Thepreparationofhighlyporousstructuresfrom
filamentarynickelpowders
A.Y.Zaitseva,∗,D.S.Wilkinsona,G.C.Weatherlya,†,T.F.Stephensonb
b
McMasterUniversity,1280MainStreetWest,Hamilton,Ont.,CanadaL8S4L7INCOTechnicalServices,2060FlavelleBoulevard,Mississauga,Ont.,CanadaL5K1Z9
Received10March2003;accepted30March2003
a
Abstract
Porousnickelstructuresareinhighdemandforbattery,catalystandfiltermaterialsapplications.Traditionallysuchstructuresaremadebysinteringfinefilamentarynickelpowders.However,thestrengthofsuchstructuresisratherlow,whencompared,forexample,withNifoamsofsimilardensity.Inthisresearchwehaveappliedcolloidalprocessingtechniquestoimprovethepowderparticledistributionand,hencethestrengthofthefinalsinteredstructure.BydispersingNipowderinwaterpriortointroducingabinder,betterseparationofparticlesandbreak-upofconglomeratesisachieved.Theadditionofdispersantsfurtherimprovestheparticledistribution.Thenewmethodalsoenhancescontroloftheslurryviscosityandthegreendensityofthenickelporousbody.Thestructureofbatteryplaquepreparedaccordingtothenewtechniqueisthereforemoreuniformthanthestructureoftheconventionalplaque.Moreover,thetensilestrengthofaplaquepreparedbythenewmethodisincreasedby50–70%.©2003ElsevierB.V.Allrightsreserved.
Keywords:Porousnickel;Sintering;Batteries;Positiveelectrode
1.Introduction
Nickelpowdershavingahighlyirregularfilamentaryshapecanbefabricatedandsinteredtoproducehighlyporousstructures,whichareinhighdemandforbattery,catalystandfiltermaterialsapplications.Inadditiontohighporositythesematerialsofferexcellentcorrosionresistanceandgoodelectricalconductivity.Oneofthemostimportantrequirementsforthesetypesofstructuresisthecombinationofhighstrengthwhilemaintainingalevelofhighporos-ity,especiallyforthecaseofrechargeablebatteries.Thecharge-carryingcapacityofbatteriesisstronglydependentontheamountofactivemassimpregnatedintheporousplaquewhilebatterylifetimeissensitivetothestrengthoftheporousstructure.Thismustbesufficienttowithstandrepeatedswellingandshrinkingduringbatterychargingandrechargingcycleswithoutfailure[1].
Thetraditionalapproachtothemanufactureofsuchstruc-turesisbysinteringoffinefilamentarynickelpowders.Thedominanttechnologyincommercialproductioninvolvesahighlyautomatedandeconomicalslurrycoatingprocess
Correspondingauthor.†Deceased.
E-mailaddress:azaitsev@inco.com(A.Y.Zaitsev).
0378-7753/$–seefrontmatter©2003ElsevierB.V.Allrightsreserved.doi:10.1016/S0378-7753(03)00534-2
∗
ontoaperforatedsubstrate.Thoughdetailedinformationonthetechnicalaspectsofthisprocessislimiteddueitspro-prietarynature,itisknownthatelectrodeplaqueproductionprocessbasedontheuseoftheIncoType255filamentarynickelpowderinvolvesseveralmainsteps[2]:
•preparationofaslurrybymixingthenickelpowderinanaqueouscellulosesolution,
•coatingofaperforatedmetalsubstrate(typicallymadeofnickel-coatedsteel)withtheslurryusingaverticaltapecastingprocess(twindoctorbladesareusedtocontrolthecoatingthickness),
•dryingtheslurryinanovenattemperaturesbelow100◦C,and
•sinteringinareducingatmosphereatatemperatureofabout1000◦C.AnexampleofthesinterednickelplaqueproducedbysuchaprocessisgiveninFig.1.Theplaquewasproducedbyacommercialvendorandisthoughttobetypicalofthoseemployedinindustrialpractice.Averysimilarmicrostruc-tureisobservedinplaquesproducedinourlaboratorybytheprocessjustdescribed.
Thestructureofthisplaqueincludeslargevoids(uptoabout100mindiameter).Thereareseveraldisadvantagesinproducingsuchanon-uniformstructure,including:
254A.Y.Zaitsevetal./JournalofPowerSources123(2003)253–260
Fig.1.Microstructureofasinteredindustrialplaque(×125).
•decreasedbatteryefficiencyduetodifficultyindischarg-ingandrechargingtheactivemassfarfromtheconduct-ingphase,and
•decreasedstrengthduetounevenstressconcentrations.Hence,theperformanceofabattery(orfilter)preparedus-ingthisproceduremaybesignificantlydegradedcomparedtoitsfullpotential.
2.Improvingplaquemicrostructure
Ananswertotheproblemindicatedaboveisproposedinthispaper.Thesolutioninvolvesimprovementsinparticledistributionthatprovideamoreevenandhence,strongerstructure,withoutsacrificingthedesiredoverallporosityofabout80%.Alteringthedetailsofthesinteringprocess(e.g.temperature,duration,sinteringatmosphere)wasfoundtohaveinsignificantimpactonthehomogeneityofthefinalmicrostructure.Wehavetherefore,focusedondevelopinganewapproachtoslurrypreparationusinganadaptationofcolloidalprocessingtechniquestopromoteauniform,dis-persedpowderdistribution.Incolloidalprocessingoneusessurface-activechemicalsasdispersantagentsinanappropri-atesolvent(inthiscaseallprocessingwasaqueous-based)alongwithefficientmixing.Dispersantsbecomeattachedtothesurfaceoftheparticlesleadingtotheemergenceofrepulsiveforcesbetweenthem.Asuggestedapproachtoprocessingisoftenusedinceramicsforwhichtheaverageparticlesizeisaboutamicronorless[3].Itwasnotclearhowwellsuchanapproachmightworkforfilamentarynickelpowdersforwhichthedispersantmustovercomethehighermaterialdensity,largeparticlesize(typicalparticlelengthisabout30m),andirregularshape.Despitethesemisgivingsitwasfeltthatthisapproachofferedthepoten-tialofsignificantimprovementinstrengthandhomogeneityofsinterednickelelectrodes.
AflowchartfortheinitialstagesoftheconventionalelectrodeplaquepreparationprocessisgiveninFig.2.
Fig.2.Conventionalmethodofplaquepreparation.
Inthefirststepnickelpowderismixeddirectlywiththecellulose–watersolution.Celluloseinthisapplicationplaystheroleofabinderbetweenparticles.Theadditionofcel-luloseisnecessaryinordertoproduceslurryofsufficientviscositytoenabletheverticaltapecastingprocesstopro-ceed.Duetothefilamentarystructureofthesenickelpow-dersandrelativelyhighviscosityofthecellulosesolutiontheparticlesmaybeneverwelldispersed.Moreover,whileintensivemixingcanhelpdisperseparticlesreasonablywell,highshearstressmaycauseafilamentbreakage.Thebreak-ageofthefilamentsleadstothereductionofthesinteredmaterialporosity.Intheprocessofthestudyitwasfoundthatthesimpleadditionofdispersantagentsintothesolu-tionduringmixingdoesnotleadtoimprovementsinthestructure,probablyduetothecompetitiveabsorptionofthecellulosecontainedinthestartingsolution.Thus,thedisper-santisunabletobecomeattachedtothesurfaceanddeveloprepulsiveforcesbetweenparticles.Suchphenomenonisawellknownintheceramicprocessing[4].
Wehavethereforedevelopedanewprocessingsequence(Fig.3)ensuringthatthepowderiswelldispersedandthedispersantisattachedtotheparticlesurfacebeforethebinderphaseisadded.Moreover,inthenewprocess,theinitialmixingoperationcanbeperformedusinghigh-speedstirringwithoutfilamentsbreakageduetothelargeexcessofwaterpresent.
Theproposedmethodofslurrypreparationshouldnotonlyallowgoodcontactbetweendispersantandpowderbutalsoshouldenablecontroloftheslurryrheologicalproper-tiesoverawiderangeofdensitiesbyadjustingboththecon-centrationofcelluloseinthesolutionaswellastheamountofwaterused.
3.Experimental
Awiderangeofchemicalsexiststhatmightbesuitableforuseasdispersingagentstoimprovenickelpowderdis-persion.TheefficiencyofsomeofthesewasdeterminedbymeasuringtheZ-potentialofIncoType255nickelpowderinaqueousmedia.Theconcentrationsofdispersantswere
A.Y.Zaitsevetal./JournalofPowerSources123(2003)253–260
255
Fig.3.Improvedmethodofplaquepreparation.
variedfrom0to1%(byweight)basedontheamountofnickel.
Dispersantsusedinthisstudywerechosenfromthosecommonlyusedintheceramicsandpaintindustry.TheseincludedseveralfromtheDarvanseries(DarvanC,Darvan821A,Darvan811,providedbyR.T.VanderbittCompany)andthePolacrylseries(A40-43N,A70-40NandB55-50N,providedbyPolacrylcompany).Allofthesearewater-basedandcontaindifferentformsofpolyacrylateammoniumsalts.NickelplaqueswerepreparedaccordingtotheflowchartsillustratedinFigs.2and3.Inthelattercase,dispersantconcentrationsselectedonthebasisoftheZ-potentialmea-surementswereused.Nickelpowderwasgraduallymixedwithwatercontainingaknownconcentrationofdispersant,inordertoobtaingoodcontactbetweenthemoleculesofdispersantandnickelparticles.Thequantityofwaterwastwotothreetimesthatwhichwasnecessarytoproducefinalslurryoftherequiredviscosity.Afterstirring,thepowderwasallowedtosettleandtheexcesswaterwasdecantedtoachievethedesiredslurrycomposition,towhichthecellu-losesolutionwasadded.Table1showsthecompositionsofslurriesusedintheseexperiments(dispersantnotincluded).Whilecommercialbatteryplaquesalwayscontainametalsubstrate,wewishedtomanufactureplaqueswithoutsub-stratessothatthestrengthofthesinterednickelbodiescouldbemeasureddirectly.Therefore,theslurrywascastintoagreentapewithoutasubstrateusinghorizontaltapecastingmachine.Aftertapecastingsamplesweredriedatroomtem-peratureandsinteredbetween750and1050◦Cfor10mininareducingatmosphereof15%H2and85%N2.Plaques
Table1
Slurrycomposition(per100g)Component
Ni(g)H2O(g)
Cellulose(g)
OriginalprocessNi
42.5
Cellulosesolution(3.7%)55.4
2.1Total
42.555.4
2.1
NewprocessNi42.5
H2O
39.7Cellulosesolution(11.8%)15.7
2.1Total
42.5
55.4
2.1
madebythisprocessusingtheoriginalprocesswerefoundtohaveasimilarmicrostructureanddensitytothecommer-cialmadebycastingontoasubstrate(seeFig.1).Wearethereforereasonablyconfidentthathorizontaltapecastingdoesnotalterthepropertiesofthematerialtoanysignificantextentandthereforeoffersaviablemethodforstudyingtheeffectofprocessmodificationsontheplaquestrength.
ImagesofthesamplesurfacewereobtainedusinganElec-troScan2020environmentalSEM.Theimagesofthefrac-turesurfaceforquantitativeanalysisoffracturepointswereobtainedusingPhilips515SEM.Tensilestrengthmeasure-mentswereconductedusinganInstron4411loadframewithloadsupto50N.X-rayphotoelectronspectroscopyanalysisofsinteredplaqueswasperformedusingaPHI5500ESCAsystem.
4.Resultsanddiscussion
TheresultsofZ-potentialmeasurementsareshowninFig.4.TheZ-potentialincreasesrapidlywithincreasing
Fig.4.TheinfluenceofdifferentdispersantsontheZ-potentialofnickelpowder.
256A.Y.Zaitsevetal./JournalofPowerSources123(2003)253–260
Fig.5.Theeffectofdispersantsontheplaqueappearance.(a)DarvanC,(b)Darvan821A,(c)PolacrlylA40-43N.
concentrationandthenlevelsofforevendecreases.Opti-mumbenefitscanbeachievedwithaslittleas0.1%disper-santconcentration.Darvan821AandDarvanC,basedonammoniumpolyacrylate,appearedtobethemosteffectivedispersantofthosestudied.
Themicrostructuresofplaquespreparedwithvariousdis-persantsareshowninFig.5.Thereisaclearimprovementinthemicrostructureintermsofbetteruniformity,ascom-paredtotheplaquedepictedinFig.1.Similarresultswereobservedwithotherdispersants.
Despitetheobservedimprovementinmicrostructurethetensilestrengthexhibitedbyalloftheplaquesmadeus-ingtheDarvandispersantswasverylowuptofourtimeslowerthanthatoftheplaquespreparedwithoutdispersants(1.2MPaversus3–5MPa).Moreover,theseplaqueswerequitebrittle.
DetailedSEMimages(Fig.6)suggestedthattheneckgrowthbetweennickelparticlesduringthesinteringpro-cessaswellasthesurfacemorphologyofthenickelhadbeenadverselyaffectedbytheadditionofthesedispersants.Fig.6ashowsthatthefracturesurfaceofthenickelfila-mentexhibitsbrittledeformation.Fig.6bindicatesclearlythatsinteringdidnotoccurproperlyasboundariesbetweengrainsarequitevisibleandthesurfaceofthestructureisrough.Themostprobablecauseofsuchbehaviorwascon-taminationofthepowdersurfacebythedispersantsastheirpresencewastheonlydifferencebetweenconventionalandnewcompositionofsinteredplaques.
Todeterminethenatureofthecontamination,X-raypho-toelectronspectroscopy(XPS)ofthesurfaceofthepowdersinteredwithandwithoutdispersantswasperformed.TheresultsarepresentedinFig.7.
Thelowergraphwasobtainedfromasamplethatcon-tainedthedispersantDarvan821A,whiletheuppergraphwastypicalofasampleprocessedwithoutadispersant.Thelowergraphshowsthepresenceofsulfurintheform
Fig.6.Surfacesofsinterednickelpowderparticles.(a)WiththeuseofDarvanC,(b)withtheuseofDarvan821A.
A.Y.Zaitsevetal./JournalofPowerSources123(2003)253–260257
Fig.7.TheXPSdataforsinterednickelpowderintherangeof158–178eV.
ofsulphites(rightpeak)andsulphides(leftpeak).Thesulfur-containingpeaksaretheonlydifferencesbetweensamplesintheentirerangeofbindingenergies.Thus,themostprobablecauseofthedecreasedmaterialstrengthwasthepresenceofsulfurthatwasintroducedtotheslurrywiththedispersant.BulksulfuranalysisofthedispersantDarvan821Ashowedthatitcontainedabout1.3%sulfur.Sulfuriscommonlyusedtoterminatethereactionandcontrolthemolecularweightintheproductionofmanydispersants,includingsomeofthose(i.e.alloftheDarvanvariants)usedinthisstudy.
Thetensilestrengthofsinteredplaquesthatwerepre-paredusingsulfur-containingdispersantscanbeplottedasthefunctionofthesulfurcontent.TheresultsforDarvan821areshowninFig.8.SpecificstrengthplottedbyY-axiswasdefinedasthemeasuredtensilestrengthnormalizedbytherelativedensityoftheplaques.Inallcaseswefoundastrongcorrelation,whichclearlydemonstratesasignificantinfluenceofsulfuronthestrengthofporousnickelmateri-als,evenatverylowconcentrations.Thus,inordertopre-pareastrongstructurebysinteringofnickelpowder,sulfurcontaminationshouldbeavoided.
Toeliminatetheinfluenceofsulfuronthestrengthofasinterednickelbody,anumberofsulfur-freedispersantswereselectedforfurtherstudy.TheprocedureforplaquepreparationremainedasshowninFig.3.ThedispersantsusedwerePolacrylA40-43N,A70-40NandB55-50Nwithconcentrationsfrom0.05to2%basedontheweightofnickel.ThetensilestrengthandporosityofsinteredplaquesispresentedinFig.9,forplaquesmadebothbythecon-ventionalprocessandforthosemadeusingtheA40-43Ndispersantwiththemodifiedmixingsequence.Arangeofporositylevelswasachievedforeachcasebyalteringthesinteringtemperature.Theresultsforothersulfur-freedis-persantsweresimilar.Resultsobtainedbyimplementingthenewmixingsequence,butwithouttheuseofanydispersant,
Fig.8.Influenceofsulfuronthestrengthofsinterednickelpowder.Percentagesrefertothedispersant/nickelratiointheslurry.
258A.Y.Zaitsevetal./JournalofPowerSources123(2003)253–260
Fig.9.Strength,porositydependenceofsinterednickelplaques.Thetemperaturesreferredtothoseatwhichtheplaqueswerefired.
alsoshowedconsiderableincreaseinstrengthincomparisontotheconventionalmethod,thoughslightlylowerthanthestrengthobtainedusingdispersants.
Ascanbeseen,therelativeincreaseinthestrengthoftheplaquepreparedusingthenewmixingsequenceandsulfur-freedispersantaccountsfor50–70%overtheentirerangeofporositiesstudied.
AtypicalexampleofafracturedligamentispresentedinFig.10.
IncontrasttoFig.6theimagepresentedinFig.10showsahighlyductilefractureprocess,asonewouldexpectforpurenickel.Itcanbenoticedthatduringapplicationoften-sileforcetheneckofthefilamentwasdeformedandbecamethinnerbeforethefailureoccurred.Whilethisexplainsthestrengthdifferencesobservedbetweentheplaquespro-ducedwithsulfur-freedispersantsandthoseproducedusingsulfur-contaminateddispersants,itdoesnotexplainthe
Fig.10.Theexampleofafracturepoint.
significantincreaseinstrengthovertheplaquesproducedbytheoriginalprocess(forwhichthenickelligamentsalsoproducedductilefailures).Themostprobablecauseofthisimprovementisduetochangesatthemacroscopiclevelinthehomogeneityoftheparticledistributioninthesinteredplaque.
Inordertomorequantitativelyunderstandhowchangesintheprocedureofslurrypreparationaffectthestructureofthesinterednickelplaqueanditscorrelationtostrengthin-creases,thefracturesurfacesofseveralplaqueswerestudiedindetailusingSEM.Foreachmaterialstudiedabout80im-ages(60m×60meach)weretakenofrandomlychosenareasacrosseachfracturesurface.Thetotalareasoftheseimagesaccountedforabout7.5%oftheentirefracturesur-face.Theseimageswereprocessedusingimaginganalysissoftwareandthetotalareaandnumberofactualfractureligamentswasdeterminedforeachimage.TheresultsofmeasurementsandcalculationsareshowninTable2.
Theincreaseinthemeasuredstrengthoftheplaquepre-paredwiththenewmethodcanbeunderstoodfromthehighertotalareaoffractureligaments(line3)andthein-creasednumberoffractures(line4).Thisdatasuggeststhatthenewplaquesformamoreinterconnectedstructure,whichrequiresthatmoreligamentsbebrokenastheplaquefails.Anotherinformativenumberderivedfromthedataistheareaoffracturesurfaceperfractureligament(line5)Thisnumberisabout1.5timeslowerintheplaquepreparedwiththenewmethod.Itmeansthatwiththenewmethodmoreligamentsresistthetensileforce.Fromtheresultsaboveandpreviouslyestablishedtensilestrengthsofsamples,thestrengthofnickelligamentswasalsocalculated.Thisap-pearedtobeequalto402and388MPafortheconventionalandmodifiedplaque,respectively.Derivednumberscorre-latewellwiththetensilestrengthofpurenickelintheliter-aturethatiscloseto400MPa[5].
A.Y.Zaitsevetal./JournalofPowerSources123(2003)253–260
Table2
FractographicanalysisS.no.12345
Measuredandcalculateddata
Strengthofthesample(MPa)
Areastudied,At,withSEM(m2)
PercentageoftheareaoccupiedbyfractureligamentsNumberoffracture,nf,ligamentspermm2Fracturesurfaceareaperligament(m2)
Conventionalmethod3.08
2.17×1050.7662860350
259
Newmethod4.77
1.96×1051.234800208
Fig.11.Cumulativedistributionoffracturepoints.
Anotherimportantfactorinthedevelopmentoftheim-provedstrengthisthedistributionoffractureligamentsthroughtheareaoffracture.OneindicationoftheimproveddistributionisgiveninFig.9,wheretheporosityachievedbythenewprocessissomewhatlessforagiventemper-aturethanfortheconventionalprocess.TheincreaseinhomogeneityshowninFig.5suggeststhatnickelligamentshavefilledinthelargepores.Tofurtherunderstandthechangeinligamentsdistribution,thenumberoffractureligamentswasobtainedforeachsampleoutofabout80images60m×60m.Afrequencydistributionbasedonthesenumberswasderivedfortheareaofimagesthatcontainedagivennumberoffractureligaments.TheresultsareexpressedintheformofacumulativedistributionplotasshowninFig.11.
Asseenfromthegraph,thedistributionoffracturelociintheplaquepreparedbythemodifiedtechniqueisclosertotheclassicGaussdistributionanditisshiftedtowardsalargeraveragevalue.Thehighermedianvalueindicatesthatthenewprocessingtechniqueresultsinmorefracturedligamentsperunitarea,whiletheshapeofthedistributionisanindicatorofplaqueuniformity.Moreoverthegraphindicatesalargereductioninthenumberofregionsthatcontainasmalldensityofligaments.Indeed,theminimumligamentdensityisaround3000ligamentspermm2forthenewprocess,ascomparedtolessthan1000fortheoriginal
process.Thehigherligamentdensityfollowsasadirectconsequenceofremovingthelargepores.
Theimproveduniformityleadstoanincreaseoftheplaquestrengthby50–70%atthesameporositylevel.Astrengthincreaseofthismagnitudecanonlyoccurifthein-terconnectivityoftheparticlesintheplaquehasincreased.However,eventhisincreasedstrengthisaround10timeslessthanthestrengththatonewouldcalculatebasedonthetheoryofuniformfoams[6].Thesesinteredplaquesthere-foredonotformacontinuous,regularcellularstructure.Indeedmanyoftheparticlesremainunconnectedovermostoftheirlengthtootherparticles.Fromamechanicalper-spectivetheseligamentsareofnovalue.However,theystillcontributeelectricalconductivitytotheelectrode;nickelfilamentsserveasconductingprobesintotheimpregnatedactivemass.Aprocessingmethodthatwouldresultinthestrengthtoporosityratioforthesematerialscomparabletowhatonecanachieveinnickelfoamsappearstobeunlikely.However,thisratiohasbeendemonstratedtobeimprovedsubstantiallythroughprocesscontrol.
5.Conclusions
Anewapproachtoslurrypreparationhasbeendevelopedinthemanufactureofporousnickelplaquesfromfilamen-
260A.Y.Zaitsevetal./JournalofPowerSources123(2003)253–260
tarynickelpowders.Theapproachprimarilyinvolvesanim-provedsequenceforthemixingoftheslurrycomponentswiththeappropriateuseofdispersants.Abetterdistributionofnickelpowderparticlesinthegreenandsinteredmate-rialhasbeenproduced.Asmallamountofsulfurwasfoundtohaveadramaticdeleteriouseffectonthestrengthofthesinterednickelpowder.Therefore,onlysulfur-freechemi-calsshouldbeusedinprocessingthesematerials.Throughacombinationofthenewtechniqueofslurrypreparationandtheselectionofsulfur-freedispersants,thestrengthtoporosityratioofsinterednickelplaqueswasincreased.Anal-ysisoffracturesurfaceshasbeenusedtoquantifytheef-fectofthenewprocessintermsofincreaseduniformityoftheligamentspacingandincreaseddensityofconnectedligaments.
References
[1]V.A.Ettel,NewmaterialsforNiCadbatteries,in:Proceedingsof
thePaperPresentationatNickel-CadmiumBatteryConferenceNiCad96oftheInternationalCadmiumAssociation,NiCad96,Barcelona,Spain,30September–3October1996.
[2]V.A.Tracey,Nickelpowdersintosinteredstructuresforthealkaline
battery:porositystudies,Ind.Eng.Chem.Prod.Res.Dev.25(4)(1986)582.
[3]G.D.Parfitt,DispersionofPowdersinLiquids,AppliedSciencePub-lishersLtd.,London,1973,pp.1–43.
[4]D.W.Richerson,ModernCeramicEngineering,MarcelDekker,New
York,1982,p.191.
[5]W.Betteridge,NickelanditsAlloys,EllisHorwood,Chichester,UK,
1984,pp.68–69.
[6]L.J.Gibson,M.F.Ashby,CellularSolids:StructureandProperties,
CambridgeUniversityPress,Cambridge,1988.
因篇幅问题不能全部显示,请点此查看更多更全内容