PeterHastreiter,ThomasErtl
ComputerGraphicsGroup,UniversityofErlangen–Nuremberg
AmWeichselgarten9,91058Erlangen,Germanyhastreiter,ertl@informatik.uni-erlangen.de
Abstract
Differentimagingmodalitiesgiveinsighttovascular,anatomicalandfunctionalinformationwhichassistdiag-nosisandtherapyplanninginmedicine.Registrationandconsecutivevisualizationallowtocombinetheimagedataandtherebyconveymoremeaningfulimagestotheclini-cian.Applyingavoxelbasedapproachbasedonmutualinformation,accurateandretrospectiveregistrationispro-vided.However,optimizationandconsecutivevisualizationproceduresrequireahugeamountoftrilinearinterpolationoperationstore–samplethedata.Ensuringfastperfor-mancewhichisfundamentalformedicalroutine,wesug-gestanintegratedapproachwhichtakesadvantageoftheimagingandtexturemappingsubsystemofgraphicscom-puters.Alltrilinearinterpolationiscompletelyperformedwithhardwareassisted3Dtexturemapping.The1Dand2Dhistogramsofthedatasetswhicharenecessaryforthecalculationofmutualinformationareobtainedwithdiffer-enthardwareacceleratedimagingoperations.Forthesi-multaneousandinteractivevisualizationoftheregistereddatasetsanewapproachwasdevelopedwhichallowsforversatilefusionoperations.Usingsimilarproceduressup-portedbyhardware,contributesconsiderablytoaccelerateregistrationandvisualization.Implementingourapproachwithinapreviouslypresentedframework[7,16]basedonOpenInventorandOpenGLprovidesintuitivemanipulation.Clinicalexamplesofshowthevalueofourapproachinpractice.
1.Introduction
Avarietyofimagingmodalitiesgiveinsighttodiffer-entparametersandinformationincurrentmedicalpractice[13].Thereisconventionalradiographywhichisoneofthemostwidelyspreadandestablishedmodalities.How-ever,itonlyprovidestwo–dimensional(2D)projectionim-ageswithlimiteddepthinformation.Morerecently,othertechniquesgainedmoreattentionsincetheyprovidethree–
dimensional(3D)informationwithagreatdiversityofstructural,anatomicalandfunctionaldetailsallowingmorecomprehensiveexaminations.Asacommonfeatureallthesemodalitiesproducestacksofequidistantandspatiallyassignablesliceimagesformingavolumedatasetwiththesamplepointstypicallyarrangedonauniformgrid.Us-ingCT(X–rayComputedTomography)the3DdistributionofX–raydensitiesiscalculatedbyreconstructingtheX–raytransmissionmeasurementsfrommanyanglesofview.Completelydifferentimageswithawidevarietyofcharac-teristicsareobtainedwithMRI(MagneticResonanceImag-ing)givingexcellentvisualizationofsofttissuewithhighlydetailedstructuralinformation.Usingalocallyvariablestaticmagneticfieldandlong-waveradiofrequenciesres-onanceabsorptionofmagneticnucleiinbiologicaltissueismeasuredinordertocalculatethespatialdistributionofthenuclearmagnetization.Developmentsreducingmeasure-menttimesandinvestigatingthepotentialofflow(MRA:MagneticResonanceAngiography)andfunctionalimaging(fMR:functionalMagneticResonance)willfurtherincreasetheimportanceofMRIinfuture.Finally,withmodali-tiesofnuclearmedicinesuchasPET(PositronEmissionTomography)andSPECT(SinglePhotonEmissionCom-putedTomography)thedistributionofradio-isotopesinspe-cificorgansorstructuresismeasuredgivinginformationonmetabolismandfunctionality.
Inmostcasesduringdiagnosisandtherapyplanningto-mographicsliceimagesareinspectedseparately.Ifthespa-tialrelationshipofobjectsisrequiredthedifficulttaskofre-constructingsuccessivesliceimagesmentallycanbeeffec-tivelyassistedby3Dvisualizationtechniques.Theyevenallowforafullunderstandingofdifficultsituationswithcomplextopology[6,8].However,3Dvisualizationtech-niquesareonlyapplicableinclinicalroutineiftheyprovidethenecessaryeaseofinterpretation.Therefore,anychangeofvisualizationparametersmustbeachievedinteractivelyandintuitively[24],anddetailinformationwithinthesliceandaglobaloverviewmustbeaccessibleinacombinedimagerepresentation[7].Inadditiontothat,dependingontheclinicalrequirements,itisoftennotsufficienttocon-
sidervascular,anatomicalandfunctionalinformationsep-aratelybuttosuperimposeimagesofdifferentmodalities.Thisproceduretypicallyrequiresahugeamountofinterpo-lationsandothercalculationsforeveryiterationinordertooptimizetheappliedmeasure.Inclinicalroutinesuchalign-mentproceduresareonlyacceptediftheirprocessingtimeisreducedappropriately.Duetothecloserelationshipofvisualizationandregistrationandthesimilarityofcompu-tationalrequirementsanintegratedapproachwhichmakesextensiveuseofcommonlyavailablespecialpurposegraph-icshardwarewasalogicalconsequence.
Afterashortsurveyofdifferentapproachesforregis-tration,werefertosomeofourpreviouslypublishedworkinsection2anddescribemutualinformationasageneralmeasurewhichleadstoaccurateregistrationresults.Thebasicideaofourapproachisthendescribedinsection3.Itdemonstrateshowtoapplyhardwaresupportedimagingand3Dtexturemappingfunctionalitytovoxelbasedregis-trationusingmutualinformation.Thereby,weillustratethatthetimerequiredtocalculate1Dand2Dhistogramsandtheenormousamountoftrilinearinterpolationoperationsduringanoptimizationprocedureisdramaticallyreduced.Subsequently,wepresentanewmethodallowingforthesi-multaneousandinteractivevisualizationoftworegistereddatasetsbasedon3Dtexturemapping.Finally,usingclini-callyrelevantimagedatasomeofourresultsarepresentedwhichshowthevalueofourapproach.
2.RegistrationApproach
AscanbeseeninFigure1registrationinthemedicalfieldtypicallytriestofindatransformationoftwodifferentdatasetswhichcandifferinthenumberandsizeofvoxelsineverydirection,thepositionandorientationofthescannedobjects,theorientationofthetomographicsliceimages(sagittal,coronal,axial)andscannerdependentdistortions.Inordertofindtheirexactgeometricalrelationshiponedatasetiskeptfixedasreferencewhereastheotherdatasetisdefinedasfloatingimageandmovedduringaniterativealignmentprocedure.Therefore,dependingontheappliedregistrationtechniqueaspecificmeasureisoptimizedwhichtriestomaximizethesimilarityofcorrespondingstructures.Thistypicallyrequirestointerpolatethefloatingdatasetatgridpositionsofthereferencedatasetforeveryiterationde-pendingonthecurrenttransformationwhichfinallyresultsinbothdatasetshavingthesamenumberandsizeofvoxelsifaregistrationsolutionwasfound.Theymaythenbere-gardedasasinglecombineddatasetwithtwoattributesateachgridpositionwhichallowseasyapplicationofvariousfusionprocedures.
2.1.Overview
Registrationalgorithmsinthefieldofmedicalimagingaredividedintotwomaingroups[2,12,20].Thereareapproachesbasedonexternal,fiducialmarkerswhichareclassifiedprospectivesinceregistrationisonlyfeasibleifmarkersareattachedpriortoscanningthepatient.Theseapproachesgenerallyallowveryhighregistrationaccuracywithlandmarkswhicharegenerallyeasytodetectinal-mosteverymodality.However,theyareusuallyinvasiveandthereforeveryinconvenientforthepatientifastereo-tacticframeisusedwhichistightlyfixedtothepatientshead.
RegistrationFusiondata−set 1data−set 3data−set 2Interpolationdata−set 3Figure1.Typicalalignmentprocedureinclud-ingre–slicingandfusionafterfindingtheregistrationsolution.
Theothermaingroupcomprisesapproacheswhicharebasedoninternal,anatomicallandmarks.Theyarenamedretrospectivesinceregistrationisfeasibleatanytimeafterscanningthepatientwithoutattachinganymarkers.Overthelastdecadetherewereextensiveeffortstodevelopap-proacheswhichtrytoachievealignmentafterdelineat-ingcorrespondinganatomicalpointlandmarks,structures(lines,surfaces),momentsorgrayvalueinformation.Sincetheavailablemethodsdonotrequireanyspecialprepara-tionofthepatienttheyaremuchmoreconvenient.How-ever,proceduresbasedonanatomicallandmarksareverylaborintensivewiththeiraccuracydependingontheabilityoftheusertoexactlyidentifycorrespondingpointsindiffer-entmodalities.Ifautomaticproceduresareappliedinapre–processingstep,theoverallregistrationaccuracyisalwayslimitedbytheaccuracyofthesegmentation.Fortheregis-trationofMRandCTtypicallyboneistakenasreferencewhichiscomparablyeasilydetectedinCT.However,thisisaverychallengingtaskforMRsinceonlythesurroundingtissueisvisualized.IffunctionaldataisconsideredsuchasPET,itisalmostimpossibletosegmentspecificstructuresduetoitsnoisynature.
Avoidingtheseriousproblemsencounteredwithexplicitsegmentationofcorrespondingfeatures,voxelbasedap-proachesgainedmoreattentionjustrecently.Takinginto
accounttheentiregrayvalueinformationatgeometricallycorrespondinggridpositionstheytrytooptimizethesimi-larityofthefloatingandthereferenceimage.Asageneralfeatureoftheseapproachesthesegmentationisimplicitlyperformedbythefunctionalwhichevaluatesthequalityofalignmentandtherebycontrolstheoptimizationprocedure.Varioussimilaritymeasureslikecorrelationinscalespace[19],conditionalentropy[23]orjointentropy[10,4,17,18]wereinvestigatedextensively.However,allofthemwereeitherrestrictedtoaspecificcombinationofmodalitiesorencounteredmajordifficultieswithpartiallyoverlappingdatasets.Havingproposedmutualinformationamuchmoregeneralandreliablemeasurewasalmostsimultaneouslyin-troducedbyCollignon[5]andViola[21,22]whichprovedtoprovideveryrobustandversatileregistration.
2.2.Method
Originallydefinedininformationtheorymutualinfor-mationdescribesthestatisticaldependenceoftworandom
variablesortheamountofinformationthatonevariable
containsabouttheother.Withadataset(floatingim-age)consistingofdifferentsignalsandadataset(referenceimage)consistingofdifferentsig-nalsthereareandassociated.Applyingthemarginalthecurrentprob-abilitydistributionstransformationthegrayvaluesofthefloatingimageareevaluatedatgridpositionsofthereferenceimagebytrilinearinterpolationforeveryiterationoftheoptimiza-tionprocedure.Thisresultsinthejointprobabilitydistri-butionwhichisidenticalwiththe2Dhistogramofbothdatasets.Forreasonsofconveniencewe
furtherreferto
andasand.Figure2.Dispersionofclusterinthe2D-histogramforCTandMRfortheunregistered
(left)andregistered(right)case.
Consideringthe2Dhistogramtheregistrationsolutionisreachedifthedispersionofsignificantclustersisminimizedwhichcoincideswithmutualinformationreachingamaxi-mum.AscanbeseeninFigure2theregistrationofMRandCTresultsinadominantclusterforthetissueinformation.ThiscomprisesallgrayvaluesinMRandaspecificrange
ofgrayvaluesinCT.InthesamewayhighgrayvaluesinCT(bone)coincidewithlowgrayvaluesinMR(bonenotvisible).
Source
Channel
Drain
ImageH(F|R)FI(R,F)ImageRH(F)H(R|F)H(R)Probability DensityJoint Probability
DensityProbability DensitypF(f)
pRF(r(x), f(T(x)))
pR(r)
Figure3.TheSource–Channel–Drainmodeloftheregistrationapproach.
Incasethereisanexactmappingbetweenthefloatingimageandthereferenceimage(i.e.thesignalsareidentical)thejointprobabilitydistributionsatisfies
(1)
Ifthetwosignalsarestatisticallyindependent,however,the
jointprobabilitydistributionresultsto
(2)
Mutualinformationof
and
isthendefinedbysumming
forallgreyvaluepairs
atcorrespondingpositions
solutionisobtainedifmutualinformationreachesamaximumforagivensetoftransformationparameters:
(5)
Foramoredetailedoverviewconcerningthecalculationoftheentropiesinrelationtotheregistrationoftwoclin-icallyrelevantmedicaldatasetsrefertopreviousexplana-tionsfoundin[11,9].
3.HardwareAcceleration
3.1.Registration
Inordertofindtheregistrationsolutionalocallyorglob-allyoptimizingproceduremustbeappliedwhichtriestovaryalltransformationparametersiteratively.Sincethisre-quirestheevaluationofmutualinformationforeveryiter-ationstepthemarginalandjointprobabilitydensities(e.g.the1Dandthe2Dhistograms)ofbothdatasetsmustbere-calculatedforeverychangeoftheregistrationparameters.Duetothetypicalsizeofmedicaldatasetswhichliesinarangeupto100Mbytesahugenumberofinterpolationsisrequiredforre–samplingthefloatingdataset.Sincethisisthemostimportanttimefactorcontributingtotheoverallprocessingtimeitmainlydecidesonwhetheraregistrationprocedureisconsideredforaroutineapplicationsupposedtheaccuracyissufficient.
Inordertoovercomethisproblemsomesoftwarebasedapproacheswereproposed.AccordingtothesuggestionofViola[22],astochasticapproximationoftheentropiesandanoptimizationprocedureusingthegradientofmutualin-formationisapplied.Takingonlyaverylimitednumberofsamplesforeveryiterationthenumberofinterpolationsisreducedconsiderably.Recently,Pokrandt[14]reportedgoodresultsusinganothertechniqueofselectingfewsam-plepointsrandomlywhichachievedcomparableresults.Contrarytosoftwarebasedapproachesweproposetousecommonlyavailablegraphicshardware.Takingad-vantageoftheimagingandtexturemappingsubsystemofgraphicscomputersthealignmentprocedureisacceleratedtremendously.Duetotheapplicationofidenticalalgorith-micmethodsregistrationiscloselyrelatedtovisualization.Withtheavailabilityofhardwareassisted3Dtexturemap-pingatechniqueproposedbyCabral[3]becameapowerfuloptionfordirectvolumerendering.Usingtheinterpola-tionandblendingcapabilitiesofhardwareassistedtexturemappinginteractiveframeratesareachieved(seeFigure4).Afterloadingadatasetto3Dtexturememoryequidis-tantplanesparalleltotheviewportareclippedagainsttheboundingboxofthevolumedataset.Volumerenderingisthenperformedbyblendingtheresultingandtexturedpoly-gonsback-to-frontwithanappropriateblendingfunction.
3D−TexturePlanes Parallelto ViewportRenderedImageInterpolationTrilinear Compositing(Blending)Figure4.Directvolumerenderingusingtheinterpolationandblendingcapabilitiesofgraphicshardware.
Correspondingtothevisualizationprocessourregistrationapproachusestheimagingandtexturemappingsubsysteminordertore–slicethevolumedataandtocalculatethehistograms(seeFigure5):
1.Afterconvertingthefloatingdatasettoan8bitrepre-sentationitisloadedto3Dtexturememory.Varioustestsshowedthatthisissufficientfortheregistrationprocedureandkeepsthehistogramssmall.Contrarytothatafterconversiontoan8bitrepresentationthereferenceimageisadditionallyshiftedby8bitstotheleft.2.Inaloopoverallsliceimagesofthereferencedataseteverysliceistransferredtoapbufferwhichisanaux-iliaryrenderingbuffer.ProvidedbythepixelbufferextensionofOpenGLitallocatesnon-visibleframebuffermemoryforhardwareacceleratedrendering.3.Thecurrentregistrationtransformationisthenappliedtotheplaneverticesofthereferencedatasetinordertoobtainitslocationrelativetothecoordinatesystemofthefloatingdataset.Thecorrespondingtexturecoor-dinatesarethenobtainedbyclippingtheplaneagainsttheboundingboxofthefloatingdataset.Sincethisrequiresthesamestrategyasinvolumerenderingtheidenticalprocedureisapplied.4.Priortoblendingthegrayvaluesoftherectangulartex-tureareaontothepbufferitsup-vectormustbecor-rected(seeFigure6).Thisensuresthattheorientationofboththesliceimageofthereferenceimageandthecorrespondingsliceofthefloatingimagecoincide.Asaresultthepbuffernowcontainsanimagewhichcon-tainsthefloatingimageinthelower8bitsandtheref-erenceimageintheupper8bitsofa16bitdatarepre-sentation.
5.Theauxiliarypixelbuffersallowforvariouscolorbufferoperationsorimageprocessingalgorithms.Readingthepbuffercontentsafterblendingasliceim-ageofthereferencedatasetanditscorrespondingtex-tureofthefloatingdatasettheextensionforcalculating1Dhistogramsisenabled.Duetotheinitialconversionandshiftoperationsthereturnedarraycontainsthe2Dhistogramofbothdatasets.Additionally,thecalcula-tionofmutualinformationaccordingtoequation(3)requiresthe1Dhistogramsofthedatasets.Sincetheyarethemarginaldistributionsofthe2Dhistogramtheirentriesarecalculatedbykeepingtherespectivegrayvaluesoftherespectivedatasetconstantandsummingforallentriesinthe2Dhistogramoftheotherdataset.
Reference Image
in Main Memory
in 3D Texture MemoryFloating Image
v1v2Registrationt1t2v4v3t4t3vertex coordinatesPolygon withv1, v2, v3, v4texture coordiantesCut plane witht1, t2, t3, t4BlendingreferenceImaging Extension
OpenGL
image1D and 2D histogramsPixel−Buffer
Auxiliary floating+078
15
imagefloatingimage
referenceimage
Figure5.Surveyoftheregistrationapproachusinghardwareassistedimagingandtexturemappingoperations.
3.2.VisualizationofRegisteredVolumes
Oncetheregistrationprocedurefinishedsuccessfullythefloatingimageisfinallyre–slicedaccordingtothereferenceimage.Sincethisresultsinacombineddatasetwithtwoat-tributesateachgridpositionsimultaneousvisualizationisenvisaged.Inordertointegrateregistrationandvisualiza-tionanapproachwasdevelopedwhichallowstorendertworegistereddatasetsusinghardwareaccelerated3Dtexturemapping.
Inthebeginning,bothdatasetsareloadedto3Dtexturememorysimultaneouslyinordertoensureinteractiveframerates.Similartothecaseofconsideringonlyonedataset,aspresentedinsection3.1,planesparalleltotheviewportare
t1Transformation of up−vectort2t2t1t4t4t3t3Texture planeof floating image
PBufferReferenceSlice ofupBlendingImage
vectorCopyreferenceimage+texture offloating imageFigure6.Correctionofup–vectortogetiden-ticalorientationofthereferenceandthefloat-ingimage.
clippedagainstthesharedboundingbox.Eachresultingpolygonisthenappropriatelytexturedwithbothregistereddatasetsbybindingthemalternately.Compositingisfinallyperformedbyblendingalltexturedpolygonsback-to-front.Ifthesizeoftheregistereddatasetstogetherexceedsthesizeoftheavailabletexturememory,sub-volumescalledbricksarecreated.Inordertoloadcorrespondingbricksofbothdatasetsto3Dtexturememoryeverypairofbricksisassignedapriority.Thiscausesonlythosetostayintexturememorywhichareusedforthecutplanecurrentlyclippedagainsttheboundingbox.
Inordertoallowformorecomplexfunctionsforfus-ingthedatasetsafterregistration,correspondingcutplanesaremergedinaseparatepbufferpriortothefinalrender-ing.Thisisaveryusefulfeatureincaseofangiographicorfunctionaldatainrelationtosofttissueinformation.
4.Results
Theapproachofintegratedregistrationandvisualizationisimplementedinaframeworkalreadypublishedprevi-ously[7,16].DuetothefullintegrationintotheOpen-InventorclasshierarchyandtheextensiveuseofOpenGLavarietyoffunctionalityisavailable.Thiscomprisessepa-rateclippingplanesandindividualcolorlook-uptablesforbothdatasets.Additionally,ifsegmentationwasperformedinapre–processingstepthedatasetscanbeloadedastaggedvolumes.Thisallowsforseparatecolorlook-uptablesforeverytag.
AllourtestswereperformedonanIndigoMaximumImpactandaSGIOnyxRealityEngineIIwhichprovide4Mbytesand16Mbytesof3Dtexturememoryrespectively.Concerningthetrilinearinterpolationstheunderlyinghard-wareofbothworkstationshasthesameorderofmagnitude.Fortheevaluationofourapproachweusedfourdifferentmulti-modalcombinationsofdatasetswhichwereroutinely
,,usedinclinicalpractice(
,).Asanexampledemon-stratingtheresultsweachievedwithourapproachFigure8
andafterapplyingourshowsthefusionof
registrationproceduretotheinitialsituationdemonstratedproblems.Comparedtotypicalsoftwarebasedimplementa-tionsofray–castingalgorithmslikeVolVis[1],ourhardwarebasedapproachisalreadyconsiderablyfaster.
Providingveryfastregistrationandsuccessiveinterac-tivevisualizationwithOpenInventorbasedintuitivemanip-ulationourapproachprovidesagoodfoundationforfurtherclinicalevaluation.
inFigure7.Inordertoallowforthenavigationwithintheregistereddatasetsindividualclipplaneswereapplied.An-otherexamplepresentedinFigures9–12showsthefusion
of
and.Itillustratesthediversityofopera-tionswhichareapplicableafterregistration.Bothdatasetsweresegmentedinapre–processingstepandloadedastaggedvolumes.Individualcolorlook-uptablesforevery
tagofthe
dataallowforagoodvisualizationofthebrainandtheventricles.Pre–segmentationofthebrainin
allowstosuppresstheskinandgivesgoodoverviewoftheintracranialvesselsituationinrelationtothetissue
visiblein
.Fortheregistrationprocedurearigidtransformation(3rotationand3translationparameters)wasappliedexclu-sively.Thisrestrictstheapproachtoheaddatasetsorotherimagedatawithoutdeformationsordistortions.InordertocalculatethealignmentwithmutualinformationPowell’salgorithm[15]isappliedasaprocedureforlocaloptimiza-tion.
Comparingourhardwareorientatedapproachtotheper-formanceofpuresoftwarebasedimplementations,weareafactorof2–3fastercomparedtothesuggestionofCollignon[5].Iftheapproachbasedonstochasticapproximationofentropies,asproposedbyViola[22]isusedforcompari-son,ourapproachachievessimilarexecutiontimes.Thisresultsmainlyfromthefactthatthestochasticapproxima-tiononlyusesasmallamountofsamplepointsforeveryiterationwhereaswritingtoandreadingfromthepbufferre-quiressomeadditionalprocessing.Therefore,ourapproachisslightlydependentonthenumberofsliceimageswithinthereferencedataset.However,accordingtoourevaluationweseemtohavehigheraccuracyandfasterconvergenceduetoapplyingtheentiregrayvalueinformation.
Lookingattheconsecutivevisualizationoftworegis-tereddatasetsourapproachachievesinteractiveframeratesduetotheinterpolationcapabilitiesofthe3Dtexturemap-pinghardware.Incaseofpre–segmenteddatasetstaggedvolumescanbeloadedwhichleadstofurtherflexibilitysincesegmentedobjectsaredifferentiatedwithseparatecolorlook-uptables.Additionally,itismoreeffectivecon-cerningmemoryrequirementsifonlyonedatasetisusedforseveralsegmentedobjetcs.Inordertoprovidethefullfunctionalityonallplatformsequippedwiththerespectiveimagingand3Dtexturemappinghardware,furthertun-ingiscurrrentlyperformedduetoimplementationspecific
Figure7.FusionofMR(T1)andCTbeforereg-istration.
Figure8.FusionofMR(T1)andCTafterreg-istration.
5.Conclusion
Wepresentedanintegratedapproachforfastregistra-tionbasedonmutualinformationandconsecutiveinterac-tiveandintuitivevisualizationofmedicaldatasets.Foratremendousaccelerationofallcalculationssimilarmethods
wereappliedmakinguseofspecialpurposehardwareavail-ableindesktopgraphicsworkstations.Inthiswayprocess-ingtimeforthehugenumberoftrilinearinterpolationsisnegligible.Acomparisonwithsoftwarebasedregistrationproceduresshowsthatourhardwareacceleratedapproachachievesprocessingtimessimilartothoseobtainedwithstochasticapproximationofentropies.DuetovisualizationatinteractiveframeratesandthefullintegrationintoOpen-Inventorcontrolofvisualizationparametersandevaluationofregistrationresultsisveryintuitive.Clinicalexamplesshowthevalueofourapproachinpractice.Theplanningofinterventionalproceduresisimprovedbythefusionofangiographicandanatomicinformation.Goodlocalizationofcentersofactivityisprovidedbycombiningfunctionalinformationandanatomicstructures.
References
[1]R.Avila,T.He,L.Hong,A.Kaufman,H.Pfistera,C.Silva,
L.Sobierajski,andS.Wang.VolVis:ADiversifiedVolumeVisualizationSystem.InProc.Visualization,pages31–38,Washington,DC,1994.IEEEComp.Soc.Press.
[2]L.Brown.Asurveyofimageregistrationtechniques.ACM
ComputingSurveys,24(4):325–376,Dez1992.
[3]B.Cabral,N.Cam,andJ.Foran.AcceleratedVolume
RenderingandTomographicReconstructionUsingTextureMappingHardware.ACMSymp.onVol.Vis.,pages91–98,1994.
[4]A.Collignon,D.Vandermeulen,P.Suetens,andG.Marchal.
3DMulti-ModalityMedicalImageRegistrationUsingFea-tureSpaceClustering.LectureNotesinComputerScience,905:195–204,1995.
[5]A.Collignon,D.Vandermeulen,P.Suetens,andG.Mar-chal.AutomatedMulti-ModalityImageRegistrationBasedonInformationTheory.KluwenAcad.Publ’s:Computa-tionalImagingandVision,3:263–274,1995.
[6]K.Eberhardt,B.Tomandl,P.Hastreiter,T.Ertl,R.Tr¨oscher-Weber,andW.Huk.VirtualEndoscopicCT-Angiography
(VECTA)inPatientswithIntracranialAneurysms.InAb-stractsfromCIS’97,ComputerAidedSurgery,1997.[7]P.Hastreiter,H.C¸akmak,andT.Ertl.IntuitiveandInter-activeManipulationof3DDataSetsbyIntegratingTexture
MappingBasedVolumeRenderingintotheOpenInventorClassHierarchy.InT.L.etal.,editor,Bildver.f¨urdieMed.:Alg.,Sys.,Anwend.,pages149–154.Inst.f.Med.Inf.u.Biom.d.RWTH,Aachen,1996.
[8]P.Hastreiter,T.Ertl,B.Tomandl,andK.Eberhardt.VECTA
-VirtualEndoscopicCT-Angiography.InW.Kalender,editor,4thInt.Works.onRapidPrototypinginMed.andComp.-AssistedSurg.,Inst.ofMed.Phy.,Univ.ofErlangen,Germany,1997.
[9]P.Hastreiter,J.Freund,G.Greiner,andT.Ertl.FastMu-tualInformationBasedRegistrationandFusionofRegis-teredTomographicImageData.In5.Workshop:DigitaleBildverarbeitunginderMedizin,pages146–151.Dt.Ges.f.med.Inf.,Biom.u.Epidem.(GMDS)e.V.,1997.
[10]D.Hill,C.Studholm,andD.Hawkes.VoxelSimilarityMea-sureforAutomatedImageRegistration.InP.SPIE,edi-tor,VisualizationinBiomedicalComputing,volume2359,Bellingham,WA,Rochester,Oct1994.
[11]F.Maes,A.Collignon,D.Vandermeulen,G.Marchal,and
P.Suetens.MultimodalityImageRegistrationbyMaximiza-tionofMutualInformation.IEEETrans.onMed.Imaging,16(2):187–198,april1997.
[12]C.MaurerandJ.Fitzpatrick.Areviewofmedicalimagereg-istration.InR.Maciunas,editor,InteractiveImage-GuidedSurgery,pages17–44,ParkRidge,IL,AmericanAssocia-tionofNeurologicalSurgeons,1993.[13]H.Morneburg.BildgebendeSystemef¨urdiemedizinische
Diagnostik.PublicisMCDVerlag,Erlangen,1995.
[14]P.Pokrandt.Fastnon-supervisedmatching:Aprobabilistic
appraoch.InComputerAssistedRadiology(CAR’96),pages306–310,1996.
[15]W.Press,B.Flannery,S.Teukolsky,andW.Vetterling.Nu-mericalRecipesinC.CambridgeUniversityPress,1988.[16]O.Sommer,A.Dietz,R.Westermann,andT.Ertl.AnInter-activeVisaulizationandNavigationToolforMedicalVol-umeData.InV.Skala,editor,WSCG’98Conf.Proc.,Feb.1998.
[17]C.Studholme,D.Hill,andD.Hawkes.Automated3DReg-istrationofTruncatedMRandCTImagesoftheHead.InP.Pycock,editor,Proc.oftheBritishMaschineVisionConf.(BMVC),pages27–36.BritischMaschineVisionAssocia-tion,1995.
[18]C.Studholme,D.Hill,andD.Hawkes.Multiresolution
VoxelSimilarityMeasureforMR-PETRegistration.InY.Bizais,editor,Proc.oftheInf.Proc.inMed.ImagingConf.KluwerAcademicPublisher,1995.
[19]P.vandenElsen.MultimodalityMatchingofBrainImages.
PhDthesis,UtrechtUniversityThesis,1993.
[20]P.vandenElsen,E.-J.Pol,andM.Viergever.MedicalIm-ageMatching-AReviewwithClassification.IEEEEng.inMedicineandBiol.,pages26–38,March1993.
[21]P.ViolaandW.Wells.AlignmentbyMaximizationofMu-tualInformation.InProc.VthInt.Conf.ComputerVision,pages16–23,Cambridge,MA,1995.
[22]W.Wells,P.Viola,H.Atsumi,S.Nakajima,andR.Kiki-nis.Multi-modalVolumeRegistrationbyMaximizationofMutualInformation.MedicalImageAnalysis,OxfordUni-versityPress,1(1),March1996.
[23]R.Woods,J.Mazziotta,andS.Cherry.MRI-PETRegis-trationwithAutomatedAlgorithm.JCAT,17(4):536–546,Jul/Aug1993.
[24]K.Zuiderveld,P.vanOoijen,J.Chin-A-Woeng,P.Buijs,
M.Olree,andF.Post.ClinicalEvaluationofInteractiveVolumeVisualization.InProc.Visualization,pages367–370,SanFrancisco,Calif.,1996.IEEEComp.Soc.Press.
Figure9.VisualizationofMR(T1)andMRAafterregistration. Figure11.VentriclesofMR(T1)relativetovesselofMRAFigure10.TissueofMR(T1)relativetoves-selsofMRAaftersuppressionofskin.
Figure12.VesselsofMRArelativetoventri-clesofMR(T1)
因篇幅问题不能全部显示,请点此查看更多更全内容