一、选择题
1.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )
A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE
2.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为( ) A.2cm B.4cm C.6cm D.8cm
3.如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为( )
A.30° B.15° C.45° D.25°
4.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为( )
A.48° B.40° C.30° D.24°
5.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为( )
A.2a B.2a C.3a D.
6.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是( )
A.2 B.3 C. D.4
7.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A.3
B.4
C.5
D.6
8.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )
A.30° B.45° C.50° D.75°
9.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( )
A.40° B.36° C.30° D.25°
10.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为( )
A.PN<3 B.PN>3 C.PN≥3 D.PN≤3
11.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )
A.15 B.30 C.45 D.60
12.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于( )
A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5
二、填空题
13.等腰三角形的一个内角为100°,则顶角的度数是 .
14.如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是 .
15.如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A= 度.
16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为 .
17.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为E点,请任意写出一组相等的线段 .
三、解答题
18.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N. 求证:∠OAB=∠OBA.
19.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.
(1)判断∠ABE与∠ACD的数量关系,并说明理由; (2)求证:过点A、F的直线垂直平分线段BC.
20.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F. 求证:DE=BF.
21.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC. 求证:△BDE是等腰三角形.
22.已知:如图,四边形ABCD中,对角线AC,BD相交于点O,AB=AC=AD,∠DAC=∠ABC. (1)求证:BD平分∠ABC;
(2)若∠DAC=45°,OA=1,求OC的长.
23.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E. 求证:直线AD是线段CE的垂直平分线.
答案
一、填空题
1. C 2.A 3. B 4. D 5.B 6.A 7.B 8.B 9.B 10.C 11.B 12.C 二、填空题
13.100° 14.15 15.75 16.2a+3b 17.BE=EA 三、解答题
18.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N. 求证:∠OAB=∠OBA.
【考点】KF:角平分线的性质;KD:全等三角形的判定与性质.
【专题】解答题
【分析】根据角平分线上的点到角的两边的距离相等可得AM=BM,然后利用“HL”证明Rt△AOM和Rt△BOM全等,根据全等三角形对应边相等可得OA=OB,再根据等边对等角的性质即可得证.
【解答】证明:∵OM平分∠POQ,MA⊥OP,MB⊥OQ, ∴AM=BM,
在Rt△AOM和Rt△BOM中,∴Rt△AOM≌Rt△BOM(HL), ∴OA=OB, ∴∠OAB=∠OBA.
【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,等边对等角的性质,熟记性质是解题的关键.
19.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.
(1)判断∠ABE与∠ACD的数量关系,并说明理由;
,
(2)求证:过点A、F的直线垂直平分线段BC.
【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【专题】解答题
【分析】(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论; (2)利用垂直平分线段的性质即可证得结论. 【解答】解:(1)∠ABE=∠ACD; 在△ABE和△ACD中,
,
∴△ABE≌△ACD, ∴∠ABE=∠ACD; (2)∵AB=AC, ∴∠ABC=∠ACB, 由(1)可知∠ABE=∠ACD, ∴∠FBC=∠FCB, ∴FB=FC, ∵AB=AC,
∴点A、F均在线段BC的垂直平分线上, 即直线AF垂直平分线段BC.
【点评】本题考查了等腰三角形的性质及垂直平分线段的性质的知识,解题的关键是能够从题目中整理出全等三角形,难度不大.
20.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F. 求证:DE=BF.
【考点】KF:角平分线的性质;JA:平行线的性质.【专题】解答题
【分析】根据角平分线的定义得到∠1=∠2,根据角平分线的性质得到DE=BD,∠3=∠4,由平行线的性质得到3=∠5,于是得到结论. 【解答】证明:∵CD平分∠ACB, ∴∠1=∠2,
∵DE⊥AC,∠ABC=90° ∴DE=BD,∠3=∠4, ∵BF∥DE, ∴∠4=∠5, ∴∠3=∠5, ∴BD=BF, ∴DE=BF.
【点评】本题考查了角平分线的性质,平行线的性质,等腰三角形的判定和性质,熟练掌握角平分线的性质是解题的关键.
21.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC. 求证:△BDE是等腰三角形.
【考点】KI:等腰三角形的判定;JA:平行线的性质.【专题】解答题
【分析】直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案. 【解答】证明:∵DE∥AC, ∴∠1=∠3, ∵AD平分∠BAC, ∴∠1=∠2, ∴∠2=∠3, ∵AD⊥BD,
∴∠2+∠B=90°,∠3+∠BDE=90°, ∴∠B=∠BDE,
∴△BDE是等腰三角形.
【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠2=∠3是解题关键.
22.已知:如图,四边形ABCD中,对角线AC,BD相交于点O,AB=AC=AD,∠DAC=∠ABC. (1)求证:BD平分∠ABC;
(2)若∠DAC=45°,OA=1,求OC的长.
【考点】KF:角平分线的性质;JB:平行线的判定与性质.【专题】解答题
【分析】(1)根据等腰三角形的性质、平行线的性质以及角平分线的定义证明;
(2)过点O作OE⊥BC于E,根据角平分线的性质得到OE=OA,根据勾股定理计算即可. 【解答】(1)证明:∵AB=AC, ∴∠ABC=∠ACB, ∵∠DAC=∠ABC, ∴∠DAC=∠ACB. ∴AD∥BC, ∴∠ADB=∠CBD. 又∵AB=AD, ∴∠ADB=∠ABD. ∴∠ABD=∠CBD. ∴BD平分∠ABC;
(2)解:过点O作OE⊥BC于E, ∵∠DAC=45°,∠DAC=∠ABC, ∴∠ABC=∠ACB=45°, ∴∠B AC=90°, ∵BD平分∠ABC, ∴OE=OA=1.
在Rt△OEC中,∠ACB=45°,OE=1, ∴OC=
.
【点评】本题考查的是角平分线的性质、等腰三角形的性质、勾股定理的应用,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
23.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E. 求证:直线AD是线段CE的垂直平分线.
【考点】KF:角平分线的性质;KD:全等三角形的判定与性质;KG:线段垂直平分线的性质;KN:直角三角形的性质.
【专题】解答题
【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证. 【解答】证明:∵DE⊥AB, ∴∠AED=90°=∠ACB, 又∵AD平分∠BAC, ∴∠DAE=∠DAC, ∵AD=AD, ∴△AED≌△ACD, ∴AE=AC, ∵AD平分∠BAC, ∴AD⊥CE,
即直线AD是线段CE的垂直平分线.
【点评】本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务