与归纳法的应用.
18.【答案】【解析】
1 2第 12 页,共 18 页
考
点:三角函数图象与性质,函数导数与不等式.
【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和,再结合极值点的导数等于零,可求出.在求的过程中,由于题目没有给定它的取值范围,需要用f就可以求出f.1
30来验证.求出fx表达式后,213三、解答题
19.【答案】 【解析】解:p:∴(1)若a=,则q:∵p∧q为真,∴p,q都为真;
;
,q:a≤x≤a+1;
;
∴,∴
∴实数x的取值范围为;
(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p; ∴
,∴
;
.
∴实数a的取值范围为
【点评】考查解一元二次不等式,p∧q真假和p,q真假的关系,以及充分不必要条件的概念.
20.【答案】
第 13 页,共 18 页
【解析】解:(Ⅰ)∵椭圆C1:
22∴a=2b,
的离心率为,
令x﹣b=0可得x=±
2,
2
∵x轴被曲线C2:y=x﹣b截得的线段长等于椭圆C1的短轴长,
∴2=2b,
∴b=1,
∴C1、C2的方程分别为
2
,y=x﹣1; …
22
(Ⅱ)设直线MA的斜率为k1,直线MA的方程为y=k1x﹣1与y=x﹣1联立得x﹣k1x=0 2
∴x=0或x=k1,∴A(k1,k1﹣1)
同理可得B(k2,k2﹣1)…
2
∴S1=|MA||MB|=•|k1||k2|…
),
y=k1x﹣1与椭圆方程联立,可得D(
同理可得E() …
∴S2=|MD||ME|=•• …
∴
若则
或
解得或…
∴直线AB的方程为
第 14 页,共 18 页
【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键.
21.【答案】
【解析】满分(14分).
解法一:(Ⅰ)当a=4时,f(x)=4x2+2x﹣lnx,x∈(0,+∞),
.…(1分)
由x∈(0,+∞),令f′(x)=0,得
.
当x变化时,f′(x),f(x)的变化如下表: x f′(x) ﹣ f(x) ↘ 故函数f(x)在无极大值.…(4分) (Ⅱ)
,
0 + 极小值 ↗ 单调递减,在
单调递增,…(3分)f(x)有极小值
,
令f′(x)=0,得2ax2+2x﹣1=0,设h(x)=2ax2+2x﹣1.
则f′(x)在(0,1)有唯一的零点x0等价于h(x)在(0,1)有唯一的零点x0 当a=0时,方程的解为
,满足题意;…(5分)
,函数h(x)在(0,1)上单调递增,
当a>0时,由函数h(x)图象的对称轴
且h(0)=﹣1,h(1)=2a+1>0,所以满足题意;…(6分) 当a<0,△=0时,
,此时方程的解为x=1,不符合题意;
当a<0,△≠0时,由h(0)=﹣1,
第 15 页,共 18 页
只需h(1)=2a+1>0,得综上,
.…(8分)
.…(7分)
(说明:△=0未讨论扣1分)
(Ⅲ)设t=1﹣x,则t∈(0,1),p(t)=g(1﹣t)=at2+2t﹣3﹣lnt,…(9分)由
,故由(Ⅱ)可知,
,
方程2at2+2t﹣1=0在(0,1)内有唯一的解x0,
且当t∈(0,x0)时,p′(t)<0,p(t)单调递减;t∈(x0,1)时,p′(t)>0,p(t)单调递增.…(11分)
又p(1)=a﹣1<0,所以p(x0)<0.…(12分) 取t=e﹣3+2a∈(0,1),
则p(e﹣3+2a)=ae﹣6+4a+2e﹣3+2a﹣3﹣lne﹣3+2a=ae﹣6+4a+2e﹣3+2a﹣3+3﹣2a=a(e﹣6+4a﹣2)+2e﹣3+2a>0, 从而当t∈(0,x0)时,p(t)必存在唯一的零点t1,且0<t1<x0, 即0<1﹣x1<x0,得x1∈(0,1),且x0+x1>1,
从而函数g(x)在(0,1)内有唯一的零点x1,满足x0+x1>1.…(14分) 解法二:(Ⅰ)同解法一;…(4分) (Ⅱ)
令f′(x)=0,由2ax2+2x﹣1=0,得设
,则m∈(1,+∞),
,
.…(5分)
,…(6分)
的图象在(1,+∞)恰有一个交点问题.
问题转化为直线y=a与函数
又当m∈(1,+∞)时,h(m)单调递增,…(7分) 故直线y=a与函数h(m)的图象恰有一个交点,当且仅当(Ⅲ)同解法一.
(说明:第(Ⅲ)问判断零点存在时,利用t→0时,p(t)→+∞进行证明,扣1分)
【点评】本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.
22.【答案】
【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力.
.…(8分)
第 16 页,共 18 页
23.【答案】(1)B【
3
;(2)[1,2).
解
析
】
24.【答案】(1)【解析】
233小时;(2). 314第 17 页,共 18 页
试
题解析:(1)设搜救艇追上客轮所需时间为小时,两船在C处相遇. 在ABC中,BAC4575120,AB10,AC9t,BC21t. 由余弦定理得:BCABAC2ABACcosBAC, 所以(21t)10(9t)2109t(),
2222221225或t(舍去). 3122所以,海难搜救艇追上客轮所需时间为小时.
322(2)由AC96,BC2114.
332化简得36t9t100,解得t在ABC中,由正弦定理得sinB所以角B的正弦值为ACsinBAC6sin120BC1463233. 141433. 14考点:三角形的实际应用.
【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示AC,BC,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键.
第 18 页,共 18 页
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务