知识要点
1. 图形规律问题分三步考虑:1)图形的基本组成的确定;2)图形变化规律确定;3)缺失图形确定。 2. 图形基本组成的确定需注意的要点:图形的形状、颜色、位置、大小、数量等。 3. 图形计数的关键在于找出常见的计数依据,通常把复杂的计数问题转化成简单的线段计数最为常用。 4. 图形计数基本公式: 1) 一条线段上有n个点(包含线段的两个端点),那么这条线段共包含的线段数为: 12…+(n1)=n(n1)2条。 2) 两条共端点的射线确定一个角(大于0小于180),假设由某点引出n条射线(任意两条射线均不在同一直线上),那么这n条射线可以确定的角(大于0小于180)的个数为n(n1)2个。 3) 网格状图形中,长方形(包含正方形)的个数,等于相邻两条边上线段数的乘积。 4) 一般的,一个长方形的长被分成n等份,宽被分成m等份(nm,每小格均为相等的正方形),那么这个长方形中正方形的总数为:mn(n1)(m1)(n2)(m2)(nm1)1
数线段
【例1】 请数出下图中线段的总条数。
【例2】 数一数,下图中共有多少条线段?
【例3】 请问下图有多少条线段?
【例4】 数一数下图一共有多少条线段?
【例5】 数一数下图中共有多少条线段?
2
数长方形
【例6】 数一数:下图中有几个长方形(包括正方形)?
【例7】 图171中有多少个长方形(包括正方形)?
【例8】 图中有多少个长方形(包括正方形)?
【例9】 图中有多少个长方形(包括正方形)?
【例10】 下图中有多少个长方形?
图1-7-1
图1-7-2
1-7-3
EADGFBCHIJ
3
图
【例11】 下图中有多少个长方形?
数正方形
【例12】 数一数:下图中有几个正方形?
【例13】 下图中共有多少个正方形?
【例14】 如图182所示,平面上有16个点,每个点上都钉上钉子,形成44的正方形钉阵,现在有
足够的橡皮筋,请问能在这个正方形钉阵上套出多少个正方形?
【例15】 如图182所示为44的正方形网格由16个11的小正方形构成,网格的格点都是小正方形的
顶点。那么,以网格的格点为顶点的正方形一共有个_______。
4
数三角形
【例16】 数一数下图中共有多少个三角形?
【例17】 数一数下图中共有多少个三角形?
【例18】 数一数下图一共有多少个三角形?
【例19】 (第十四届华罗庚少年数学邀请赛决赛试题A(小学组))如下图所示,在边长为1的小正方形
组成的44方格图中,共有25个格点.在以格点为顶点的直角三角形中,两条直角边长分别是1和3的直角三角形共有________个.
【例20】 数一数下图一共有多少个三角形?
5
【例21】 数一数下图中的三角形个数是多少?
【例22】 数一数下面图形中各有多少个三角形?
【例23】 下图中共有几个三角形?
一课一练
【练习1】 数一数下图一共有多少条线段?
【练习2】 数一数下图一共有多少条线段?
a
图1-5-2
6
【练习3】 下图中有多少个长方形?
【练习4】 下图中,大大小小的长方形共有多少个?
【练习5】
【练习6】
【练习7】
下图中有多少个正方形?
下面图中有多少个正方形?
数一数下面图形中有多少个三角形?
7
【练习8】 数一数下图共有多少个三角形?
补充题库
【补充1】 数一数,图154中共有多少个锐角?你能用两种方法解答这个问题么?
【补充2】 下图中共有几个三角形?
图1-5-4
【补充3】 数一数下图中梯形有_________个。
【补充4】 数一数下图一共有多少个三角形?
8
9
因篇幅问题不能全部显示,请点此查看更多更全内容