18.X.-G.Wang,T.CarringtonJr.,J.Chem.Phys.129,234102(2008).24.M.P.Deskevich,A.B.McCoy,J.M.Hutson,D.J.Nesbitt,
therawdataarearchivedattheUniversityofCologneand19.T.Oka,J.Mol.Spectrosc.228,635–639(2004).
J.Chem.Phys.128,094306(2008).
areavailableuponrequest.
20.HereJdenotestherotationalquantumnumbercomprising
end-over-endrotationRandinternalrotation.
ACKNOWLEDGMENTS
21.P.Bunker,B.Ostojić,S.Yurchenko,J.Mol.Struct.695–696,
WethankT.Carrington,P.Bunker,D.Nesbitt,P.Jensen,andSUPPLEMENTARYMATERIALS
253(2004).
U.MantheforfruitfuldiscussionsontheoreticalaspectsofCHwww.sciencemag.org/content/347/6228/1346/suppl/DC15+,22.HereweusethequantumnumberJinsteadofR,becausethe
aswellasJ.Kriegintheinitialstageoftheexperiment.SupportedMaterialsandMethodsrotationalmotioninthestateisnotpurelytheend-over-endbyDeutscheForschungsgemeinschaftgrantSCHL341/6-1.TablesS1andS2rotation.
WegratefullyacknowledgethesupportoftheworkshopsoftheReference(25)
23.M.Kolbuszewski,P.R.Bunker,J.Chem.Phys.105,39
I.PhysikalischesInstitut.Thetwolinelists(for10Kand4K)21November2014;accepted21January2015(1996).associatedwithFig.1areavailableassupplementarymaterial;10.1126/science.aaa3304
ADDITIVEMANUFACTURINGingsuctionforcesthatconstantlyrenewreactiveliquidresin.Thisnonstopprocessisfunda-Continuousmentallydifferentfromtraditionalbottom-upstereolithographyprinters,whereUVexposure,productionofliquid3Dobjectsinterfaceresinrenewal,andpartmovementmustbecon-ductedinseparateanddiscretesteps(fig.S2).Evenforinvertedtop-downapproachesinwhichphotopolymerizationoccursatanair-resinin-JohnR.Tumbleston,1DavidShirvanyants,1NikitaErmoshkin,1RimaJanusziewicz,2terface[i.e.,thepartissuccessivelyloweredintoAshleyR.Johnson,3DavidKelly,1KaiChen,1RobertPinschmidt,1JasonP.Rolland,1aresinbathduringprinting(16,19)],thesestepsAlexanderErmoshkin,1*EdwardT.Samulski,1,2*JosephM.DeSimone1,2,4*mustbeconductedsequentiallyfortheformationofeachlayer.Becauseeachsteptakesseveralsec-Additivemanufacturingprocessessuchas3Dprintingusetime-consuming,stepwiseondstoimplementforeachlayer,andbecauselayer-by-layerapproachestoobjectfabrication.Wedemonstratethecontinuousgenerationeachlayerofaparthasatypicalthicknessof50ofmonolithicpolymericpartsuptotensofcentimetersinsizewithfeatureresolutionto100mm,verticalprintspeedsarerestrictedtobelow100micrometers.Continuousliquidinterfaceproductionisachievedwithanafewmillimetersperhour(16).Bycontrast,theoxygen-permeablewindowbelowtheultravioletimageprojectionplane,whichcreatesaprintspeedforCLIPislimitedbyresincurerates“deadzone”(persistentliquidinterface)wherephotopolymerizationisinhibitedbetweenandviscosity(discussedbelow),notbystepwisethewindowandthepolymerizingpart.Wedelineatecriticalcontrolparametersandlayerformation.Forexample,thegyroidandar-showthatcomplexsolidpartscanbedrawnoutoftheresinatratesofhundredsofmillimetersgylestructuresshowninFig.1Bwereprintedatperhour.Theseprintspeedsallowpartstobeproducedinminutesinsteadofhours.500mm/hour,reachingaheightof~5cminlessAthan10min(moviesS1andS2).Anadditionaldditivemanufacturinghasbecomeause-caneitherquenchthephotoexcitedphotoinitia-benefitofacontinualprocessisthatthechoicefultechniqueinawidevarietyofapplica-tororcreateperoxidesbycombiningwiththeof3Dmodelslicingthickness,whichaffectsparttions,includingdo-it-yourself3Dprintingfreeradicalfromthephotocleavedphotoinitiatorresolution,doesnotinfluenceprintspeed,as(1,2),tissueengineering(3–5),materials(fig.S1).IftheseoxygeninhibitionpathwayscanshownintheramptestpatternsinFig.1C.Becauseforenergy(6,7),chemistryreactionwarebeavoided,efficientinitiationandpropagationofCLIPiscontinuous,therefreshrateofprojected(8),molecularvisualization(9,10),microfluid-polymerchainswillresult.Whenstereolithographyimagescanbeincreasedwithoutalteringprintics(11),andlow-density,high-strengthmate-isconductedaboveanoxygen-permeablebuildspeed,ultimatelyallowingforsmooth3Dobjectsrials(12–15).Currentadditivemanufacturingwindow,continuousliquidinterfaceproductionwithnomodelslicingartifacts.
methodssuchasfuseddepositionmodeling,(CLIP)isenabledbycreatinganoxygen-containingEstablishinganoxygen-inhibiteddeadzoneselectivelasersintering,andstereolithography“deadzone,”athinuncuredliquidlayerbetweenisfundamentaltotheCLIPprocess.CLIPuses(2,16)areinordinatelyslowbecausetheyrelythewindowandthecuredpartsurface.Weshowanamorphousfluoropolymerwindow(Teflononlayer-by-layerprintingprocesses.Amacro-thatdeadzonethicknessesontheorderoftensofAF2400)withexcellentoxygenpermeabilityscopicobjectseveralcentimetersinheightcanmicrometersaremaintainedbyjudiciousselection(1000barrers;1barrer=10–10cm3(STP)cmcm–2takehourstoconstruct.Foradditivemanufactur-ofcontrolparameters(e.g.,photonfluxandresins–1cmHg–1)(20),UVtransparency,andchemicalingtobeviableinmassproduction,printspeedsopticalandcuringproperties).Simplerelationshipsinertness.Deadzonethicknessmeasurementsmustincreasebyatleastanorderofmagnitudedescribethedeadzonethicknessandresincuringusingadifferentialthicknesstechnique(fig.S3)whilemaintainingexcellentpartaccuracy.Al-process,and,inturn,resultinastraightforwarddemonstratetheimportanceofbothoxygensup-thoughoxygeninhibitionoffreeradicalpolym-relationshipbetweenprintspeedandpartresolu-plyandoxygenpermeabilityofthewindowinerizationisawidelyencounteredobstacletotion.WedemonstratethatCLIPcanbeappliedtoestablishingthedeadzone.Figure2showsthatphotopolymerizingUV-curableresinsinair,wearangeofpartsizesfromundercutmicropaddlesthedeadzonethicknesswhenpureoxygenisshowhowcontrolledoxygeninhibitioncanbewithstemdiametersof50mmtocomplexhand-usedbelowthewindowisabouttwicethethick-usedtoenablesimplerandfasterstereolithography.heldobjectsgreaterthan25cminsize.
nesswhenairisused,withthedeadzonebecom-Typically,oxygeninhibitionleadstoincom-Figure1Aillustratesthesimplearchitectureingthinnerastheincidentphotonfluxincreasespletecureandsurfacetackinesswhenphoto-andoperationofa3Dprinterthattakesadvan-(seebelow).Whennitrogenisusedbelowthewin-polymerizationisconductedinair(17,18).Oxygen
tageofanoxygen-inhibiteddeadzone.CLIPpro-dow,thedeadzonevanishes.Adeadzonealso1Carbon3DInc.,RedwoodCity,CA94063,USA.2DepartmentceedsviaprojectingacontinuoussequenceofUVdoesnotformwhenTeflonAF2400isreplacedofChemistry,UniversityofNorthCarolina,ChapelHill,NCimages(generatedbyadigitallight-processingbyamaterialwithverypooroxygenpermeability,27599,USA.3JointDepartmentofBiomedicalEngineering,imagingunit)throughanoxygen-permeable,UV-suchasglassorpolyethylene,evenifoxygenispre-UniversityofNorthCarolinaatChapelHillandNorthtransparentwindowbelowaliquidresinbath.sentbelowthewindow.WithoutasuitabledeadCarolinaStateUniversity.4DepartmentofChemicalandBiomolecularEngineering,NorthCarolinaStateUniversity,Thedeadzonecreatedabovethewindowmain-zone,continuouspartproductionisnotpossible.Raleigh,NC27695,USA.
tainsaliquidinterfacebelowtheadvancingpart.Forthecaseofambientairbelowthewindow,*Correspondingauthor.E-mail:alex@carbon3d.com(A.E.);Abovethedeadzone,thecuringpartiscontin-Fig.3Ashowsthedependenceofdeadzonethick-et@unc.edu(E.T.S.);desimone@email.unc.edu(J.M.D.)
uouslydrawnoutoftheresinbath,therebycreat-nessonincidentphotonflux(F0),photoinitiator
SCIENCEsciencemag.orgCorrected 23 March 2015; see full text.
20MARCH2015•VOL347ISSUE6228
1349
Downloaded from www.sciencemag.org on October 17, 2015RESEARCH|REPORTS
140DZ Thickness (µm)120100806040200024681012x10152Photon Flux (#/s cm) Oxygen Air NitrogenFig.2.Thedeadzoneiscreatedbyoxygenper-meationthroughthewindow.Deadzonethick-nessisshownasafunctionofincidentphotonflux.Whenpureoxygenisusedbelowthegas-permeablewindow,thedeadzonethicknessincreases.Ifni-trogenisused,thedeadzonevanishes,resultinginadhesionofthecuredresintothewindow.ErrorbarsrepresentSDof10measurementsofthesameconditions.doesnotproduceradicals)butcontributestooverallresinabsorptionviaa=aPI+adye.Notethataistheinverseofthecharacteristicopticalabsorptionheight(hA)oftheresin:
Fig.1.CLIPenablesfastprintspeedsandlayerlesspartconstruction.(A)SchematicofCLIPprinterwherethepart(gyroid)isproducedcontinuouslybysimultaneouslyelevatingthebuildsupportplatewhilechangingthe2Dcross-sectionalUVimagesfromtheimagingunit.Theoxygen-permeablewindowcreatesadeadzone(persistentliquidinterface)betweentheelevatingpartandthewindow.(B)Re-sultingpartsviaCLIP,agyroid(left)andanargyle(right),wereelevatedatprintspeedsof500mm/hour(moviesS1andS2).(C)Ramptestpatternsproducedatthesameprintspeedregardlessof3Dmodelslicingthickness(100mm,25mm,and1mm).
hA¼
1að3Þ
absorptioncoefficient(aPI),andresincuringdosage(Dc0).ThesethreecontrolparametersarerelatedtodeadzonethicknessaccordingtoF0aPI−0:5
Deadzonethickness¼C
Dc0
ð1Þ
whereF0isthenumberofincidentphotonsattheimageplaneperareapertime,aPIistheproductofphotoinitiatorconcentrationandthewavelength-dependentabsorptivity,Dc0quantifiestheresinreactivityofamonomer-photoinitiatorcombination(fig.S4),andCisaproportionalityconstant.Thisrelationshipissimilartotheonethatdescribesphotopolymerizableparticlefor-mationinmicrofluidicdevicesthatuseoxygen-permeablechannelwalls(21,22).Thedeadzonethicknessbehavesasfollows:IncreasingeitherF0oraPIincreasestheconcentrationoffreerad-icalsintheresin(fig.S1)anddecreasestheini-tialoxygenconcentrationbyreaction.Additionaloxygendiffusesthroughthewindowandintotheresinbutdecayswithdistancefromthewin-dow,sothatfreeradicalswilloverpowerinhib-itingoxygenatsomedistancefromthewindow.Atthethresholddistancewherealloxygeniscon-sumedandfreeradicalsstillexist,polymerizationwillbegin.Increasingthereactivityoftheresin(i.e.,decreasingDc0)causesthepolymerizationthresholddistancefromthewindowtoalso
1350
20MARCH2015•VOL347ISSUE6228
shrink,thusmakingthedeadzonethinner.TheproportionalityconstantCinEq.1hasavalueof~30forourcaseof100-mm-thickTeflonAF2400withairbelowthewindow,andhasunitsofthesquarerootofdiffusivity.Thefluxofoxygenthroughthewindowisalsoimportantinmain-tainingastabledeadzoneovertime,whichiscommonlydescribedintermsoftheratiooffilmpermeabilitytofilmthickness(23).Usingtheserelationshipsenablescarefulcontrolofthedeadzone,whichprovidesacriticalresinrenewallayerbetweenthewindowandtheadvancingpart.Abovethedeadzone,photopolymerizationoccurstoacertaincuredthicknessthatdependsonF0aPI/Dc0alongwithexposuretime(t)andtheresinabsorptioncoefficient(a)accordingtotherelationship
1F0aPIt
Curedthickness¼ln
aDc0
ð2Þ
ThevalueofhA,inconjunctionwiththemodel
slicingthickness(Fig.1C),projectedpixelsize,andimagequality,determinesthepartresolution.Theprojectedpixelsize(typicallybetween10and100mm)andimagequalityarefunctionsoftheimagingsetupanddeterminelateralpartreso-lution.Aswithslicingthickness,hAaffectsverticalresolutionbutisapropertyoftheresin.IfhAishigh,thenpreviouslycured2Dpatternswillcon-tinuetobeexposed,causingunintentionalover-curingand“print-through,”whichinturnresultsindefectsforundercutandoverhanggeometries.Fromtheexpressionsfordeadzonethick-nessandcuredthickness,asimplerelationshipamongprintspeed,hA(i.e.,resolution),andF0aPI/Dc0isderived:
SpeedF0aPI
º
Dc0hA
ð4Þ
Figure3Bshowscuredthicknessforthreedif-ferentresinswithvaryinga(holdingaPIconstant)
wherethicknessesweremeasuredfordifferentUVphotondosages(productsofF0andt)(fig.S3).Thesecurvesareakintotheso-called“work-ingcurves”usedinstereolithographyresinchar-acterization(16,19).Fortheseresins,aisvariedbyadjustingtheconcentrationofanabsorbingdyeorpigmentthatpassivelyabsorbslight(i.e.,
Corrected 23 March 2015; see full text.
(seesupplementarymaterials).Figure3CshowsacontourplotofspeedasafunctionofhAandtheratioF0aPI/Dc0;thedeadzonethickness(Eq.1)isindicated.ForagivenhA,speedcanbeincreasedbyincreasingF0oraPIorbyusingaresinwithlowerDc0.However,asspeedincreases,deadzonethicknessdecreasesandwilleventuallybecometoothinfortheprocesstoremainstable.ForCLIP,theempiricallydeterminedminimumdeadzonethicknessis~20to30mm.Partpro-ductionwithadeadzonethicknessbelowthisminimumispossiblebutcanleadtowindowadhesion–relateddefects.Oncetheminimumdeadzonethicknessisreached,theprintspeedcanonlybeincreasedbyrelaxingtheresolution(i.e.,usingaresinwithhigherhA).
sciencemag.orgSCIENCE
RESEARCH|REPORTS
Fig.3.Atradeoffexistsbetweenprintspeedandpartresolution.(A)Liquidinterfacedeadzone(DZ)thicknessasafunctionofF0aPI/Dc0.Theseparametershavetypicalranges:5×1014cm−2s–1 diameter.(B)EiffelTowermodel,10cmtall.(C)Ashoecleat>20cmin length.Eveninlargeparts,finedetailisachieved,asshownintheinsetof(B)wherefeatures<1mminsizeareobtained.Themicropaddleswere printedat25mm/hour;theEiffelTowermodelandshoecleatwereprintedat100mm/hour. Thisanalysisshowsthatforadeadzonethick-nessof20mm,speedsinexcessof300mm/hourwithhA=100mmareaccessible.ByincreasinghAto300mmandsacrificingresolution,speedsgreaterthan1000mm/hourarereadilyachieved.ThetradeoffbetweenspeedandresolutionisdemonstratedinFig.3DwithresolutiontestpatternsusingtheresinswithdifferenthAfromFig.3B(allhaveequivalentF0aPI/Dc0anddeadzonethickness).Asdyeloadingisincreased,hAisreduced,leadingtolessprint-throughandul-timatelyhigherresolution.However,dyeabsorp-tiondoesnotproducefreeradicals,soresinswithlowerhArequiregreaterdosagestoade-quatelysolidify;thatis,partsmustbeelevatedmoreslowlyforconstantphotonflux.Ontheotherhand,theresinwithoutdyeandwiththehighesthAcanbeprintedatthegreatestspeedbutwithpoorresolution(asshownbyuninten-tionalcuringoftheoverhangsinthetestpattern).Usingthisprocesscontrolframework,Fig.4showsanarrayofexpedientlyproducedpartsrang-inginsizefromundercutmicropaddleswithstemdiametersof50mm(Fig.4A)tofull-sizeshoecleats25cminlength(Fig.4C).TheEiffelTowermodelinFig.4Billustratesthatfinedetailisachievedeveninmacroscaleparts:Thehorizon-talrailingposts(diameter<500mm)areresolvedonthis10-cm-tallmodel.Thisratioofscales(1:200)confirmsthattheCLIPprocessenablesrapidproductionofarbitrarymicroscopicfeaturesoverpartshavingmacroscopicdimensions.Fortheseparts,thespeed-limitingprocessisresincuring(Eq.4);however,forotherpartgeometries,thespeed-limitingprocessisresinflowintothebuildarea.Forsuchgeometrieswithcomparativelywidesolidcrosssections,parametersthataffect 20MARCH2015•VOL347ISSUE6228 SCIENCEsciencemag.org Corrected 23 March 2015; see full text. 1351 RESEARCH|REPORTS resinflow(e.g.,resinviscosity,suctionpressuregradient)becomeimportanttooptimize. PreliminarystudiesshowthattheCLIPpro-cessiscompatiblewithproducingpartsfromsoftelasticmaterials(24,25),ceramics(26),andbiologicalmaterials(27,28).CLIPhasthepoten-tialtoextendtheutilityofadditivemanufacturingtomanyareasofscienceandtechnology,andtolowerthemanufacturingcostsofcomplexpolymer-basedobjects. REFERENCESANDNOTES PALEOANTHROPOLOGYEarlyHomoat2.8MafromLedi-Geraru,Afar,EthiopiaBrianVillmoare,1,4,6*WilliamH.Kimbel,2*ChalachewSeyoum,2,7ChristopherJ.Campisano,2ErinN.DiMaggio,3JohnRowan,2DavidR.Braun,4JRamónArrowsmith,5KayeE.Reed2OurunderstandingoftheoriginofthegenusHomohasbeenhamperedbyalimitedfossilrecordineasternAfricabetween2.0and3.0millionyearsago(Ma).HerewereportthediscoveryofapartialhomininmandiblewithteethfromtheLedi-Geraruresearcharea,AfarRegionalState,Ethiopia,thatestablishesthepresenceofHomoat2.80to2.75Ma.ThisspecimencombinesprimitivetraitsseeninearlyAustralopithecuswithderivedmorphologyobservedinlaterHomo,confirmingthatdentognathicdeparturesfromtheaustralopithpatternoccurredearlyintheHomolineage.TheLedi-GerarudiscoveryhasimplicationsforhypothesesaboutthetimingandplaceoforiginofthegenusHomo.1.J.M.Pearce,Science337,1303–1304(2012). 2.H.Lipson,M.Kurman,Fabricated:TheNewWorldof3DPrinting (Wiley,Indianapolis,2013). 3.B.Derby,Science338,921–926(2012). 4.A.Atala,F.K.Kasper,A.G.Mikos,Sci.Transl.Med.4,160rv12 (2012). 5.B.C.Gross,J.L.Erkal,S.Y.Lockwood,C.Chen,D.M.Spence, Anal.Chem.86,3240–3253(2014). 6.K.Sunetal.,Adv.Mater.25,4539–43(2013). 7.G.Chisholm,P.J.Kitson,N.D.Kirkaldy,L.G.Bloor,L.Cronin, EnergyEnviron.Sci.7,3026–3032(2014). 8.M.D.Symesetal.,Nat.Chem.4,349–3(2012). 9.P.Chakraborty,R.N.Zuckermann,Proc.Natl.Acad.Sci.U.S.A. 110,13368–13373(2013). 10.P.J.Kitsonetal.,Cryst.GrowthDes.14,2720–2724 (2014). 11.J.L.Erkaletal.,LabChip14,2023–2032(2014).12.X.Zhengetal.,Science344,1373–1377(2014).13.T.A.Schaedleretal.,Science334,962–965(2011).14.J.Bauer,S.Hengsbach,I.Tesari,R.Schwaiger,O.Kraft, Proc.Natl.Acad.Sci.U.S.A.111,2453–2458(2014).15.E.B.Duossetal.,Adv.Funct.Mater.24,4905–4913 (2014). 16.I.Gibson,D.W.Rosen,B.Stucker,AdditiveManufacturing Technologies:RapidPrototypingtoDirectDigitalManufacturing(Springer,NewYork,2010). 17.S.C.Ligon,B.Husár,H.Wutzel,R.Holman,R.Liska, Chem.Rev.114,557–5(2014). 18.Y.Yagci,S.Jockusch,N.J.Turro,Macromolecules43, 6245–6260(2010). 19.P.F.Jacobs,RapidPrototyping&Manufacturing:Fundamentals ofStereoLithography(SocietyofManufacturingEngineers,Dearborn,MI,1992). 20.T.C.Merkel,I.Pinnau,R.Prabhakar,B.D.Freeman, MaterialsScienceofMembranesforGasandVaporSeparation(Wiley,WestSussex,UK,2006),pp.251–270. 21.D.Dendukurietal.,Macromolecules41,87–8556(2008).22.D.Dendukuri,D.C.Pregibon,J.Collins,T.A.Hatton, P.S.Doyle,Nat.Mater.5,365–369(2006). 23.J.M.Gonzalez-Meijome,V.Compañ-Moreno,E.Riande, Ind.Eng.Chem.Res.47,3619–3629(2008). 24.J.A.Rogers,T.Someya,Y.Huang,Science327,1603–1607 (2010). 25.S.Baueretal.,Adv.Mater.26,149–161(2014). 26.N.Travitzkyetal.,Adv.Eng.Mater.16,729–7(2014).27.C.Cvetkovicetal.,Proc.Natl.Acad.Sci.U.S.A.111, 10125–10130(2014). 28.Y.Lu,G.Mapili,G.Suhali,S.Chen,K.Roy,J.Biomed.Mater. Res.A77,396–405(2006). ACKNOWLEDGMENTS ThisworkwassponsoredbyCarbon3DInc.J.R.T.,D.S.,N.E.,D.K.,R.P.,J.P.R.,A.E.,E.T.S.,andJ.M.D.allhaveanequitystakeinCarbon3DInc.,whichisaventure-backedstartupcompany.ContinuousliquidinterfaceprintingisthesubjectofpatentprotectionincludingPatentCooperationTreatypublicationnumbersWO2014/126837A2,WO2014/126830A2,andWO2014/126834A2,andothers. SUPPLEMENTARYMATERIALS iftyyearsaftertherecognitionofthespe-ciesHomohabilisastheearliestknownrep-resentativeofourgenus(1),theoriginofHomoremainsclouded.Thisuncertaintystemsinlargepartfromalimitedfossilrecordbetween2.0and3.0millionyearsago(Ma),especiallyineasternAfrica.Sometaxafromthistimeperiod,suchasAustralopithecusafricanus(~2.8to2.3Ma)andthelesswellknownA.garhi(~2.5Ma)andA.aethiopicus(~2.7to2.3Ma),ap-peartoospecializedcraniallyand/ordentallytorepresenttheprobableproximateancestralconditionsforHomospeciesknowninAfricaby~2.0Ma(H.habilisandH.rudolfensis).Thisleavesathinscatterofisolated,variablyinform-ativespecimensdatedto2.4to2.3MaastheonlycrediblefossilevidencebearingontheearliestknownpopulationsofthegenusHomo(2,3).Herewedescribearecentlyrecoveredpartialhomininmandible,LD350-1,fromtheLedi-Geraruresearcharea,AfarRegionalState,Ethiopia,thatextendsthefossilrecordofHomobackintimeafurther0.4millionyears.Thespecimen,securelydatedto2.80to2.75Ma,combinesderivedmor-phologyobservedinlaterHomowithprimitivetraitsseeninearlyAustralopithecus.Thediscov-eryhasimplicationsforhypothesesconcerningthetimingandplaceofHomoorigins. TheLD350localityresidesintheLeeAdoytaregionoftheLedi-Geraruresearcharea(Fig.1).GeologicresearchatLeeAdoyta(4)identifiedfault-boundedsedimentarypackagesdated2.84to2.58Ma.TheLD350-1mandiblewasrecov-eredonthesurfaceoffinelybeddedfossiliferous DepartmentofAnthropology,UniversityofNevadaLasVegas,LasVegas,NV1,USA.2InstituteofHumanOriginsandSchoolofHumanEvolutionandSocialChange,ArizonaStateUniversity,Tempe,AZ85287,USA.3Departmentof Geosciences,PennsylvaniaStateUniversity,UniversityPark,PA16802,USA.4CenterfortheAdvancedStudyofHomininPaleobiology,GeorgeWashingtonUniversity,Washington,DC20052,USA.5SchoolofEarthandSpaceExploration,ArizonaStateUniversity,Tempe,AZ85281,USA.6DepartmentofAnthropology,UniversityCollegeLondon,LondonWC1H0BW,UK.7AuthorityforResearchandConservationofCulturalHeritage,AddisAbaba,Ethiopia. *Correspondingauthor.E-mail:brian.villmoare@unlv.edu(B.V.);wkimbel.iho@asu.edu(W.H.K.) 1Fwww.sciencemag.org/content/347/6228/1349/suppl/DC1MaterialsandMethodsSupplementaryTextFigs.S1toS4MoviesS1andS2Reference(29) 5November2014;accepted3February201510.1126/science.aaa2397 silts10mconformablyabovetheGurumahaTuff(Fig.1).Thematrixadherenttothespeci-menisconsistentwithithavingerodedfromthesesilts[fordetailsonstratigraphyanddepo-sitionalenvironment,see(4)].TheGurumahaTuffisradiometricallydatedto2.822T0.006Ma(4),adatethatisconsistentwiththenormalmagneticpolarityoftheGurumahasection,pre-sumablytheGaussChron.AnupperboundingageforLD350-1isprovidedbyanadjacentdown-faultedyoungerblockthatcontainsthe2.669T0.011MaLeeAdoytaTuff.Amagnetostratigraphicreversal12mconformablyabovetheLeeAdoytaTuffisinferredtobetheGauss/Matuyamabound-aryat2.58Ma(4).BecausenosignificanterosionaleventsintervenebetweentheGurumahaTuffandthefossiliferoushorizon,theageofLD350-1canbefurtherconstrainedbystratigraphicscaling.Applyingasedimentationrateofeither14cmperthousandyears(ky)fromtheLeeAdoytafaultblockor30cm/kyfromtheHadarFormation(5)providesageestimatesof2.77and2.80mil-lionyears(My),respectively,forLD350-1.BasedonthecurrentchronostratigraphicframeworkforLedi-Geraru,weconsidertheageofLD350-1tobe2.80to2.75My. Thehomininspecimen,foundbyChalachewSeyoumon29January2013,comprisestheleftsideofanadultmandibularcorpusthatpreservesthepartialorcompletecrownsandrootsofthecanine,bothpremolars,andallthreemolars.Thecorpusiswellpreservedfromthesymphysistotherootoftheascendingramusandretromolarplatform.Surfacedetailisverygoodtoexcellent,andthereisnoevidenceofsignificanttransport.Theinferiormarginofthecorpusandthelingualalveolarmarginareintact,butthebuccalalveolarmarginischippedbetweenP3andM1.TheP4,M2,andM3crownsarecompleteandwellpre-served,buttheC,P3,andM1crownsareincom-plete(Fig.2andtextS2).Theanteriordentitionisrepresentedbythebrokenrootofthelateralincisorandthealveolusofthecentralincisor.Givenitslocationandage,itisnaturaltoaskwhethertheLD350-1mandiblerepresentsalate-survivingpopulationofA.afarensis,whose sciencemag.orgSCIENCE 1352 20MARCH2015•VOL347ISSUE6228 Corrected 23 March 2015; see full text. Continuous liquid interface production of 3D objectsJohn R. Tumbleston et al.Science 347, 1349 (2015); DOI: 10.1126/science.aaa2397 This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for yourcolleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained byfollowing the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this information is current as of October 17, 2015 ): Updated information and services, including high-resolution figures, can be found in the onlineversion of this article at: http://www.sciencemag.org/content/347/6228/1349.full.html Supporting Online Material can be found at: http://www.sciencemag.org/content/suppl/2015/03/16/science.aaa2397.DC1.html This article cites 25 articles, 9 of which can be accessed free: http://www.sciencemag.org/content/347/6228/1349.full.html#ref-list-1 This article has been cited by 2 articles hosted by HighWire Press; see:http://www.sciencemag.org/content/347/6228/1349.full.html#related-urls This article appears in the following subject collections:Engineering http://www.sciencemag.org/cgi/collection/engineering Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright2015 by the American Association for the Advancement of Science; all rights reserved. The title Science is aregistered trademark of AAAS. Downloaded from www.sciencemag.org on October 17, 2015 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务