搜索
您的当前位置:首页正文

2015年中考数学压轴题精选(二次函数)(16题)_附详细解答和评分标准

来源:意榕旅游网
数 学 中 考 压 轴 题 二 次 函 数

1、(10广东茂名25题)(本题满分10分)

如图,在平面直角坐标系中,抛物线y=-

22x+bx+c经3y 过A(0,-4)、B(x1,0)、 C(x2,0)三点,且x2-x1=5. (1)求b、c的值;(4分)

(2)在抛物线上求一点D,使得四边形BDCE是以BC为对 角线的菱形;(3分)

(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)

解:

解:(1)解法一: ∵抛物线y=-

B C x

O A 22, x+bx+c经过点A(0,-4)

3(第25题图)

∴c=-4 „„1分

又由题意可知,x1、x2是方程-根,

∴x1+x2=

22x+bx+c=0的两个333b, x1x2=-c=6 ·························································· 2分 222由已知得(x2-x1)=25 又(x2-x∴

1)=(x2+x1)-4x122x2=

92b-24 492b-24=25 414解得b=± ··························································································· 3分

314当b=时,抛物线与x轴的交点在x轴的正半轴上,不合题意,舍去.

3∴b=-

14. ·························································································· 4分 3解法二:∵x1、x2是方程-

即方程2x-3b∴x=

222x+bx+c=0的两个根, 3x+12=0的两个根.

3b9b296, ································································ 2分

49b296∴x2-x1==5,

2

解得 b=±

14 ················································································· 3分 3 (以下与解法一相同.)

(2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上, 5分

22142725··························· 6分 x-x-4=-(x+)2+ ·

33326725 ∴抛物线的顶点(-,)即为所求的点D. ································· 7分

26根据菱形的性质,点P必是直线x=-3与

又∵y=-

(3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(-6,0),

2214·················································· 8分 x-x-4的交点, ·

332142 ∴当x=-3时,y=-×(-3)-×(-3)-4=4,

33抛物线y=-

∴在抛物线上存在一点P(-3,4),使得四边形BPOH为菱形. ·············· 9分

四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(-3,3),但这一点不在抛

物线上. ···························································································· 10分 2、(08广东肇庆25题)(本小题满分10分)

已知点A(a,y1)、B(2a,y2)、C(3a,y3)都在抛物线y5x212x上. (1)求抛物线与x轴的交点坐标; (2)当a=1时,求△ABC的面积;

(3)是否存在含有y1、y2、y3,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.

解:(1)由5x12x=0, ··································································· (1分)

212. ······································································ (2分) 512∴抛物线与x轴的交点坐标为(0,0)、(,0).································· (3分)

5得x10,x2(2)当a=1时,得A(1,17)、B(2,44)、C(3,81), ························· (4分) 分别过点A、B、C作x轴的垂线,垂足分别为D、E、F,则有

··········································· (5分) SABC=S梯形ADFC -S梯形ADEB -S梯形BEFC · =

(1781)2(1744)1(4481)1-- ······························· (6分)

222y =5(个单位面积) ····························································· (7分) (3)如:y33(y2y1). ······························································· (8分) 事实上,y35(3a)212(3a) =45a2+36a. E 3(y2y1)=3[5×(2a)2+12×2a-(5a2+12a)] =45a2+36a. A ∴y33(y2y1).

F C D x

B O 3、(08辽宁沈阳26题)(本题14分)

26.如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且AB1,OB3,矩形ABOC绕点O按顺时针方向旋转60后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线yax2bxc过点A,E,D. (1)判断点E是否在y轴上,并说明理由; (2)求抛物线的函数表达式;

(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,若存在,请求出点P,点Q的坐标;若不存在,请说明理由.

解:(1)点E在y轴上 ··············································································· 1分 理由如下:

连接AO,如图所示,在Rt△ABO中,AB1,BO3,AO2

sinAOB1,AOB30 2由题意可知:AOE60

BOEAOBAOE306090

····························································· 3分 点B在x轴上,点E在y轴上. ·(2)过点D作DMx轴于点M

OD1,DOM30

在Rt△DOM中,DM点D在第一象限,

13,OM 2231············································································· 5分 点D的坐标为2, 2由(1)知EOAO2,点E在y轴的正半轴上

2) 点E的坐标为(0,·············································································· 6分 点A的坐标为(31), ·

抛物线yax2bxc经过点E,

c2

31,由题意,将A(31)代入yax2bx2中得 ,,D2283a3b21a9 解得 331b2ab534229853·············································· 9分 x2 ·所求抛物线表达式为:yx299(3)存在符合条件的点P,点Q. ······························································· 10分 理由如下:矩形ABOC的面积ABBO3 以O,B,P,Q为顶点的平行四边形面积为23.

由题意可知OB为此平行四边形一边, 又OB3

OB边上的高为2 ····················································································· 11分

2) 依题意设点P的坐标为(m,853x2上 点P在抛物线yx299853m2m22

99解得,m10,m2y 53 8E 532P2),P21(0,8,

F A C D x

B O M 以O,B,P,Q为顶点的四边形是平行四边形, PQ∥OB,PQOB3, 2)时, 当点P1的坐标为(0,点Q的坐标分别为Q1(3,2),Q2(3,2); 当点P2的坐标为5328,时,

13333,22点Q的坐标分别为Q3········································ 14分

,Q48,. ·8

4、(08辽宁12市26题)(本题14分)26.如图16,在平面直角坐标系中,直线y3x3与x轴交于点A,与y轴交

于点C,抛物线yax223xc(a0)经过A,B,C三点. 3(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;

(2)在抛物线上是否存在点P,使△ABP为直角三角形,若存在,直接写出P点坐标;若不存在,请说明理由;

(3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小,若存在,求出M点的坐标;若不存在,请说明理由. 解:(1)直线y3x3与x轴交于点A,与y轴交于点C.

A(1,0),C(0,3)

y 点A,C都在抛物线上,

233c0aa 3 3c33c抛物线的解析式为y43顶点F1, 3(2)存在

3223xx3 33A C O x

B F P,3) 1(0P,3) 2(2图16 (3)存在

理由: 解法一:

延长BC到点B,使BCBC,连接BF交直线AC于点M,则点M就是所求的点. ········································································· 11分 过点B作BHAB于点H.

y B点在抛物线y32230) xx3上,B(3,333, 3H A C B M 图9 F O x

B 在Rt△BOC中,tanOBCOBC30,BC23,

在Rt△BBH中,BH1BB23, 2BH3BH6,OH3,B(3,23)

设直线BF的解析式为ykxb

3233kbk643 解得

kbb3332

y333 ··················································································· 13分 x623 3y3x3x3107M, 解得 33377103yxy,6273103. ·· 14分 在直线AC上存在点M,使得△MBF的周长最小,此时M7,75、(08青海西宁28题)如图14,已知半径为1的O1与x轴交于A,B两点,OM为O1的切线,切点为M,圆心O1的坐

0),二次函数yx2bxc的图象经过A,B两点. 标为(2,(1)求二次函数的解析式;

(2)求切线OM的函数解析式;

(3)线段OM上是否存在一点P,使得以P,O,A为顶点的三角形与△OO1M相似.若存在,请求出所有符合条件的点

P的坐标;若不存在,请说明理由.

y M 0),O1半径为1,A(1,0),B(3,0)„„1分 解:(1)圆心O1的坐标为(2,二次函数yx2bxc的图象经过点A,B, 1bc0 可得方程组93bc0b4解得:二次函数解析式为yx24x3

c3(2)过点M作MFx轴,垂足为F.

OM是O1的切线,M为切点,O1MOM(圆的切线垂直于经过切点的半径). O A O1 B x OM1在Rt△OO1M中,sinO1OM1

OO12 ······················· 5分 O1OM为锐角,OOM301y 图14

M P1 P2 3OMOO1cos3023,

2cos303在Rt△MOF中,OFOM13MFOMsin303.

2233. 22O x

H A F O1 B 33··········································································· 6分 点M坐标为2,2 ·



设切线OM的函数解析式为ykx(k0),由题意可知333 ···· 7分 k,k223切线OM的函数解析式为y3························································· 8分 x ·3(3)存在. ···························································································· 9分

①过点A作AP1x轴,与OM交于点P1∽Rt△MOO1(两角对应相等两三角形相似) 1.可得Rt△APOPtanAOP1AOA1tan30331,,P ····································· 10分 133H. ②过点A作AP2OM,垂足为P2,过P2点作P2HOA,垂足为

可得Rt△APO∽Rt△O1MO(两角对应相等两三角开相似) 2OA1,OP2OA在Rt△OPcos302A中,

3, 2在Rt△OPcosAOP222H中,OHOP333, 224P2HOP2sinAOP233313,P2, ································· 11分 22444333·············································· 12分 符合条件的P点坐标有1,3,4,4 ·

6、(08山东济宁26题)(12分)

△ABC中,C90,A60,AC2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度

向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts. (1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围); (2)线段MN运动过程中,四边形MNQP有可能成为矩形吗? 若有可能,求出此时t的值;若不可能,说明理由;

(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?

解:(1)当点P在AC上时,AMt,

PMAMtg603t.

132yt3tt(0≤t≤1).

22当点P在BC上时,PMBMtan303(4t). 3

133223·········································· 4分 yt(4t)tt(1≤t≤3). ·

2363(2)AC2,AB4.BNABAMMN4t13t.

QNBNtan303····························································· 6分 (3t). ·

33(3t), 3由条件知,若四边形MNQP为矩形,需PMQN,即3tt3. 43······················································ 8分 当ts时,四边形MNQP为矩形. ·

43(3)由(2)知,当ts时,四边形MNQP为矩形,此时PQ∥AB,

4△PQC∽△ABC. ·············································································· 9分

除此之外,当CPQB30时,△QPC∽△ABC,此时

CQ3. tan30CP3AM1cos60,AP2AM2t.CP22t. AP2BN23BN3,BQ(3t). cos303BQ2322323t. (3t)33又BC23,CQ2323t313,t. 22t32当t

13s或s时,以C,P,Q为顶点的三角形与△ABC相似. 247、(08四川巴中30题)(12分)30.已知:如图14,抛物线y于点B,点C,直线y323x3与x轴交于点A,点B,与直线yxb相交443xb与y轴交于点E. 4(1)写出直线BC的解析式. (2)求△ABC的面积.

(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A,B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动.设运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?

32y 解:(1)在yx3中,令y0

4C

3x230

4x12,x22

······································· 1分 A(2,0),B(2,0) ·又点B在y3xb上 430b

23b

233BC的解析式为yx ·································································· 2分

4232yx3x114(2)由,得9

y1y3x3442x22 ············································ 4分 y2090) C1,,B(2,49 ················································································· 5分 4199S△ABC4 ············································································ 6分

242(3)过点N作NPMB于点P EOMB NP∥EO

△BNP∽△BEO ·················································································· 7分 BNNP ··························································································· 8分 BEEOAB4,CD由直线y333x可得:E0, 42235,则BE 22在△BEO中,BO2,EO62tNP,NPt ·········································································· 9分 5352216St(4t)

25312St2t(0t4) ········································································ 10分

55312S(t2)2 ················································································ 11分

5512此抛物线开口向下,当t2时,S最大

512······················ 12分 当点M运动2秒时,△MNB的面积达到最大,最大为. ·5

8、(08新疆自治区24题)(10分)某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m.

(1)在如图所示的平面直角坐标系中,求抛物线的表达式.

(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?

解:(1)设抛物线的表达式为yax ················ 1分

25.6)在抛物线的图象上. 点B(6,∴5.636a

7 ····················································· 3分 4572x ·∴抛物线的表达式为y································································· 4分 45a(2)设窗户上边所在直线交抛物线于C、D两点,D点坐标为(k,t)

已知窗户高1.6m,∴t5.6(1.6)4 ·················································· 5分

4

72k 45k1≈5.07,k2≈5.07(舍去)„„„„„.6分

∴CD5.072≈10.14(m)„„„„„„.7分 又设最多可安装n扇窗户

∴1.5n0.8(n1)≤10.14..................9分

n≤4.06.

答:最多可安装4扇窗户. ········································································ 10分 (本题不要求学生画出4个表示窗户的小矩形)

9、(08广东梅州23题)23.本题满分11分.

如图11所示,在梯形ABCD中,已知AB∥CD, AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为x轴,过D且垂直于AB的直线为y轴建立平面直角坐标系.

(1)求∠DAB的度数及A、D、C三点的坐标;

(2)求过A、D、C三点的抛物线的解析式及其对称轴L.

(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)

解: (1) DC∥AB,AD=DC=CB,

 ∠CDB=∠CBD=∠DBA,……………..0.5分 ∠DAB=∠CBA, ∠DAB=2∠DBA, ··········· 1分

∠DAB+∠DBA=90, ∠DAB=60, ········· 1.5分 ∠DBA=30,AB=4, DC=AD=2, ········ 2分 RtAOD,OA=1,OD=3, ······················· 2.5分 ,D(0, 3),C(2, 3). · 4分 A(-1,0)

(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A(-1,0),B(3,0),

故可设所求为 y=a (x+1)( x-3) ····················································· 6分 将点D(0,

3)的坐标代入上式得, a=3. 3所求抛物线的解析式为 y=3··································· 7分 (x1)(x3). ·

3其对称轴L为直线x=1. ········································································· 8分 (3) PDB为等腰三角形,有以下三种情况:

①因直线L与DB不平行,DB的垂直平分线与L仅有一个交点P1,P1D=P1B, P1DB为等腰三角形; ····································································· 9分

②因为以D为圆心,DB为半径的圆与直线L有两个交点P2、P3,DB=DP2,DB=DP3, P2DB, P3DB为等腰三角形; ③与②同理,L上也有两个点P4、P5,使得 BD=BP4,BD=BP5. ·················· 10分 由于以上各点互不重合,所以在直线L上,使PDB为等腰三角形的点P有5个. 10、(08广东中山22题)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边

AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD. (1)填空:如图9,AC= ,BD= ;四边形ABCD是 梯形. (2)请写出图9中所有的相似三角形(不含全等三角形).

(3)如图10,若以AB所在直线为x轴,过点A垂直于AB的直线为y轴建立如图10的平面直角坐标系,保持ΔABD不动,

将ΔABC向x轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.

y D E A 图9

B A F 图10

C

D C E P B G x H

解:(1)43,43,„„„„„„„„„„1分

等腰;„„„„„„„„„„2分

(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)

①△DCE、△ABE与△ACD或△BDC两两相似,分别是:△DCE∽△ABE,△DCE∽△ACD,△DCE∽△BDC,△ABE∽△ACD,△ABE∽△BDC;(有5对)

②△ABD∽△EAD,△ABD∽△EBC;(有2对) ③△BAC∽△EAD,△BAC∽△EBC;(有2对)

所以,一共有9对相似三角形.„„„„„„„„„„„„„„„„5分

(3)由题意知,FP∥AE, ∴ ∠1=∠PFB,

又∵ ∠1=∠2=30°, DCH ∴ ∠PFB=∠2=30°,

∴ FP=BP.„„„„„„„„„„6分

y过点P作PK⊥FB于点K,则FKBK∵ AF=t,AB=8,

1FB. 21AFEP21∴ FB=8-t,BK(8t).

2在Rt△BPK中,PKBKtan2K 图10BGx13(8t)tan30(8t). „„„„„„„„7分 26∴ △FBP的面积S113FBPK(8t)(8t), 226∴ S与t之间的函数关系式为: S332416(t8)2,或Stt3. „„„„„„„„„„„„„8分 121233t的取值范围为:0t8. „„„„„„„„„„„„„„„„„„„„„„9分

11、(08湖北十堰25题)已知抛物线yax22axb与x轴的一个交点为A(-1,0),与y轴的正半轴交于点C. ⑴直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;

⑵当点C在以AB为直径的⊙P上时,求抛物线的解析式; ⑶坐标平面内是否存在点M,使得以点M和⑵中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.

解:⑴对称轴是直线:x1,点B的坐标是(3,0). „„2分

说明:每写对1个给1分,“直线”两字没写不扣分.

⑵如图,连接PC,∵点A、B的坐标分别是A(-1,0)、B (3,0),

11∴AB=4.∴PCAB42.

22在Rt△POC中,∵OP=PA-OA=2-1=1, ∴OCPC2PO222123.

∴b=3. „„„„„„„„„„„„3分 当x1,y0时,a2a30,

∴a3. „„„„„„„„„„„„4分 33223 „„„„„„5分 xx3.33∴y⑶存在.„„„„„„„„„„„6分

理由:如图,连接AC、BC.设点M的坐标为M(x,y).

①当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB. 由⑵知,AB=4,∴|x|=4,yOC3.

∴x=±4.∴点M的坐标为M(4,3)或(4,3).„9分

说明:少求一个点的坐标扣1分.

②当以AB为对角线时,点M在x轴下方. 过M作MN⊥AB于N,则∠MNB=∠AOC=90°.

∵四边形AMBC是平行四边形,∴AC=MB,且AC∥MB.

∴∠CAO=∠MBN.∴△AOC≌△BNM.∴BN=AO=1,MN=CO=3. ∵OB=3,∴0N=3-1=2.

∴点M的坐标为M(2,3). „„„„„„„„„„„12分

说明:求点M的坐标时,用解直角三角形的方法或用先求直线解析式,

然后求交点M的坐标的方法均可,请参照给分.

综上所述,坐标平面内存在点M,使得以点A、B、C、M为顶点的四边形是平行四边形.其坐标为

M1(4,3)M,2(4,3M)3,(2,. 3)说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分。

12、(08四川达州23题)如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3, 0),ABO60.(1)若△AOB的外接圆与y轴交于点D,求D点坐标.

(2)若点C的坐标为(1,0),试猜想过D,C的直线与△AOB的外接圆的位置关系,并加以说明. (3)二次函数的图象经过点O和A且顶点在圆上, 求此函数的解析式. D

0

解:(1)连结AD,则∠ADO=∠B=60

0O C 在Rt△ADO中,∠ADO=60 所以OD=OA÷3=3÷3=3 所以D点的坐标是(0,3)

(2)猜想是CD与圆相切

∵ ∠AOD是直角,所以AD是圆的直径

又∵ Tan∠CDO=CO/OD=1/3=3, ∠CDO=30

0

y B F E A x y F B D E ∴∠CDA=∠CDO+∠ADO=Rt∠ 即CD⊥AD ∴ CD切外接圆于点D

(3)依题意可设二次函数的解析式为 :

y=α(x-0)(x-3)

由此得顶点坐标的横坐标为:x=C O A x 3a3=; 2a210

∠B=30 2即顶点在OA的垂直平分线上,作OA的垂直平分线EF,则得∠EFA=

3333 可得一个顶点坐标为(,3)

222313) 同理可得另一个顶点坐标为(,22得到EF=3EA=

分别将两顶点代入y=α(x-0)(x-3)可解得α的值分别为2323, 39

则得到二次函数的解析式是y=2323x(x-3)或y= x(x-3) 3913、(08湖北仙桃等4市25题)如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点B坐标为(2,23),∠BCO= 60°,OHBC于点H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.

(1) 求OH的长;

(2) 若OPQ的面积为S(平方单位). 求S与t之间的函数关系式.并求t为何值时,OPQ的面积最大,最大值

是多少?

(3) 设PQ与OB交于点M.①当△OPM为等腰三角形时,求(2)中S的值. ②探究线段OM长度的最大值是多少,直接写出结论.

y A

Q M

O

解:(1)∵AB∥OC

y B A B H P Q M P H C x O y C x ∴ OABAOC90 在RtOAB中,AB2 ,AO23

0 ∴OB4, ABO60

0A B ∴BOC60 而BCO60

∴BOC为等边三角形 ∴OHOBcos30400323„(3分) 2(2)∵OPOHPH23t

0Q M P H O C x t3t ypOPsin3003 22y 113t) ∴SOQxpt(3222B A 323tt (0t23)„„„„„„„„„„(6分) =42H Q M333(t3)2即S EP 44 O 33C∴当t3时,S最大„„„„„„„„„„„„„„„(7分) 4(3)①若OPM为等腰三角形,则:

(i)若OMPM,MPOMOPPOC ∴PQ∥OC

t∴OQyp 即t3

2∴xpOPcos3030x

23 3323232323此时S„„„„„„„„„„„„(8分) ()432330(ii)若OPOM,OPMOMP75 ∴OQP450

过P点作PEOA,垂足为E,则有: EQEP

解得:t即t(313t)3t 22解得:t2

3322233„„„„„„„„„„„„„„(9分) 42(iii)若OPPM,POMPMOAOB

∴PQ∥OA

此时Q在AB上,不满足题意.„„„„„„„„„„„„„„„„„(10分)

3 ②线段OM长的最大值为„„„„„„„„„„„„„„„„„„„„(12分)

214、(08甘肃兰州28题)(本题满分12分)如图19-1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x此时S轴的正半轴上,点C在y轴的正半轴上,OA5,OC4.

(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;

(2)如图19-2,若AE上有一动点P(不与A,E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0t5),过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,S有最大值?最大值是多少?

(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标.

y y

E E C C B B N

D D P

M x x O O A A

图19-1 图19-2 (本题满分12分)

解:(1)依题意可知,折痕AD是四边形OAED的对称轴, 在Rt△ABE中,AEAO5,AB4.

BEAE2AB252423.CE2.

E点坐标为(2,4). ·················································································· 2分

222在Rt△DCE中,DCCEDE, 又DEOD.

(4OD)222OD2 . 解得:CD5. 25D点坐标为0, ······················································································ 3分

2△APM∽△AED. (2)如图①PM∥ED,

PMAP5,又知APt,ED,AE5 EDAE2t5tPM, 又PE5t.

522而显然四边形PMNE为矩形.

t15S矩形PMNEPMPE(5t)t2t ················································· 5分

222S四边形PMNE51525t,又05

22282525时,S矩形PMNE有最大值. ······························································ 6分 28(3)(i)若以AE为等腰三角形的底,则MEMA(如图①)

y 在Rt△AED中,MEMA,PMAE,P为AE的中点, 15tAPAE. E C 22又PM∥ED,M为AD的中点. N 过点M作MFOA,垂足为F,则MF是△OAD的中位线, D 1515MFOD,OFOA,

2422当tB P 当t55时,05,△AME为等腰三角形. 22M O F A x

此时M点坐标为,. ·············································································· 8分 图① (ii)若以AE为等腰三角形的腰,则AMAE5(如图②)

y C N D M O F A x

E P B 5524552225. 在Rt△AOD中,ADODAO522过点M作MFOA,垂足为F.

PM∥ED,△APM∽△AED.

2APAM. AEAD1AMAE55tAP25,PMt5. 52AD52MFMP5,OFOAAFOAAP525, 图②

(0255),此时M点坐标为(525,5). ······················ 11分 当t25时,综合(i)(ii)可知,t555或t25时,以A,M,E为顶点的三角形为等腰三角形,相应M点的坐标为,或224·························································································· 12分 (525,5). ·

15、(08天津市卷26题)(本小题10分) 已知抛物线y3ax22bxc,

(Ⅰ)若ab1,c1,求该抛物线与x轴公共点的坐标;

(Ⅱ)若ab1,且当1x1时,抛物线与x轴有且只有一个公共点,求c的取值范围;

(Ⅲ)若abc0,且x10时,对应的y10;x21时,对应的y20,试判断当0x1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.

解(Ⅰ)当ab1,c1时,抛物线为y3x22x1, 方程3x22x10的两个根为x11,x21. 3∴该抛物线与x轴公共点的坐标是1······································· 2分 0. ·,0和,(Ⅱ)当ab1时,抛物线为y3x22xc,且与x轴有公共点.

131对于方程3x22xc0,判别式412c≥0,有c≤. ································· 3分

3①当c111时,由方程3x22x0,解得x1x2. 333此时抛物线为y3x22x11与x轴只有一个公共点,··························· 4分 0. ·33②当c1时, 3x11时,y132c1c, x21时,y232c5c.

1由已知1x1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为x,

3y1≤0,1c≤0,应有 即

y0.5c0.2解得5c≤1. 综上,cy 1或5c≤1. ……..6分 3(Ⅲ)对于二次函数y3ax22bxc,

由已知x10时,y1c0;x21时,y23a2bc0, O 又abc0,∴3a2bc(abc)2ab2ab. 于是2ab0.而bac,∴2aac0,即ac0.

∴ac0. ····························································································· 7分 ∵关于x的一元二次方程3ax22bxc0的判别式

1 x 4b212ac4(ac)212ac4[(ac)2ac]0,

∴抛物线y3ax22bxc与x轴有两个公共点,顶点在x轴下方. ························· 8分 又该抛物线的对称轴xb, 3a由abc0,c0,2ab0, 得2aba, ∴

1b2. 33a3又由已知x10时,y10;x21时,y20,观察图象,

可知在0x1范围内,该抛物线与x轴有两个公共点. ······································ 10分 16、(08江苏镇江28题)(本小题满分8分)探索研究 如图,在直角坐标系xOy中,点P为函数y12x在第一象限内的图象上的任一点,点A的坐标为(0,1),直线l过B(0,1)且4与x轴平行,过P作y轴的平行线分别交x轴,l于C,Q,连结AQ交x轴于H,直线PH交y轴于R. (1)求证:H点为线段AQ的中点; (2)求证:①四边形APQR为平行四边形;

②平行四边形APQR为菱形;

(3)除P点外,直线PH与抛物线y

(1)法一:由题可知AOCQ1.

y P 12x有无其它公共点?并说明理由. 4A O B H C Q l x

AOHQCH90,AHOQHC,

R △AOH≌△QCH. ············································································ (1分) OHCH,即H为AQ的中点. ··························································· (2分)

1),B(0,法二:A(0,················································ (1分) 1),OAOB. ·

又BQ∥x轴,HAHQ. ··································································· (2分) (2)①由(1)可知AHQH,AHRQHP,

AR∥PQ,RAHPQH,

△RAH≌△PQH. ············································································· (3分) ARPQ,

又AR∥PQ,四边形APQR为平行四边形. ············································ (4分)

1),则PQ1②设Pm,m,PQ∥y轴,则Q(m,过P作PGy轴,垂足为G,在Rt△APG中,

14212m. 4111APAGPGm21m2m21m21PQ.

4442222·································································· (6分) 平行四边形APQR为菱形. ·

(3)设直线PR为ykxb,由OHCH,得Hm1,2,Pm,m2代入得: 24mmkb0,k,m1222PRyxm. · 直线为··················· (7分) 1241kmbm2.bm2.44设直线PR与抛物线的公共点为x,x2,代入直线PR关系式得:

1412m111xxm20,(xm)20,解得xm.得公共点为m,m2. 42444所以直线PH与抛物线y

12x只有一个公共点P. ······································ (8分) 4

因篇幅问题不能全部显示,请点此查看更多更全内容

Top