您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页统计学案例——相关回归分析报告

统计学案例——相关回归分析报告

来源:意榕旅游网


实用文档

《统计学》案例 -- 相关回归分析

案例一 质量控制中的简单线性回归分析

1、 问题的提出

某石油炼厂的催化装置通过高温及催化剂对原料的作用进行反应, 生成各种

产品,其中液化气用途广泛、易于储存运输,所以,提高液化气收率,降低不凝 气体产量,成为提高经济效益的关键问题。

通过因果分析图和排列图的观察,发现回流温度是影响液化气收率的主要原 因,因此,只有确定二者之间的相关关系,寻找适当的回流温度,才能达到提高 液化气收率的目的。经认真分析仔细研究,确定了在保持原有轻油收率的前提下, 液化气收率比去年同期增长1个百分点的目标,即达到12.24%的液化气收率。

2、 数据的收集

液化气收率

序号

回流温度(C)

36

39 43 43 39 38 43 44 37 40 34 39 40 41 44

液化气收率(%

序号

回流温度(C)

42 43 46 44 42 41 45 40 46 47 45 38 39 44 45

(% 12.3 11.9 10.9 10.4 11.5 12.5 11.1 11.1 11.1 10.8 10.5 12.1 12.5 11.5 10.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13.1 12.8 11.3 11.4 12.3 12.5 11.1 10.8 13.1 11.9 13.6 12.2 12.2 11.8 11.1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

目标值确定之后,我们收集了某年某季度的回流温度与液化气收率的 数据(如上表),进行简单直线回归分析。

30组

3. 方法的确立

设线性回归模型为y =

* [x * ;,估计回归方程为? = bQ biX

文案大全

实用文档

将数据输入计算机,输出散点图可见,液化气收率 y具有随着回流温度x

文案大全

实用文档

的提高而降低的趋势。因此,建立描述y与x之间关系的模型时,首选直线型是 合理的。

从线性回归的计算结果,可以知道回归系数的最小二乘估计值

b°=21.263和bi=-0.229,于是最小二乘直线为

$ =21.263 -0.229X

这就表明,回流温度每增加1C,估计液化气收率将减少0.229%。

13 15 - 14 - 13 - 12 - 11 10 •

9

0 35 40 45

50

(3)残差分析

为了判别简单线性模型的假定是否有效,作出残差图,进行残差分析

1 0.5 0 -0. 5

35

” --- 1 ----------------------------- •:」r :=丄

• •

40

* * 45

50

-1.5

文案大全

实用文档

从图中可以看到,残差基本在-0.5 —+0.5左右,说明建立回归模型所依赖 的假定是恰当的。误差项的估计值 s=0.388。 (4)回归模型检验

a. 显著性检验

在90%勺显著水平下,进行t检验,拒绝域为| t | = | bi/ Sbi | >t a /2=1.7011< 由输出数据可以找到 bi和Sbi, t=bi/ s bi=-0.229/0.022=-10.313 ,于是拒绝 原假设,说明液化气收率与回流温度之间存在线性关系。

b. 拟合度检验

判定系数r2=0.792。这意味着液化气收率的样本变差大约有 回流温度的线性关系来解释。

r »;r =-0.

2

80刑以由它与

这样,r值为y与x之间存在中高度的负线性关系提供了进一步的证据。 由于n》30,我们近似确定y的90%!信区间为:

$ _(z:2)s=21.263-0.229x ± 1.282 X 0.388 = 21.263-0.229x ± 0.497

16

15 14

13

12 11

10

g

0 35 40 45 50

4、结果分析

由回归直线图可知,要保持液化气收率在 12.24%以上,回流温度必须控制 在34C以下。因为装置工艺卡片要求回流温度在 33—40C之间,为确保液化气 质量合格,可以将回流温度控制在 33—34C之间。为此,应当采取各项有效措 施,改善外部操作环境,将液化气收率控制在目标值范围内。

文案大全

实用文档

案例二:轿车生产与GDP等关系研究

中国的轿车生产是否与GDP城镇居民人均可支配收入、城镇居民家庭恩格 尔系数、私人载客汽车拥有量、公路里程等都有密切关系?如果有关系, 它们之 间是种什么关系?关系强度如何?

(数据见《中国统计年鉴》)

(1) 分析轿车生产量与私人载客汽车拥有量之间的关系:

首先,求的因变量轿车生产量 y和自变量私人载客汽车拥有量 x1的相关系数 r=0.992018,说明两者间存在一定的线性相关关系且正相关程度很强。

y y xl xl

1 Jo. 9920181 1 然后以轿车生产量为因变量y,私人载客汽车拥有量x1为自变量进行一元线性 回归分析,结果如下:

SUMMARY OUTPUT

回归统计

Multiple R Square Adjusted

0.992018 CL 984101 0L 983041

标准误差 14. 38616 观濒Ki 17

方差分析

df

回归分析 _ 1 残差 总计

SS IS 192150.3 192150.3 15 3104.422 206. 9615 16 1952. 8

F

928. 4352904

很好; ② 估计出的样本回归函数为:? =1.775687+0.206783 x1,说明私人载客汽 车拥有量每增加1万辆,轿车生产量增加2067.83辆;

③由上表中a 和B ?的p值分别是0.7094813和6.60805E-15,显然 a的p值大于显著性水平a =0.05,不能拒绝原假设a =0,而B ?的p值远小于 显著性水平a =0.05,拒绝原假设B =0,说明私人载客汽车拥有量对轿车生产量 有显著影响。 (2) 分析轿车生产量与城镇居民家庭恩格尔系数之间的关系: 首先,求的因变量轿车生产量y和自变量城镇居民家庭恩格尔系数 x2的相

Coefficien 标准误差 t Stat

Intercepl L775687 4. 6708 0. 3797121 0. 70948131

6・ 60805E-15 0. 206783 0. 006786 30. 47024 xl

由回归统计中的R=0.984101看出,所建立的回归模型对样本观测值的拟 合程度

文案大全

实用文档

关系数r=-0.77499 ,说明两者间存在一定的线性相关关系但负相关程度一般

然后以轿车生产量为因变量y,城镇居民家庭恩格尔系数 x2为自变量进行 元线性回归分析,结果如下:

SUMMARY OUTPUT

回归统计

Multiple 67749 R Square |O. 600608 Adjusted

0. 573982

标准误差 72.10323

17

方差分析

df

回归分析 残差 总计

SS 1 U727L6 15 77983. 13 16 1952.8

IS F 117271.6 22. 55712 519& 875

jni fi ■ 0. 00

Coefficienj标准逞差

Intercept 661.243 120. 1556 x2

-12, 692 2. 672314

t Stat

5-503221 -4. 74943

P-^alue Lower G. 07EH35 405. 0.000258

-18…

说明

由回归统计中的R=0.600608看出,所建立的回归模型对样本观测值的拟合 程度一般,综合其相关系数值可知此二者关系不太符合所建立的线性模型, 二者间没有密切的线性相关关系。 (3) 分析轿车生产量与公路里程之间的关系: 首先,求的因变量轿车生产量

y和自变量公路里程 x3的相关系数

r=0.941214,说明两者间存在一定的线性相关关系且正相关程度较强。

然后以轿车生产量为因变量y,公路里程x3为自变量进行一元线性回归分

析,结果如下:

文案大全

实用文档

SUMMARY OUTPUT

回归统计 lultiple 0. 941214

R Square Adjusted

0. 885883 0,878275

标准误差 38. 168 观测值 17

方差分析

df

回归分析

SS

1 1729T2.9 15 22281.91 16 1952,8

RS

172972.9 1485. 461

F jnific 116. 4439 1.82E

Intercept K3

Coefficien-标准误差 t Stat T25.156 22. 58047 -5* 268 1.403022 0,130019 10, 79092 L 口 P-value

S. E-05 -17X 1, 82E-08 1.12E

①由回归统计中的R=0.885883看出,所建立的回归模型对样本观测值的拟 合程度较好;

②估计出的样本回归函数为:? =-125.156+1.403022 x3,说明 公路里程每增加1万公里,轿车生产量增加1.403022万辆;

③由上表中a和B ?的p值分别是5.E-05和1.82E-08 ,显然a和B ? 的p值均远小于显著性水平a =0.05,拒绝原假设a =0、B =0,但由于B对两者 的影响更为显著,所以可以说明公路里程对轿车生产量有显著影响。 (4) 分析轿车生产量与GDF之间的关系: 首先,求的因变量轿车生产量y和自变量GDP x4的相关系数r=0.939995, 说明两者间存在一定的线性相关关系且正相关程度较强。

y y 1 x4 然后以轿车生产量为因变量y, GDP x4为自变量进行一元线性回归分析, 结果如

下:

1 0,939995 文案大全

实用文档

SUMMARY OUTPUT

回归统计

Multiple R Square Adjusted

0. 939995

K88359 0. 87583

标准误差 38. 92691 观测值 17

方差分析

df

回归分析 残差 总计

ss r KS 1 172525.2 172525. 2 15 22729. 56 1515. 304 16 1952.8

F 111 8552

2

Intercept

Coefficien- 标准误差 t Stat P-val ue Lo -70.7127 18* 30702 -3.8626 0. 001534

0, 000171 10L 67029) 2,11E-0810. 0. 001829

< ■

1

①由回归统计中的R=0.88359看出,所建立的回归模型对样本观测值的拟合 程度较好;

②估计出的样本回归函数为:? =-70.7127+0.001829x4,说明GDP 每增加1亿元,轿车生产量增加18.29辆;

③由上表中a和B ?的p值分别是0.001534和2.11E-08 ,显然a和B ?

的p值均小于显著性水平a =0.05,拒绝原假设a =0、B =0,但由于B对两者的 影响更为显著,所以可以说明 GDP寸轿车生产量有较显著影响。 (5) 分析轿车生产量与城镇居民人均可支配收入 x5之间的关系:

首先,求的因变量轿车生产量 y和自变量城镇居民人均可支配收入 x5的相 关系数r=0.917695,说明两者间存在一定的线性相关关系且正相关程度较强。

y x5 — 1 y

1 CL 917695 然后以轿车生产量为因变量y,城镇居民人均可支配收入 x5为自变量进行 元线性回归分析,结果如下:

文案大全

实用文档

Intercept 归差计t Stat P-value 1 Coefficien标推误差 -92- 90 23. 8703 -3. 209(0> 001444! 0.032928 1 1436. 5 1436. 0. 003681 S. 946234 2.12E-07 5 80. 03511 2.1

15 30818, 31 20*5 16 1952. 8

SUMARY OUTPUT

回归统计

Multiple R Square Adjusted

0. 917695 0. 8421 0. 8311

标准逞差 45. 32719 观测值 17

方差分析

-14

0.0

①由回归统计中的R=0.8421看出,所建立的回归模型对样本观测值的拟 合程度较好; ②估计出的样本回归函数为:? =-92.90+0.032928x5,说明城 镇居民人均可支配收入每增加1元,轿车生产量增加329.28辆;

③由上表中a和B ?的p值分别是0.001444和2.12E-07 ,显然a和B ? 的p值均小于显著性水平a =0.05,拒绝原假设a =0、B =0,但由于B对两者的 影响更为显著,所以可以说明城镇居民人均可支配收入对轿车生产量有显著影 响。

案例三:子女身高与父母身高的回归分析

1、问题的提出

早在 19 世纪后期,英国生物学家 Galton 通过观察 1078 个家庭中父亲、母 亲身高的平均值x和其中一个成年儿子身高y,建立了关于父母身高与子女身高 的线性方程:

文案大全

实用文档

y=33.73+0.516x

从方程可以看出, 子女身高有回归平均的倾向。 那么, 时隔一百多年后的今 天,人类的物质生活和精神生活都已发生巨大的变化, 父母身高与子女身高之间 将呈现出什么样的关系呢?

在现实生活中, 我们都知道父母身高对子女身高是有影响的, 但父亲与母亲 的影响分别有多大?他们对儿子和女儿的影响程度是否相同?能否用定量的形 式回答这个问题呢?如果可以利用回归方法, 进一步揭示父亲身高、 母亲身高与 子女身高之间量化关系的秘密, 将有助于那些关注自己后代身高的年轻父母们进 行早期预测,同时也可为那些未婚青年男女在选择理想配偶时提供科学的参考依 据。 2、数据的收集

为了问题的研究, 我们要求所调查的家庭满足下列条件: (1)家庭中有一个 或多个子女( 2)家庭成员身体健康,发育正常,无先天性和遗传性疾病,无残 疾(3)子女的年龄均在 23 岁(含 23 岁)以上。考虑到调查范围的广泛性,我 们随机抽取了机关干部、职员、工人、农民、城市居民、军人、大学生家庭,并 特意选择了一所全国招生的院校应届毕业生, 他们来自于全国各地, 家庭背景相 对复杂,这样使得样本更具代表性。

在收回的 410 份(发放 460份)调查表中, 符合要求的有 290个家庭,其中, 有儿子 405人,有女儿 270 人。 3、方法的确定

根据所收集的数据, 应用二元回归分析方法, 研究父亲身高、 母亲身高与儿 子或女儿身高的关系。

(1) 建立回归方程

设X1为父亲身高,X2为母亲身高,丫为儿子或女儿身高。则父母身高与子 女身高的回归模型为: Y=B 0+ B 1X1 + B 2X2+£ 根据样本数据建立估计二元回归方程:

y? =b0+b1x1+b2x2

(2) 显著性检验

对回归方程进行F检验,拒绝区域为F> Fa (2 , n-3);对回归系数进行t 检验,拒绝区域为t > t a /2(n-3) 。 (3)预测

若某一家庭父亲和母亲身高分别为 x10和x20,则子女身高的点估计为: y? =b0+b1x10+b2x20 区间估计方法已超出大纲要求,在此不要求。 4、结果分析

(1)父母身高对儿子身高的影响

y? =53.0+0.368x1+0.349x2 显著性检验:在a =0.01的显著水平 下 , F=62.714

> F a (2,400)=4.68 t1=7.85 > t a /2(400)=2.6 t2=6.71 > ta /2(400)=2.6

结果说明回归方程显著, 两个偏回归系数显著。 因此, 所建立回归方程是有 意义的,即父母身高与儿子身高有显著的线性关系。 (2) 父母身高对女儿身高的影响

y? =47.140+0.249x1+0.455x2 显著性检验:在a =0.01的显著水平

下,F=46.81 > F a (2,300)=4.68 t1=4.92 > t a

/2(300)=2.68

t2=7.61 > t a /2(300)=2.6

结果说明回归方程显著,回归系数显著,故所建立回归方程有效,即女儿身 高与父母

文案大全

实用文档

身高有显著的线性关系,特别是母亲身高对女儿身高的影响更为重 要。

(3) 从以上结果可以看出,在某种程度上,父母身高对子女身高有重要影响,

且在不同时期,子女身高有回归平均身高的趋势,即个子矮的父母,其子女身高 未必低于自己,个子高的父母,其子女身高未必高于自己。下表给出了部分家庭 子女身高的预测值,其中,区间估计的把握程度为 95%

表:部分家庭子女身高的预测值

父亲 身高 儿子身高 母亲 身高 点估计 下限 上线 点估计 下限 上线 女儿身高 160 160 165 165 170 170 175 175 180 180 180

155 160 160 165 160 165 160 165 160 165 170 166.57 168.32 170.15 171.90 172.00 173.74 173.84 175.58 175.67 177.42 177.41 165.32 167.83 157.50 167.16 169.48 159.78 169.41 170.91 161.02 171.01 172.91 163.30 171.53 172.46 162.27 173.12 174.36 1. 173.27 174.40 163.51 174.93 176.22 165.78 174.73 176.50 1.75 176.47 178.36 167.03 176.47 178.36 169.30 155.99 158.43 160.14 162.26 161.74 163.77 162.94 1.98 163.79 165.91 167.76 159.02 161.13 161.90 1.33 162.79 165.30 1.07 166.59 165.71 168.14 170.83 文案大全

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务