黄梅县二中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 某公园有P,Q,R三只小船,P船最多可乘3人,Q船最多可乘2人,R船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( ) A.36种 B.18种 C.27种 D.24种 2. 复数Z=
(i为虚数单位)在复平面内对应点的坐标是( )
A.(1,3) B.(﹣1,3) C.(3,﹣1) D.(2,4) 3. 已知F1、F2是椭圆的两个焦点,=0的点M总在椭圆内部,满足则椭圆离心率的取值范围是( ) A.(0,1)
B.(0,]
C.(0,
)
D.[
,1)
4. 如图,该程序运行后输出的结果为( )
A.7 B.15 C.31 D.63
5. 数列{an}的首项a1=1,an+1=an+2n,则a5=( ) A.
B.20
C.21
D.31
x2y26. 已知点P是双曲线C:221(a0,b0)左支上一点,F1,F2是双曲线的左、右两个焦点,且
abPF1PF2,PF2与两条渐近线相交于M,N两点(如图),点N恰好平分线段PF2,则双曲线的离心率
是( ) A.5
B.2 C.3 D.2
第 1 页,共 16 页
精选高中模拟试卷
【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.
7. 一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为( )
(A) 8
( B ) 4 (C) (D)
8 34 3+
=1Q两点,(a>b>0)的左、右焦点,过F2的直线交椭圆于P,若∠F1PQ=60°,
8. 设F1,F2分别是椭圆
|PF1|=|PQ|,则椭圆的离心率为( ) A.
B.
C.
D.
9. 在长方体ABCD﹣A1B1C1D1中, 底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是( )A.
10.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为( )
B.
C.
D.
第 2 页,共 16 页
精选高中模拟试卷
A5 B4 C3 D2
11.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( )。
A3 B4 C5 D6
212.已知角的终边经过点(sin15,cos15),则cos的值为( )
13133 B. C. D.0 24244二、填空题
A.
13.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记则S的最小值是 .
14.已知sincos,
1sincos,(0,),则的值为 .
73sin12= .
15.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则
16.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=(
)t﹣a(a为常数),
如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.
第 3 页,共 16 页
精选高中模拟试卷
17.空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点. ①若AC=BD,则四边形EFGH是 ;
②若AC⊥BD,则四边形EFGH是 .
18.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy中,直线l与函数
fx2x2a2x0和gx2x3a2x0均相切(其中a为常数),切点分别为Ax1,y1和
Bx2,y2,则x1x2的值为__________. 三、解答题
19.已知函数f(x)=lnx﹣kx+1(k∈R).
(Ⅰ)若x轴是曲线f(x)=lnx﹣kx+1一条切线,求k的值; (Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围.
20.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}. (1)求A∪B;
(2)求(∁UA)∩B; (3)求∁U(A∩B).
第 4 页,共 16 页
精选高中模拟试卷
21.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图. (Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;
(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.
22.(本小题满分10分)选修4-4:坐标系与参数方程.
x=1+3cos α
在直角坐标系中,曲线C1:(α为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐
y=2+3sin α
标系,C2的极坐标方程为ρ=
2πsin(θ+)
4
.
(1)求C1,C2的普通方程;
3π
(2)若直线C3的极坐标方程为θ=(ρ∈R),设C3与C1交于点M,N,P是C2上一点,求△PMN的面
4积.
第 5 页,共 16 页
精选高中模拟试卷
23.已知椭圆C: =1(a>2)上一点P到它的两个焦点F1(左),F2 (右)的距离的和是6.
(1)求椭圆C的离心率的值;
(2)若PF2⊥x轴,且p在y轴上的射影为点Q,求点Q的坐标.
24.若数列{an}的前n项和为Sn,点(an,Sn)在y=(Ⅰ)求数列{an}的通项公式; (Ⅱ)若c1=0,且对任意正整数n都有
.
,求证:对任意正整数n≥2,总有x的图象上(n∈N*),
第 6 页,共 16 页
精选高中模拟试卷
黄梅县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】
【解析】
C
排列、组合及简单计数问题. 【专题】计算题;分类讨论.
【分析】根据题意,分4种情况讨论,①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,③,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,④,P船乘1个大人和2个小孩共3人,Q船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案. 【解答】解:分4种情况讨论,
①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,
②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33×A22=12种情况,
③,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C32×2=6种情况, ④,P船乘1个大人和2个小孩共3人,Q船乘2个大人,有C31=3种情况, 则共有6+12+6+3=27种乘船方法, 故选C. 组合公式. 2. 【答案】A 【解析】解:复数Z=故选:A.
【点评】本题考查了复数的运算法则、几何意义,属于基础题.
3. 【答案】C 【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c, ∵
=0,
∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆. 又M点总在椭圆内部,
2222
∴该圆内含于椭圆,即c<b,c<b=a﹣c.
【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、
==(1+2i)(1﹣i)=3+i在复平面内对应点的坐标是(3,1).
第 7 页,共 16 页
精选高中模拟试卷
2∴e=
<,∴0<e<
.
故选:C.
【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.
4. 【答案】如图,该程序运行后输出的结果为( ) D
【解析】解:因为A=1,s=1
判断框内的条件1≤5成立,执行s=2×1+1=3,i=1+1=2; 判断框内的条件2≤5成立,执行s=2×3+1=7,i=2+1=3; 判断框内的条件3≤5成立,执行s=2×7+1=15,i=3+1=4; 判断框内的条件4≤5成立,执行s=2×15+1=31,i=4+1=5; 判断框内的条件5≤5成立,执行s=2×31+1=63,i=5+1=6;
此时6>5,判断框内的条件不成立,应执行否路径输出63,所以输入的m值应是5. 故答案为5.
【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束.
5. 【答案】C
【解析】解:由an+1=an+2n,得an+1﹣an=2n,又a1=1, ∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1 =2(4+3+2+1)+1=21. 故选:C.
【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.
6. 【答案】A. 【
解
析
】
7. 【答案】A
第 8 页,共 16 页
精选高中模拟试卷
【解析】
1根据三视图可知,该几何体是长方体中挖去一个正四棱锥,故该几何体的体积等于2232238
38. 【答案】 D
【解析】解:设|PF1|=t, ∵|PF1|=|PQ|,∠F1PQ=60°, ∴|PQ|=t,|F1Q|=t,
由△F1PQ为等边三角形,得|F1P|=|F1Q|, 由对称性可知,PQ垂直于x轴, F2为PQ的中点,|PF2|=, ∴|F1F2|=
,即2c=
,
=t,
由椭圆定义:|PF1|+|PF2|=2a,即2a=t
∴椭圆的离心率为:e==故选D.
=.
9. 【答案】C
【解析】解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1, 故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H, 则易知A1H的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=
,
第 9 页,共 16 页
精选高中模拟试卷
AO1=3故选:C.
,由A1O1•A1A=h•AO1,可得A1H=,
【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.
10.【答案】C
【解析】由已知,得{z|z=x+y,x∈A,y∈B}={-1,1,3},所以集合{z|z=x+y,x∈A,y∈B}中的元素的个数为3. 11.【答案】B
【解析】由题意知x=a+b,a∈A,b∈B,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B 12.【答案】B 【解析】
考
点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.
二、填空题
13.【答案】
【解析】解:设剪成的小正三角形的边长为x,则:S=令3﹣x=t,t∈(2,3), ∴S=立;
=
=
,当且仅当t=即t=2
时等号成
=
,(0<x<1)
.
第 10 页,共 16 页
精选高中模拟试卷
故答案为:
14.【答案】【解析】
.
17(62) 3sin267sinsincoscossin,
41243434317sincos1747326sin12623, 故答案为
17(62).
3考点:1、同角三角函数之间的关系;2、两角和的正弦公式. 15.【答案】 ﹣5 .
2
【解析】解:求导得:f′(x)=3ax+2bx+c,结合图象可得 x=﹣1,2为导函数的零点,即f′(﹣1)=f′(2)=0, 故
,解得
故==﹣5
故答案为:﹣5
16.【答案】0.6 【解析】解:当t>0.1时,可得1=(∴0.1﹣a=0 a=0.1
)0.1﹣a
第 11 页,共 16 页
精选高中模拟试卷
由题意可得y≤0.25=, 即(
)t﹣0.1≤,
即t﹣0.1≥ 解得t≥0.6,
由题意至少需要经过0.6小时后,学生才能回到教室. 故答案为:0.6
【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.
17.【答案】 菱形 ; 矩形 .
【解析】解:如图所示:①∵EF∥AC,GH∥AC且EF=AC,GH=AC ∴四边形EFGH是平行四边形 又∵AC=BD ∴EF=FG
∴四边形EFGH是菱形.
②由①知四边形EFGH是平行四边形 又∵AC⊥BD, ∴EF⊥FG
∴四边形EFGH是矩形. 故答案为:菱形,矩形
【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.
第 12 页,共 16 页
精选高中模拟试卷
18.【答案】
56 27【解析】
三、解答题
19.【答案】
【解析】解:(1)函数f(x)的定义域为(0,+∞),f′(x)=﹣k=0, ∴x=,
由ln﹣1+1=0,可得k=1;
(2)当k≤0时,f′(x)=﹣k>0,f(x)在(0,+∞)上是增函数;
当k>0时,若x∈(0,)时,有f′(x)>0,若x∈(,+∞)时,有f′(x)<0, 则f(x)在(0,)上是增函数,在(,+∞)上是减函数. k≤0时,f(x)在(0,+∞)上是增函数, 而f(1)=1﹣k>0,f(x)≤0不成立,故k>0,
第 13 页,共 16 页
精选高中模拟试卷
∵f(x)的最大值为f(),要使f(x)≤0恒成立, 则f()≤0即可,即﹣lnk≤0,得k≥1.
【点评】本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
20.【答案】
【解析】解:全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}. (1)A∪B={1,2,3,4,5,7} (2)(∁UA)={1,3,6,7} ∴(∁UA)∩B={1,3,7} (3)∵A∩B={5}
∁U(A∩B)={1,2,3,4,6,7}.
【点评】本题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.
21.【答案】
【解析】解:(I)由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29. 所以该班在这次数学测试中成绩合格的有29人.
(II)由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2, 设成绩为x、y
成绩在[90,100]的人数为50×10×0.006=3,设成绩为a、b、c, 若m,n∈[50,60)时,只有xy一种情况, 若m,n∈[90,100]时,有ab,bc,ac三种情况, 若m,n分别在[50,60)和[90,100]内时,有 a b c x xa xb xc y ya yb yc 共有6种情况,所以基本事件总数为10种, 事件“|m﹣n|>10”所包含的基本事件个数有6种 ∴
.
,所以有:
【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是频率;即可把所求范围内的频率求出,进而求该范围的人数.
×组距=
第 14 页,共 16 页
精选高中模拟试卷
22.【答案】
x=1+3cos α
【解析】解:(1)由C1:(α为参数)
y=2+3sin α
得(x-1)2+(y-2)2=9(cos2α+sin2α)=9. 即C1的普通方程为(x-1)2+(y-2)2=9, 由C2:ρ=
2π
sin(θ+)
4
得
ρ(sin θ+cos θ)=2, 即x+y-2=0,
即C2的普通方程为x+y-2=0.
(2)由C1:(x-1)2+(y-2)2=9得 x2+y2-2x-4y-4=0,
其极坐标方程为ρ2-2ρcos θ-4ρsin θ-4=0, 3π
将θ=代入上式得
4ρ2-2ρ-4=0, ρ1+ρ2=2,ρ1ρ2=-4,
∴|MN|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=32. 3
C3:θ=π(ρ∈R)的直角坐标方程为x+y=0,
4
2
∴C2与C3是两平行直线,其距离d==2. 2
11
∴△PMN的面积为S=|MN|×d=×32×2=3.
22即△PMN的面积为3.
23.【答案】
【解析】解:(1)根据椭圆的定义得2a=6,a=3; ∴c=∴
; ;
; ;
即椭圆的离心率是(2)
第 15 页,共 16 页
精选高中模拟试卷
∴x=带入椭圆方程
).
得,y=;
所以Q(0,
24.【答案】
【解析】(I)解:∵点(an,Sn)在y=∴当n≥2时,∴
当n=1时,∴
=,化为
,解得a1=.
=
,
,
,
x的图象上(n∈N*),
.
=2n+1,
(2)证明:对任意正整数n都有
∴cn=(cn﹣cn﹣1)+(cn﹣1﹣cn﹣2)+…+(c2﹣c1)+c1 =(2n﹣1)+(2n﹣3)+…+3 =
∴当n≥2时,∴
=,
又∴
=.
.
==
=(n+1)(n﹣1).
=
+…+
.
=
<
【点评】本题考查了等比数列的通项公式与等差数列的前n项和公式、“累加求和”、“裂项求和”、对数的运算性质、“放缩法”、递推式,考查了推理能力与计算能力,属于中档题.
第 16 页,共 16 页
因篇幅问题不能全部显示,请点此查看更多更全内容