您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页Science-3D打印技术新发展

Science-3D打印技术新发展

来源:意榕旅游网
RESEARCH|REPORTS

18.X.-G.Wang,T.CarringtonJr.,J.Chem.Phys.129,234102(2008).24.M.P.Deskevich,A.B.McCoy,J.M.Hutson,D.J.Nesbitt,

therawdataarearchivedattheUniversityofCologneand19.T.Oka,J.Mol.Spectrosc.228,635–639(2004).

J.Chem.Phys.128,094306(2008).

areavailableuponrequest.

20.HereJdenotestherotationalquantumnumbercomprising

end-over-endrotationRandinternalrotation.

ACKNOWLEDGMENTS

21.P.Bunker,B.Ostojić,S.Yurchenko,J.Mol.Struct.695–696,

WethankT.Carrington,P.Bunker,D.Nesbitt,P.Jensen,andSUPPLEMENTARYMATERIALS

253(2004).

U.MantheforfruitfuldiscussionsontheoreticalaspectsofCHwww.sciencemag.org/content/347/6228/1346/suppl/DC15+,22.HereweusethequantumnumberJinsteadofR,becausethe

aswellasJ.Kriegintheinitialstageoftheexperiment.SupportedMaterialsandMethodsrotationalmotioninthestateisnotpurelytheend-over-endbyDeutscheForschungsgemeinschaftgrantSCHL341/6-1.TablesS1andS2rotation.

WegratefullyacknowledgethesupportoftheworkshopsoftheReference(25)

23.M.Kolbuszewski,P.R.Bunker,J.Chem.Phys.105,39

I.PhysikalischesInstitut.Thetwolinelists(for10Kand4K)21November2014;accepted21January2015(1996).associatedwithFig.1areavailableassupplementarymaterial;10.1126/science.aaa3304

ADDITIVEMANUFACTURINGingsuctionforcesthatconstantlyrenewreactiveliquidresin.Thisnonstopprocessisfunda-Continuousmentallydifferentfromtraditionalbottom-upstereolithographyprinters,whereUVexposure,productionofliquid3Dobjectsinterfaceresinrenewal,andpartmovementmustbecon-ductedinseparateanddiscretesteps(fig.S2).Evenforinvertedtop-downapproachesinwhichphotopolymerizationoccursatanair-resinin-JohnR.Tumbleston,1DavidShirvanyants,1NikitaErmoshkin,1RimaJanusziewicz,2terface[i.e.,thepartissuccessivelyloweredintoAshleyR.Johnson,3DavidKelly,1KaiChen,1RobertPinschmidt,1JasonP.Rolland,1aresinbathduringprinting(16,19)],thesestepsAlexanderErmoshkin,1*EdwardT.Samulski,1,2*JosephM.DeSimone1,2,4*mustbeconductedsequentiallyfortheformationofeachlayer.Becauseeachsteptakesseveralsec-Additivemanufacturingprocessessuchas3Dprintingusetime-consuming,stepwiseondstoimplementforeachlayer,andbecauselayer-by-layerapproachestoobjectfabrication.Wedemonstratethecontinuousgenerationeachlayerofaparthasatypicalthicknessof50ofmonolithicpolymericpartsuptotensofcentimetersinsizewithfeatureresolutionto100mm,verticalprintspeedsarerestrictedtobelow100micrometers.Continuousliquidinterfaceproductionisachievedwithanafewmillimetersperhour(16).Bycontrast,theoxygen-permeablewindowbelowtheultravioletimageprojectionplane,whichcreatesaprintspeedforCLIPislimitedbyresincurerates“deadzone”(persistentliquidinterface)wherephotopolymerizationisinhibitedbetweenandviscosity(discussedbelow),notbystepwisethewindowandthepolymerizingpart.Wedelineatecriticalcontrolparametersandlayerformation.Forexample,thegyroidandar-showthatcomplexsolidpartscanbedrawnoutoftheresinatratesofhundredsofmillimetersgylestructuresshowninFig.1Bwereprintedatperhour.Theseprintspeedsallowpartstobeproducedinminutesinsteadofhours.500mm/hour,reachingaheightof~5cminlessAthan10min(moviesS1andS2).Anadditionaldditivemanufacturinghasbecomeause-caneitherquenchthephotoexcitedphotoinitia-benefitofacontinualprocessisthatthechoicefultechniqueinawidevarietyofapplica-tororcreateperoxidesbycombiningwiththeof3Dmodelslicingthickness,whichaffectsparttions,includingdo-it-yourself3Dprintingfreeradicalfromthephotocleavedphotoinitiatorresolution,doesnotinfluenceprintspeed,as(1,2),tissueengineering(3–5),materials(fig.S1).IftheseoxygeninhibitionpathwayscanshownintheramptestpatternsinFig.1C.Becauseforenergy(6,7),chemistryreactionwarebeavoided,efficientinitiationandpropagationofCLIPiscontinuous,therefreshrateofprojected(8),molecularvisualization(9,10),microfluid-polymerchainswillresult.Whenstereolithographyimagescanbeincreasedwithoutalteringprintics(11),andlow-density,high-strengthmate-isconductedaboveanoxygen-permeablebuildspeed,ultimatelyallowingforsmooth3Dobjectsrials(12–15).Currentadditivemanufacturingwindow,continuousliquidinterfaceproductionwithnomodelslicingartifacts.

methodssuchasfuseddepositionmodeling,(CLIP)isenabledbycreatinganoxygen-containingEstablishinganoxygen-inhibiteddeadzoneselectivelasersintering,andstereolithography“deadzone,”athinuncuredliquidlayerbetweenisfundamentaltotheCLIPprocess.CLIPuses(2,16)areinordinatelyslowbecausetheyrelythewindowandthecuredpartsurface.Weshowanamorphousfluoropolymerwindow(Teflononlayer-by-layerprintingprocesses.Amacro-thatdeadzonethicknessesontheorderoftensofAF2400)withexcellentoxygenpermeabilityscopicobjectseveralcentimetersinheightcanmicrometersaremaintainedbyjudiciousselection(1000barrers;1barrer=10–10cm3(STP)cmcm–2takehourstoconstruct.Foradditivemanufactur-ofcontrolparameters(e.g.,photonfluxandresins–1cmHg–1)(20),UVtransparency,andchemicalingtobeviableinmassproduction,printspeedsopticalandcuringproperties).Simplerelationshipsinertness.Deadzonethicknessmeasurementsmustincreasebyatleastanorderofmagnitudedescribethedeadzonethicknessandresincuringusingadifferentialthicknesstechnique(fig.S3)whilemaintainingexcellentpartaccuracy.Al-process,and,inturn,resultinastraightforwarddemonstratetheimportanceofbothoxygensup-thoughoxygeninhibitionoffreeradicalpolym-relationshipbetweenprintspeedandpartresolu-plyandoxygenpermeabilityofthewindowinerizationisawidelyencounteredobstacletotion.WedemonstratethatCLIPcanbeappliedtoestablishingthedeadzone.Figure2showsthatphotopolymerizingUV-curableresinsinair,wearangeofpartsizesfromundercutmicropaddlesthedeadzonethicknesswhenpureoxygenisshowhowcontrolledoxygeninhibitioncanbewithstemdiametersof50mmtocomplexhand-usedbelowthewindowisabouttwicethethick-usedtoenablesimplerandfasterstereolithography.heldobjectsgreaterthan25cminsize.

nesswhenairisused,withthedeadzonebecom-Typically,oxygeninhibitionleadstoincom-Figure1Aillustratesthesimplearchitectureingthinnerastheincidentphotonfluxincreasespletecureandsurfacetackinesswhenphoto-andoperationofa3Dprinterthattakesadvan-(seebelow).Whennitrogenisusedbelowthewin-polymerizationisconductedinair(17,18).Oxygen

tageofanoxygen-inhibiteddeadzone.CLIPpro-dow,thedeadzonevanishes.Adeadzonealso1Carbon3DInc.,RedwoodCity,CA94063,USA.2DepartmentceedsviaprojectingacontinuoussequenceofUVdoesnotformwhenTeflonAF2400isreplacedofChemistry,UniversityofNorthCarolina,ChapelHill,NCimages(generatedbyadigitallight-processingbyamaterialwithverypooroxygenpermeability,27599,USA.3JointDepartmentofBiomedicalEngineering,imagingunit)throughanoxygen-permeable,UV-suchasglassorpolyethylene,evenifoxygenispre-UniversityofNorthCarolinaatChapelHillandNorthtransparentwindowbelowaliquidresinbath.sentbelowthewindow.WithoutasuitabledeadCarolinaStateUniversity.4DepartmentofChemicalandBiomolecularEngineering,NorthCarolinaStateUniversity,Thedeadzonecreatedabovethewindowmain-zone,continuouspartproductionisnotpossible.Raleigh,NC27695,USA.

tainsaliquidinterfacebelowtheadvancingpart.Forthecaseofambientairbelowthewindow,*Correspondingauthor.E-mail:alex@carbon3d.com(A.E.);Abovethedeadzone,thecuringpartiscontin-Fig.3Ashowsthedependenceofdeadzonethick-et@unc.edu(E.T.S.);desimone@email.unc.edu(J.M.D.)

uouslydrawnoutoftheresinbath,therebycreat-nessonincidentphotonflux(F0),photoinitiator

SCIENCEsciencemag.orgCorrected 23 March 2015; see full text.

20MARCH2015•VOL347ISSUE6228

1349

Downloaded from www.sciencemag.org on October 17, 2015RESEARCH|REPORTS

140DZ Thickness (µm)120100806040200024681012x10152Photon Flux (#/s cm) Oxygen Air NitrogenFig.2.Thedeadzoneiscreatedbyoxygenper-meationthroughthewindow.Deadzonethick-nessisshownasafunctionofincidentphotonflux.Whenpureoxygenisusedbelowthegas-permeablewindow,thedeadzonethicknessincreases.Ifni-trogenisused,thedeadzonevanishes,resultinginadhesionofthecuredresintothewindow.ErrorbarsrepresentSDof10measurementsofthesameconditions.doesnotproduceradicals)butcontributestooverallresinabsorptionviaa=aPI+adye.Notethataistheinverseofthecharacteristicopticalabsorptionheight(hA)oftheresin:

Fig.1.CLIPenablesfastprintspeedsandlayerlesspartconstruction.(A)SchematicofCLIPprinterwherethepart(gyroid)isproducedcontinuouslybysimultaneouslyelevatingthebuildsupportplatewhilechangingthe2Dcross-sectionalUVimagesfromtheimagingunit.Theoxygen-permeablewindowcreatesadeadzone(persistentliquidinterface)betweentheelevatingpartandthewindow.(B)Re-sultingpartsviaCLIP,agyroid(left)andanargyle(right),wereelevatedatprintspeedsof500mm/hour(moviesS1andS2).(C)Ramptestpatternsproducedatthesameprintspeedregardlessof3Dmodelslicingthickness(100mm,25mm,and1mm).

hA¼

1að3Þ

absorptioncoefficient(aPI),andresincuringdosage(Dc0).Thesethreecontrolparametersarerelatedtodeadzonethicknessaccordingto󰀁󰀂F0aPI−0:5

Deadzonethickness¼C

Dc0

ð1Þ

whereF0isthenumberofincidentphotonsattheimageplaneperareapertime,aPIistheproductofphotoinitiatorconcentrationandthewavelength-dependentabsorptivity,Dc0quantifiestheresinreactivityofamonomer-photoinitiatorcombination(fig.S4),andCisaproportionalityconstant.Thisrelationshipissimilartotheonethatdescribesphotopolymerizableparticlefor-mationinmicrofluidicdevicesthatuseoxygen-permeablechannelwalls(21,22).Thedeadzonethicknessbehavesasfollows:IncreasingeitherF0oraPIincreasestheconcentrationoffreerad-icalsintheresin(fig.S1)anddecreasestheini-tialoxygenconcentrationbyreaction.Additionaloxygendiffusesthroughthewindowandintotheresinbutdecayswithdistancefromthewin-dow,sothatfreeradicalswilloverpowerinhib-itingoxygenatsomedistancefromthewindow.Atthethresholddistancewherealloxygeniscon-sumedandfreeradicalsstillexist,polymerizationwillbegin.Increasingthereactivityoftheresin(i.e.,decreasingDc0)causesthepolymerizationthresholddistancefromthewindowtoalso

1350

20MARCH2015•VOL347ISSUE6228

shrink,thusmakingthedeadzonethinner.TheproportionalityconstantCinEq.1hasavalueof~30forourcaseof100-mm-thickTeflonAF2400withairbelowthewindow,andhasunitsofthesquarerootofdiffusivity.Thefluxofoxygenthroughthewindowisalsoimportantinmain-tainingastabledeadzoneovertime,whichiscommonlydescribedintermsoftheratiooffilmpermeabilitytofilmthickness(23).Usingtheserelationshipsenablescarefulcontrolofthedeadzone,whichprovidesacriticalresinrenewallayerbetweenthewindowandtheadvancingpart.Abovethedeadzone,photopolymerizationoccurstoacertaincuredthicknessthatdependsonF0aPI/Dc0alongwithexposuretime(t)andtheresinabsorptioncoefficient(a)accordingtotherelationship

󰀁󰀂1F0aPIt

Curedthickness¼ln

aDc0

ð2Þ

ThevalueofhA,inconjunctionwiththemodel

slicingthickness(Fig.1C),projectedpixelsize,andimagequality,determinesthepartresolution.Theprojectedpixelsize(typicallybetween10and100mm)andimagequalityarefunctionsoftheimagingsetupanddeterminelateralpartreso-lution.Aswithslicingthickness,hAaffectsverticalresolutionbutisapropertyoftheresin.IfhAishigh,thenpreviouslycured2Dpatternswillcon-tinuetobeexposed,causingunintentionalover-curingand“print-through,”whichinturnresultsindefectsforundercutandoverhanggeometries.Fromtheexpressionsfordeadzonethick-nessandcuredthickness,asimplerelationshipamongprintspeed,hA(i.e.,resolution),andF0aPI/Dc0isderived:

SpeedF0aPI

º

Dc0hA

ð4Þ

Figure3Bshowscuredthicknessforthreedif-ferentresinswithvaryinga(holdingaPIconstant)

wherethicknessesweremeasuredfordifferentUVphotondosages(productsofF0andt)(fig.S3).Thesecurvesareakintotheso-called“work-ingcurves”usedinstereolithographyresinchar-acterization(16,19).Fortheseresins,aisvariedbyadjustingtheconcentrationofanabsorbingdyeorpigmentthatpassivelyabsorbslight(i.e.,

Corrected 23 March 2015; see full text.

(seesupplementarymaterials).Figure3CshowsacontourplotofspeedasafunctionofhAandtheratioF0aPI/Dc0;thedeadzonethickness(Eq.1)isindicated.ForagivenhA,speedcanbeincreasedbyincreasingF0oraPIorbyusingaresinwithlowerDc0.However,asspeedincreases,deadzonethicknessdecreasesandwilleventuallybecometoothinfortheprocesstoremainstable.ForCLIP,theempiricallydeterminedminimumdeadzonethicknessis~20to30mm.Partpro-ductionwithadeadzonethicknessbelowthisminimumispossiblebutcanleadtowindowadhesion–relateddefects.Oncetheminimumdeadzonethicknessisreached,theprintspeedcanonlybeincreasedbyrelaxingtheresolution(i.e.,usingaresinwithhigherhA).

sciencemag.orgSCIENCE

RESEARCH|REPORTS

Fig.3.Atradeoffexistsbetweenprintspeedandpartresolution.(A)Liquidinterfacedeadzone(DZ)thicknessasafunctionofF0aPI/Dc0.Theseparametershavetypicalranges:5×1014cm−2s–1Fig.4.AvarietyofpartscanbefabricatedusingCLIP.(A)Micropaddleswithstems50mmin

diameter.(B)EiffelTowermodel,10cmtall.(C)Ashoecleat>20cmin

length.Eveninlargeparts,finedetailisachieved,asshownintheinsetof(B)wherefeatures<1mminsizeareobtained.Themicropaddleswere

printedat25mm/hour;theEiffelTowermodelandshoecleatwereprintedat100mm/hour.

Thisanalysisshowsthatforadeadzonethick-nessof20mm,speedsinexcessof300mm/hourwithhA=100mmareaccessible.ByincreasinghAto300mmandsacrificingresolution,speedsgreaterthan1000mm/hourarereadilyachieved.ThetradeoffbetweenspeedandresolutionisdemonstratedinFig.3DwithresolutiontestpatternsusingtheresinswithdifferenthAfromFig.3B(allhaveequivalentF0aPI/Dc0anddeadzonethickness).Asdyeloadingisincreased,hAisreduced,leadingtolessprint-throughandul-timatelyhigherresolution.However,dyeabsorp-tiondoesnotproducefreeradicals,soresinswithlowerhArequiregreaterdosagestoade-quatelysolidify;thatis,partsmustbeelevatedmoreslowlyforconstantphotonflux.Ontheotherhand,theresinwithoutdyeandwiththehighesthAcanbeprintedatthegreatestspeedbutwithpoorresolution(asshownbyuninten-tionalcuringoftheoverhangsinthetestpattern).Usingthisprocesscontrolframework,Fig.4showsanarrayofexpedientlyproducedpartsrang-inginsizefromundercutmicropaddleswithstemdiametersof50mm(Fig.4A)tofull-sizeshoecleats25cminlength(Fig.4C).TheEiffelTowermodelinFig.4Billustratesthatfinedetailisachievedeveninmacroscaleparts:Thehorizon-talrailingposts(diameter<500mm)areresolvedonthis10-cm-tallmodel.Thisratioofscales(1:200)confirmsthattheCLIPprocessenablesrapidproductionofarbitrarymicroscopicfeaturesoverpartshavingmacroscopicdimensions.Fortheseparts,thespeed-limitingprocessisresincuring(Eq.4);however,forotherpartgeometries,thespeed-limitingprocessisresinflowintothebuildarea.Forsuchgeometrieswithcomparativelywidesolidcrosssections,parametersthataffect

20MARCH2015•VOL347ISSUE6228

SCIENCEsciencemag.org

Corrected 23 March 2015; see full text.

1351

RESEARCH|REPORTS

resinflow(e.g.,resinviscosity,suctionpressuregradient)becomeimportanttooptimize.

PreliminarystudiesshowthattheCLIPpro-cessiscompatiblewithproducingpartsfromsoftelasticmaterials(24,25),ceramics(26),andbiologicalmaterials(27,28).CLIPhasthepoten-tialtoextendtheutilityofadditivemanufacturingtomanyareasofscienceandtechnology,andtolowerthemanufacturingcostsofcomplexpolymer-basedobjects.

REFERENCESANDNOTES

PALEOANTHROPOLOGYEarlyHomoat2.8MafromLedi-Geraru,Afar,EthiopiaBrianVillmoare,1,4,6*WilliamH.Kimbel,2*ChalachewSeyoum,2,7ChristopherJ.Campisano,2ErinN.DiMaggio,3JohnRowan,2DavidR.Braun,4JRamónArrowsmith,5KayeE.Reed2OurunderstandingoftheoriginofthegenusHomohasbeenhamperedbyalimitedfossilrecordineasternAfricabetween2.0and3.0millionyearsago(Ma).HerewereportthediscoveryofapartialhomininmandiblewithteethfromtheLedi-Geraruresearcharea,AfarRegionalState,Ethiopia,thatestablishesthepresenceofHomoat2.80to2.75Ma.ThisspecimencombinesprimitivetraitsseeninearlyAustralopithecuswithderivedmorphologyobservedinlaterHomo,confirmingthatdentognathicdeparturesfromtheaustralopithpatternoccurredearlyintheHomolineage.TheLedi-GerarudiscoveryhasimplicationsforhypothesesaboutthetimingandplaceoforiginofthegenusHomo.1.J.M.Pearce,Science337,1303–1304(2012).

2.H.Lipson,M.Kurman,Fabricated:TheNewWorldof3DPrinting

(Wiley,Indianapolis,2013).

3.B.Derby,Science338,921–926(2012).

4.A.Atala,F.K.Kasper,A.G.Mikos,Sci.Transl.Med.4,160rv12

(2012).

5.B.C.Gross,J.L.Erkal,S.Y.Lockwood,C.Chen,D.M.Spence,

Anal.Chem.86,3240–3253(2014).

6.K.Sunetal.,Adv.Mater.25,4539–43(2013).

7.G.Chisholm,P.J.Kitson,N.D.Kirkaldy,L.G.Bloor,L.Cronin,

EnergyEnviron.Sci.7,3026–3032(2014).

8.M.D.Symesetal.,Nat.Chem.4,349–3(2012).

9.P.Chakraborty,R.N.Zuckermann,Proc.Natl.Acad.Sci.U.S.A.

110,13368–13373(2013).

10.P.J.Kitsonetal.,Cryst.GrowthDes.14,2720–2724

(2014).

11.J.L.Erkaletal.,LabChip14,2023–2032(2014).12.X.Zhengetal.,Science344,1373–1377(2014).13.T.A.Schaedleretal.,Science334,962–965(2011).14.J.Bauer,S.Hengsbach,I.Tesari,R.Schwaiger,O.Kraft,

Proc.Natl.Acad.Sci.U.S.A.111,2453–2458(2014).15.E.B.Duossetal.,Adv.Funct.Mater.24,4905–4913

(2014).

16.I.Gibson,D.W.Rosen,B.Stucker,AdditiveManufacturing

Technologies:RapidPrototypingtoDirectDigitalManufacturing(Springer,NewYork,2010).

17.S.C.Ligon,B.Husár,H.Wutzel,R.Holman,R.Liska,

Chem.Rev.114,557–5(2014).

18.Y.Yagci,S.Jockusch,N.J.Turro,Macromolecules43,

6245–6260(2010).

19.P.F.Jacobs,RapidPrototyping&Manufacturing:Fundamentals

ofStereoLithography(SocietyofManufacturingEngineers,Dearborn,MI,1992).

20.T.C.Merkel,I.Pinnau,R.Prabhakar,B.D.Freeman,

MaterialsScienceofMembranesforGasandVaporSeparation(Wiley,WestSussex,UK,2006),pp.251–270.

21.D.Dendukurietal.,Macromolecules41,87–8556(2008).22.D.Dendukuri,D.C.Pregibon,J.Collins,T.A.Hatton,

P.S.Doyle,Nat.Mater.5,365–369(2006).

23.J.M.Gonzalez-Meijome,V.Compañ-Moreno,E.Riande,

Ind.Eng.Chem.Res.47,3619–3629(2008).

24.J.A.Rogers,T.Someya,Y.Huang,Science327,1603–1607

(2010).

25.S.Baueretal.,Adv.Mater.26,149–161(2014).

26.N.Travitzkyetal.,Adv.Eng.Mater.16,729–7(2014).27.C.Cvetkovicetal.,Proc.Natl.Acad.Sci.U.S.A.111,

10125–10130(2014).

28.Y.Lu,G.Mapili,G.Suhali,S.Chen,K.Roy,J.Biomed.Mater.

Res.A77,396–405(2006).

ACKNOWLEDGMENTS

ThisworkwassponsoredbyCarbon3DInc.J.R.T.,D.S.,N.E.,D.K.,R.P.,J.P.R.,A.E.,E.T.S.,andJ.M.D.allhaveanequitystakeinCarbon3DInc.,whichisaventure-backedstartupcompany.ContinuousliquidinterfaceprintingisthesubjectofpatentprotectionincludingPatentCooperationTreatypublicationnumbersWO2014/126837A2,WO2014/126830A2,andWO2014/126834A2,andothers.

SUPPLEMENTARYMATERIALS

iftyyearsaftertherecognitionofthespe-ciesHomohabilisastheearliestknownrep-resentativeofourgenus(1),theoriginofHomoremainsclouded.Thisuncertaintystemsinlargepartfromalimitedfossilrecordbetween2.0and3.0millionyearsago(Ma),especiallyineasternAfrica.Sometaxafromthistimeperiod,suchasAustralopithecusafricanus(~2.8to2.3Ma)andthelesswellknownA.garhi(~2.5Ma)andA.aethiopicus(~2.7to2.3Ma),ap-peartoospecializedcraniallyand/ordentallytorepresenttheprobableproximateancestralconditionsforHomospeciesknowninAfricaby~2.0Ma(H.habilisandH.rudolfensis).Thisleavesathinscatterofisolated,variablyinform-ativespecimensdatedto2.4to2.3MaastheonlycrediblefossilevidencebearingontheearliestknownpopulationsofthegenusHomo(2,3).Herewedescribearecentlyrecoveredpartialhomininmandible,LD350-1,fromtheLedi-Geraruresearcharea,AfarRegionalState,Ethiopia,thatextendsthefossilrecordofHomobackintimeafurther0.4millionyears.Thespecimen,securelydatedto2.80to2.75Ma,combinesderivedmor-phologyobservedinlaterHomowithprimitivetraitsseeninearlyAustralopithecus.Thediscov-eryhasimplicationsforhypothesesconcerningthetimingandplaceofHomoorigins.

TheLD350localityresidesintheLeeAdoytaregionoftheLedi-Geraruresearcharea(Fig.1).GeologicresearchatLeeAdoyta(4)identifiedfault-boundedsedimentarypackagesdated2.84to2.58Ma.TheLD350-1mandiblewasrecov-eredonthesurfaceoffinelybeddedfossiliferous

DepartmentofAnthropology,UniversityofNevadaLasVegas,LasVegas,NV1,USA.2InstituteofHumanOriginsandSchoolofHumanEvolutionandSocialChange,ArizonaStateUniversity,Tempe,AZ85287,USA.3Departmentof

Geosciences,PennsylvaniaStateUniversity,UniversityPark,PA16802,USA.4CenterfortheAdvancedStudyofHomininPaleobiology,GeorgeWashingtonUniversity,Washington,DC20052,USA.5SchoolofEarthandSpaceExploration,ArizonaStateUniversity,Tempe,AZ85281,USA.6DepartmentofAnthropology,UniversityCollegeLondon,LondonWC1H0BW,UK.7AuthorityforResearchandConservationofCulturalHeritage,AddisAbaba,Ethiopia.

*Correspondingauthor.E-mail:brian.villmoare@unlv.edu(B.V.);wkimbel.iho@asu.edu(W.H.K.)

1Fwww.sciencemag.org/content/347/6228/1349/suppl/DC1MaterialsandMethodsSupplementaryTextFigs.S1toS4MoviesS1andS2Reference(29)

5November2014;accepted3February201510.1126/science.aaa2397

silts10mconformablyabovetheGurumahaTuff(Fig.1).Thematrixadherenttothespeci-menisconsistentwithithavingerodedfromthesesilts[fordetailsonstratigraphyanddepo-sitionalenvironment,see(4)].TheGurumahaTuffisradiometricallydatedto2.822T0.006Ma(4),adatethatisconsistentwiththenormalmagneticpolarityoftheGurumahasection,pre-sumablytheGaussChron.AnupperboundingageforLD350-1isprovidedbyanadjacentdown-faultedyoungerblockthatcontainsthe2.669T0.011MaLeeAdoytaTuff.Amagnetostratigraphicreversal12mconformablyabovetheLeeAdoytaTuffisinferredtobetheGauss/Matuyamabound-aryat2.58Ma(4).BecausenosignificanterosionaleventsintervenebetweentheGurumahaTuffandthefossiliferoushorizon,theageofLD350-1canbefurtherconstrainedbystratigraphicscaling.Applyingasedimentationrateofeither14cmperthousandyears(ky)fromtheLeeAdoytafaultblockor30cm/kyfromtheHadarFormation(5)providesageestimatesof2.77and2.80mil-lionyears(My),respectively,forLD350-1.BasedonthecurrentchronostratigraphicframeworkforLedi-Geraru,weconsidertheageofLD350-1tobe2.80to2.75My.

Thehomininspecimen,foundbyChalachewSeyoumon29January2013,comprisestheleftsideofanadultmandibularcorpusthatpreservesthepartialorcompletecrownsandrootsofthecanine,bothpremolars,andallthreemolars.Thecorpusiswellpreservedfromthesymphysistotherootoftheascendingramusandretromolarplatform.Surfacedetailisverygoodtoexcellent,andthereisnoevidenceofsignificanttransport.Theinferiormarginofthecorpusandthelingualalveolarmarginareintact,butthebuccalalveolarmarginischippedbetweenP3andM1.TheP4,M2,andM3crownsarecompleteandwellpre-served,buttheC,P3,andM1crownsareincom-plete(Fig.2andtextS2).Theanteriordentitionisrepresentedbythebrokenrootofthelateralincisorandthealveolusofthecentralincisor.Givenitslocationandage,itisnaturaltoaskwhethertheLD350-1mandiblerepresentsalate-survivingpopulationofA.afarensis,whose

sciencemag.orgSCIENCE

1352

20MARCH2015•VOL347ISSUE6228

Corrected 23 March 2015; see full text.

Continuous liquid interface production of 3D objectsJohn R. Tumbleston et al.Science 347, 1349 (2015);

DOI: 10.1126/science.aaa2397

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for yourcolleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained byfollowing the guidelines here.

The following resources related to this article are available online at

www.sciencemag.org (this information is current as of October 17, 2015 ):

Updated information and services, including high-resolution figures, can be found in the onlineversion of this article at:

http://www.sciencemag.org/content/347/6228/1349.full.html

Supporting Online Material can be found at:

http://www.sciencemag.org/content/suppl/2015/03/16/science.aaa2397.DC1.html This article cites 25 articles, 9 of which can be accessed free:

http://www.sciencemag.org/content/347/6228/1349.full.html#ref-list-1 This article has been cited by 2 articles hosted by HighWire Press; see:http://www.sciencemag.org/content/347/6228/1349.full.html#related-urls This article appears in the following subject collections:Engineering

http://www.sciencemag.org/cgi/collection/engineering

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright2015 by the American Association for the Advancement of Science; all rights reserved. The title Science is aregistered trademark of AAAS.

Downloaded from www.sciencemag.org on October 17, 2015

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务