您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页Systems biology

Systems biology

来源:意榕旅游网
BIOINFORMATICSAPPLICATIONSNOTE

Systemsbiology

Vol.22no.92006,pages1152–1153

doi:10.1093/bioinformatics/btl038

FANMOD:atoolforfastnetworkmotifdetection

SebastianWernickeÃandFlorianRasche

¨tJena,Ernst-Abbe-Platz2,07743Jena,GermanyInstitutfu¨rInformatik,Friedrich-Schiller-Universita

ReceivedonJanuary3,2006;revisedandacceptedonFebruary1,2006

AdvanceAccesspublicationFebruary2,2006AssociateEditor:JonathanWren

ABSTRACT

Summary:Motifsaresmallconnectedsubnetworksthatanetworkdisplaysinsignificantlyhigherfrequenciesthanwouldbeexpectedforarandomnetwork.Theyhaverecentlygatheredmuchattentionasaconcepttouncoverstructuraldesignprinciplesofcomplexbiologi-calnetworks.FANMODisatoolforfastnetworkmotifdetection;itreliesonrecentlydevelopedalgorithmstoimprovetheefficiencyofnetworkmotifdetectionbysomeordersofmagnitudeoverexistingtools.Thisfacilitatesthedetectionoflargermotifsinbiggernetworksthanprevi-ouslypossible.AdditionalbenefitsofFANMODaretheabilitytoanalyzecolorednetworks,agraphicaluserinterfaceandtheabilitytoexportresultstoavarietyofmachine-andhuman-readablefileformatsinclud-ingcomma-separatedvaluesandHTML.

Availability:Thetoolisfreelyavailableonlineathttp://www.minet.uni-jena.de/~wernicke/motifs/andrunsunderLinux,MacOSandWindows.

Contact:wernicke@minet.uni-jena.de

beenproposedbyKashtanetal.(2004).However,amongsomeotherdrawbacks,thisalgorithmprovidesonlynon-uniformsam-plingandscalespoorlyasmotifsizeincreases;amoredetailedanalysisoftheseproblemsisgivenbyWernicke(2005).

FANMODisatoolfornetworkmotifdetectionthatimplementsanovelalgorithmcalledRAND-ESU(Wernicke,2005)toenumerateandsamplesubgraphs.Thisalgorithmisordersofmagnitudefasterthananyotherexistingalgorithmforthistask,facilitatingthedetec-tionoflargermotifsinbiggernetworksthanpreviouslypossible.Moreover,FANMODallowsformotifdetectionincolorednet-works,somethingnotpossiblewithotherexistingtools.

2COMPARISONWITHEXISTINGTOOLS

1INTRODUCTION

Manybiologicalnetworkscontaincertainsmallsubnetworksinsignificantlyhigherfrequenciesthanrandomnetworks.Miloetal.(2002,2004)proposedtousesuchoverabundant‘topologicalmodules’(Vespignani,2003)foruncoveringthestructuraldesignprinciplesofbiologicalnetworks,therebycoiningthetermnetworkmotifsforthem.Theanalysisofnetworkmotifshasledtointer-estingresults,e.g.intheareasofprotein–proteininteractionprediction(AlbertandAlbert,2004),hierarchicalnetworkdecom-position(Itzkovitzetal.,2005)andtheanalysisoftemporalgeneexpressionpatterns(Kaliretal.,2001).

Findingnetworkmotifsconsistsofthreecomputationallyexpensivesubtasks:

󰀁Findingwhichsubgraphsoccurintheinputnetworkandinwhatnumber.

󰀁Determiningwhichofthesesubgraphsaretopologicallyequiva-lent(i.e.isomorphic)andgroupingthemintosubgraphclassesaccordingly.

󰀁Determiningwhichsubgraphclassesaredisplayedatmuchhigherfrequenciesthaninrandomgraphs(underaspecifiedrandomgraphmodel).

Someworkhasbeenspentonthesecondsubtaskbut—untilrecently—considerablylessontheothertwo.Inordertospeedupthefirstsubtask,analgorithmforsamplingsubgraphshas

ÃTowhomcorrespondenceshouldbeaddressed.

WeareawareoftwotoolsthatperformsomewhatsimilartasksasFANMODandallowforthedetectionandanalysisofnetworkmotifsindirectedandundirectednetworks,namelyMFINDER(Kashtanetal.,2002)andMAVISTO(Schreiberand

¨bbermeyer,2005).SomeworksalsomentionPAJEKSchwo

(BatageljandMrvar,2003)inthiscontext,amulti-functionaltoolfornetworkanalysis.However,PAJEKisoflimiteduseinnetworkmotifanalysis;whileitsupportsthesearchforalloccur-rencesofacertainpatterninanetwork,theenumerationofsub-graphsandstatisticalcomparisonwithrandomgraphsarenotsufficientlysupported.

BothMFINDERandMAVISTOsupportthedetectionofnetworkmotifsconsistingofuptoeightvertices,butotherwisethesetoolshaveadifferentfocus:MFINDERisacommand-linetoolthatisconcernedsolelywiththedetectionofnetworkmotifswhereasMAVISTOvisualizesoccurencesofamotifinanetworkbyaforce-directedgraphlayoutalgorithm.MFINDERalsoincorporatesabroadrangeofrandomgraphmodelsfordeterminingthefrequencyofsubgraphsinrandomgraphs.AtoolnamedMDRAWhasrecentlybeenreleasedinordertovisualizetheoutputofMFINDER,itisavailablefromthesamewebsiteasMFINDER.ThemaindisadvantageofusingMFINDERandMAVISTOfornetworkmotifdetectionisthattheemployedalgorithmsforsubgraphenumerationandsampling(thelatterbeingonlysupportedbyMFINDER)arecomparablyslowandscalepoorlyasthesub-graphsizeincreases.Asanexample,onalaptopequippedwitha1.5GHzPentiumMprocessorand512MBRAM,enumeratingall1.4·106size-5subgraphsinthetranscriptionalnetworkofEscherichiaColi(Shen-Orretal.,2002)requires620swithMAVISTOwhereasMFINDERtakes180s.OurtoolFANMODperformsthistaskinlessthan10s.

OtheradvantagesofFANMODoverthetwoexistingtoolsincludetheabilitytohandlenetworkswithcoloredverticesand

ÓTheAuthor2006.PublishedbyOxfordUniversityPress.Allrightsreserved.ForPermissions,pleaseemail:journals.permissions@oxfordjournals.org

1152

Fanmod

Fig.1.Detectingsize-4networkmotifswithcolorededgesinthetranscriptionalnetworkofE.ColiusingtheFANMODinterface(left).Viaanexportfilter(middle),theobtainedresultscanbeexportedtoHTML(right).

edgesinordertomodeldifferenttypesofinteractionsbetweendifferentkindsofentities(e.g.tofindmotifsinprotein–geneinteractionnetworks)andtheabilitytoaccuratelypredicttheoverallrunningtimeofitsmotifdetectionalgorithm(contrarytopreviousalgorithms,RAND-ESUallowsforaquickandaccurateestimationofthetotalnumberofsize-ksubgraphsinagivennetwork).WhileFANMODdoesnotincorporateamoduleforvisualizingconcreteappearancesofmotifsinanetwork,variousoutputformats(includ-ingcomma-separatedvaluesandHTML)facilitatetheanalysisandfurtherprocessingofresults.

HTMLexportfunctionwithvariousfilters(e.g.afilterforavoidingso-called‘danglingmotifs’thatcontaindegree-onevertices)allowsforthequickinspectionanddistributionofresults(seeFig.1foranexample).

ACKNOWLEDGEMENTS

ThisworkwassupportedbytheDeutscheTelekomStiftungandtheDeutscheForschungsgemeinschaft(DFG)projectPEAL(parame-terizedcomplexityandexactalgorithms,NI369/1).ConflictofInterest:nonedeclared.

3IMPLEMENTATIONANDFEATURES

TheFANMODtooliswrittenintheC++programminglanguageandconsistsofapproximately7000linesofnon-librarycode.Thegraphicaluserinterfaceandothersystem-dependentfeaturesareimplementedwiththewxWIDGETSframework(Smartetal.,2005),whichisavailableforabroadrangeofplatformsincludingLinux,MacOSandWindows.

FANMODcandetectnetworkmotifsuptoasizeofeightvertices.Forthis,allsubgraphsofthegivensizeareeitherenumer-atedoruniformlysampledintheinputnetworkusingthealgorithmdescribedbyWernicke(2005).Thesubgraphsaregroupedintoisomorphicsubgraphclassesusinganimplementationofthecano-nicalgraph-labelingalgorithmNAUTY(McKay,1981).Finally,FANMODdeterminesthefrequencyofsubgraphclassesinauser-specifiednumberofrandomgraphs.Therandomgraphsaregeneratedfromtheoriginalnetworkbyswitchingedgesbetweenvertices;theusermaychoosebetweendifferentswitchingschemesinordertopreservecertaingraphproperties(suchasthenumberofbidirectionaledgesindirectednetworks)duringtherandomization.Forcolorednetworks,motifsofsizeuptosevenvertices(depend-ingonthenumberofcolorsthatareusedforedgesandvertices)canbedetected.Thespeedofthetoolisnotaffectedbycolors,ingeneralitisevenalittlefasterbecausethecanonicalgraphlabelingisfacilitated.Therandomnetworkscanoptionallypreservethenumberofedgesbetweenverticesofdifferentcolors.

Thecalculatedsignificanceofeachsubgraphinthenetwork(expressedasP-ValuesandZ-Scoreswithrespecttothegeneratedrandomnetworks)canbeexportedtoavarietyofformats.An

REFERENCES

Albert,I.andAlbert,R.(2004)Conservednetworkmotifsallowprotein–proteininter-actionprediction.Bioinformatics,20,3346–3352.

Batagelj,V.andMrvar,A.(2003)Pajek—analysisandvisualizationoflargenetworks.

¨nger,M.andMutzel,P.(eds),GraphDrawingSoftware.Springer-Verlag,InJu

pp.77–103.

Itzkovitz,S.etal.(2005)Coarse-grainingandself-dissimilarityofcomplexnetworks.

Phys.Rev.E.,71,016127.

Kalir,S.etal.(2001)Orderinggenesinaflagellapathwaybyanalysisofexpression

kineticsfromlivingbacteria.Science,292,2080–2083.

Kashtan,N.,Itzkovitz,S.,Milo,R.andAlon,U.(2002)Mfindertoolguide.Technical

report,DepartmentofMolecularCellBiologyandComputerScienceandAppliedMathematics,WeizmanInstituteofScience,Israel.

Kashtan,N.etal.(2004)Efficientsamplingalgorithmforestimatingsubgraphcon-centrationsanddetectingnetworkmotifs.Bioinformatics,20,1746–1758.McKay,B.D.(1981)Practicalgraphisomorphism.Congr.Numer.,30,45–87.

Milo,R.etal.(2004)Superfamiliesofdesignedandevolvednetworks.Science,

303,1538–1542.

Milo,R.etal.(2002)Networkmotifs:simplebuildingblocksofcomplexnetworks.

Science,298,824–827.

¨bbermeyer,H.(2005)Mavisto:atoolfortheexplorationofSchreiber,F.andSchwo

networkmotifs.Bioinformatics,21,3572–3574.

Shen-Orr,S.S.etal.(2002)Networkmotifsinthetranscriptionalregulationnetworkof

EscherichiaColi.Nat.Gen.,31,64–68.

Smart,J.,Hock,K.andCsomor,S.(2005)Cross-PlatformGUIProgrammingwith

wxWidgets.PrenticeHallPTR.

Vespignani,A.(2003)Evolutionthinksmodular.Nat.Gen.,35,118–119.

Wernicke,S.(2005)Afasteralgorithmfordetectingnetworkmotifs.InProceedingsof

the5thWorkshoponAlgorithmsinBioinformatics(WABI’05),LectureNotesinBioinformatics.Vol.3692,pp.165–177.(Longversionsubmitted).

1153

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务