您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页教案:平面向量的坐标运算

教案:平面向量的坐标运算

来源:意榕旅游网
课题:§5.4平面向量的坐标运算

(第一课时)

教材分析与教法设计

教 学 目 标 知 识 目 标 1、理解平面向量的坐标概念 2、掌握平面向量的坐标运算 (1)在巩固平面向量基本定理的基础上理解平面向量的坐标概念; (2)会写出平面直角坐标系内给定向量的坐标. (1)能正确理解向量加、减法的坐标运算法则; (2)能熟练进行向量的坐标运算; (3)掌握向量坐标与表示它的有向线段的起点坐标、终点坐标之间的关系. 能 力 要 求 情 感 态 度 1、通过平面向量坐标表示及坐标运算法则的推导培养学生演绎、归纳、猜想的能力; 2、通过对坐标平面内点和向量的类比,培养学生类比推理的能力; 3、借助数学图形解决问题,提高学生用数形结合的思想方法解决问题的能力. 设置问题情境让学生认识到课堂知识与实际生活的联系,感受数学来源于生活并服务于生活,体会客观世界中事物与事物之间普遍联系的辩证唯物观主义观点. 重点 平面向量的坐标运算. 难点 理解向量坐标的意义. 方法 引导发现、合作探究. 教具 多媒体课件、实物投影仪、三角尺.

1

教学过程

环节 复 判 习 断 回 题 顾 具体内容及形式 双边活动 设计意图 复习回顾: 复习向量定义,引出x 轴y轴正方向上的单位向量i和j. y 创 设 问 题 情 境 师 生 共 同 探 究 及 应 用 1、单位向量都相等; ( 假 ) 通过提问的 方式让学生对命2、坐标平面上的x轴和y轴都是题作出判断; 向量. ( 假 ) 教师从学生 活动出发,进行 3、如果e1 、e2 是同一平面内的评价、拓展,为 两个不共线的向量,那么对于这一新课的讲解作铺平面内的任一向量a,有且只有一垫. 对实数x,y,使a = x e1 + y e2 . ( 真 ) 学生体会数通过学生熟知的足球学与现实生活的运动来创设问题情境,引联系,并通过教入新课,并且建立数学与师引导,体会特其它学科的联系. 殊化的思想. 问题一:平面直角坐标系内,每个点可以用一对实数来表示,向量可以吗? 解决途径:以向量i、j为基底,利用平面向量基本定理构造平行四边形,如图: y a j o x i 结论:若a = xi+ yj,则a =(x,y)叫做向量的坐标表示. 经历前两个环节的铺垫后, 教师引导学生恰当的选取基底, 完成基底特殊化的过程. 教师通过多媒体课件演示, 使学生直观理解平面向量的坐标概念,明确求向量坐标的思路. j o i x 通过第3小题复习平面向量基本定理, 为下一步将基底特殊化引出新课做准备. 激发学生的学习兴趣,提高学习效率,在知识的迁移中进行创造性的学习,达到传授知识与培养学生能力融为一体的目的. 设置探究式教学,让学生经历知识的形成、发展、应用的过程,从而达到对知识的深刻理解与灵活应用,充分体会数学探索的乐趣. 2

㈠ 平 面 向 量 的 坐 标 表 示 应用一、初步运用定义求特殊向量的坐标. 学生完i=(1,0),j=(0,1),0=(0,0) 成,进一步体会 特殊化思想. 应用二: (课本P111例1). 例1、 用基底i、j分别表示向量a、b、c、 d,并求它们的坐标. 师生共同探究,教师板书过y 4 程.教师重点以b 3 a 向量b为例讲解2 本题,引导学生利用平面向量的j1 坐标表示求出向O x 0 1 2 3 4 量b的坐标,并 i提醒学生注意坐 d c 标符号. 变式探究: 将例1中向量d的方向取反向得到向量学生观察出e,分析b、e两向量的关系后进行探究. 向量b、e两向量 大小相等,方向 相同,应该是相探究一:相等向量的坐标有关系吗? 等向量. 结论:相等向量的坐标也相等,体现向量与教师提问:其坐标的对应关系. 向量在坐标平面 内任意平移而坐 标不变,那么将 其起点放在什么 位置更有利于研探究二:将表示向量的有向线段的起点放在究呢? 坐标原点后有何结论呢? 教师利用多结论:此时向量坐标就由这条有向线段的终媒体课件进行动点坐标唯一确定了. 画演示,学生直 接参与探究的过 程,从亲身体验 中获得深刻的认 识. 3 以向量b为例讲解本题,可以让学生体会向量的坐标与点的坐标一样,有正负之分. 在学生掌握课本例题的基础上进行挖掘、引申,探究新知,使得前后知识衔接自然. 在教学中渗透类比和特殊化的数学思想,形成新的知识结构体系,为下一步突破教学难点做准备. 师 生 共 同 探 究 及 应 用 ㈡ 平 面 向 量 的 坐 标 运 算 问题二:若已知a =(1,3),b =(5,1),如何求a + b 、a - b的坐标呢?(由特殊到一般,探究向量加减的坐标运算法则) 法则:若a =(x1 ,y1),b =(x2 ,y2),则: a + b = (x1+x2 ,y1+y2 ), a - b = (x1-x2 ,y1-y2 ) 应用三:课本P112例2 及P114练习1. 探究三:例一中向量a的坐标与它对应的有向线段的起点、终点坐标有何关系? (从具体例子寻找规律) y A a b B c O x 由图可知,a = c - b 结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标. 探究四:一个向量平移后坐标不变,但起点坐标和终点坐标发生了变化,这是否矛盾呢? 借助探究二的探究思路,利用向量坐标表示的推导过程来组织教学. 结论:向量的坐标与表示它的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系. 让学生经历主对具体的两动观察、大胆猜想、个向量,教师启积极验证,顺利得发引导学生分析出向量的坐标运算规律,通过猜想、法则,突出重点.同验证得出向量的时培养学生的观察坐标运算法则. 能力、推理能力、 逻辑思维能力. 例2以学生 回答为主,教师 板书过程;练习让学生熟练运学生笔答,通过算法则的应用,体实物投影反馈. 会向量坐标运算的 优势:思路明确, 过程简捷;强调步 骤书写,发现问题教师利用多及时解释说明. 媒体课件演示引 导学生把任意向 量用起点在原点 的向量来表示. 寻找各知识点的 联系,挖掘问题 实质. 体现了向量坐标的意义,通过提出矛盾、回顾旧知、推理验证,对难点层层突破. 4

应用四:课本P114练习2. 应用五:以表格形式对练习2 引申训练 起点A 终点B 向量AB ( 2,3 ) ( 1,1 ) ( -2 , 7 ) ( 3 , -4 ) 应用六:课本P113例三. 变式训练:将例三中平行四边形ABCD这一条件去掉,改为求点D,使这四个点构成平行四边形.(教学中可根据时间情况进行讲解或作为课后思考题) 归 在教师提问纳 强调本节课的重点内容,为下节课的学习做的基础上,让学总 简要铺垫. 生自己进行归纳结 总结,教师加以补充. 作业 课本第114页第1、2、3题 学生口答,教师进行评价、拓展. 教师倡导学生积极思考,从不同角度解决本题,体会难易差别. 熟练向量的坐标与表示它的有向线段的起点坐标、终点坐标之间的关系. 例三是对本节内容综合训练,培养学生善于思考和严谨的学习态度,并对新知识进行深层次的理解和应用. 帮助学生把所学知识纳入知识体系,形成良好的认知结构,有益于学生对知识的巩固、理解和掌握. 板书设计

方案一:

§5.4平面向量的坐标运算(一) 一、平面向量的坐标表示 二、平面向量的坐标运算 三、例题 1、定义 1、向量的坐标运算法则 例1 2、特殊向量的坐标表示 2、向量AB的坐标与点A、例2 3、相等向量的坐标也相等 点B的坐标的关系 例3 4、向量OA的坐标表示 方案二:

一、平面向量的坐标表示 1、定义 2、特殊向量的坐标表示 3、相等向量的坐标也相等 4、向量OA的坐标表示 二、平面向量的坐标运算 1、坐标运算法则 2、向量AB的坐标与A、B的坐标的关系

三、例题 例1 例2 例3 5

教学环节流程安排

复 习 回 顾 向 量 的 坐 标 表 示 向 量 的 坐 标 运算 情 境 设 置 跟踪练习 跟踪练习 归纳总结 探究及应用 巩 固 提 高

6

教案的设计说明:

1、设计初衷:

本节课内容难度不高,但知识点比较繁多,而且各知识点之间的衔接不够紧凑,对初学者来说容易产生杂乱无章的感觉.教师作为教学活动的设计者,在教学设计中应力求突出知识间的联系,指引学生理清众多的思绪,主动参与到思考、观察、猜想、验证、应用的教学活动中去,从而顺利地突破重、难点. 2、呈现方式:

根据教学大纲要求结合本节课具体的教学目标和学生的认知特点,我设计了“复习回顾——创设问题情境——合作探究和指导应用——归纳小结——布置作业”五个教学环节. 3、新课程观的体现:

本节课主要采用的是“引导发现、合作探究”的教学方法,以学生熟知的足球运动为情境引入新课,以问题为载体,以师生合作探究为主线,以思维训练为核心,以能力发展为目标,充分调动一切可利用的因素,激发学生的参与意识,使学生经历知识的形成、发展和应用的过程,在和谐、愉悦的氛围中获取知识,掌握方法.整个教学中既突出了学生的主体地位,又发挥了教师的指导作用. 4、可能出现的问题:

探究式教学需要留给学生充足的时间和空间,为学生提供活动的机会,学生情况不同,反馈给教师的信息也不同,因而在时间和内容上都不是固定的,需要教师在设计时富有一定的弹性,在实施时设计方案跟着学生转变,具有一定的开放性和灵活性.

7

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务