第一章 集合与函数概念
课时一:集合有关概念 1. 集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东 西,并且能判断一个给定的东
西是否属于这个整体。
2. 一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。 3. 集合的中元素的三个特性:
(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。例:世界上最高的山、
中国古代四大美女、教室里面所有的人……
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
例:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合
例:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。
1)列举法:将集合中的元素一一列举出来 {a,b,c……}
2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{xR| x-3>2} ,{x| x-3>2}
①语言描述法:例:{不是直角三角形的三角形}
②Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:
(1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合
2
(3)空集:不含任何元素的集合 例:{x|x=-5} 5、元素与集合的关系:
(1)元素在集合里,则元素属于集合,即:aA
(2)元素不在集合里,则元素不属于集合,即:a A 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
课时二、集合间的基本关系 1.“包含”关系—子集
(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集
合B的子集。记作:AB(或BA)
注意:AB有两种可能(1)A是B的一部分,;
(2)A与B是同一集合。
B或BA 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
2
实例:设 A={x|x-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。AA
②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA) 或若集合AB,存在xB且x A,则称集合A是集合B的真子集。 ③如果 AB, BC ,那么 AC ④ 如果AB 同时 BA 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
nn n n
有n个元素的集合,含有2个子集,2-1个真子集,2-1个非空子集,2-2个非空真子集
课时三、集合的运算 运算类型 交 集 并 集 补 集 定 义 全集:一般,若一个集合汉语我们所研究问题中这几道的所有元素,我们就称这个素所组成的集合,叫做A,B合B的元素所组成的集合,集合为全集,记作:U 的交集.记作AB(读作‘A叫做A,B的并集.记作:AB设S是一个集合,A是S的一个子集,由交B’),即AB={x|xA,(读作‘A并B’),即AB S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作且xB}. ={x|xA,或xB}). 由所有属于A且属于B的元由所有属于集合A或属于集CSACSA={x|xS,且xA} 韦恩图示 S A 性 质 A ∩ A=A A ∩Φ=Φ A ∩B=BA A ∩BA A ∩BB AUA=A AUΦ=A AUB=BUA AUBA AUBB (CuA)∩(CuB)= Cu(AUB) (CuA) U (CuB)= Cu(A∩B) AU(CuA)=U A∩(CuA)=Φ. 课时四:函数的有关概念 1. 函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:
y=f(x),x∈A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;
(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 函数的三要素:定义域、值域、对应法则 3、区间的概念:
(1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间
(3)区间的数轴表示
4函数的表示方法:(1)解析法:明确函数的定义域
(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。 (3)列表法:选取的自变量要有代表性,可以反应定义域的特征。 5、函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .
(2) 画法 A、描点法: B、图象变换法:平移变换;伸缩变换;对称变换。 (3)函数图像变换的特点: 1)函数y=f(x) 关于X轴对称y=-f(x) 2)函数y=f(x) 关于Y轴对称y=f(-x) 3)函数y=f(x) 关于原点对称y=-f(-x) 2.映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)” 对于映射f:A→B来说,则应满足: (1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的; (2)集合A中不同的元素,在集合B中对应的象可以是同一个; (3)不要求集合B中的每一个元素在集合A中都有原象。 课时五:函数的解析表达式,及函数定义域的求法
1、函数解析式子的求法
(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应
法则,二是要求出函数的定义域.
(2)、求函数的解析式的主要方法有:
1)代入法:
2)待定系数法: 3)换元法: 4)拼凑法:
2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;
(4)指数、对数式的底必须大于零且不等于1.
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
3、相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具
备)
课时六:
1.值域 : 先考虑其定义域
(1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;
(2)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范围。 (3)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。 (4)分离常数法
课时七
1.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
(4)常用的分段函数
1)取整函数: 2)符号函数:
3)含绝对值的函数:
注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的。所以函数是映射,而映射不一定的函数
课时八函数的单调性(局部性质)及最值
1、增减函数
(1)设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种 2、 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. 3、函数单调区间与单调性的判定方法 (A) 定义法: 1 任取x,x∈D,且x 3 变形(通常是因式分解和配方); ○ 4 定号(即判断差f(x)-f(x)的正负); ○ 5 下结论(指出函数f(x)在给定的区间D上的单调性). ○ 1 2 1 2 1 2 1 2 (B)图象法(从图象上看升降) (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减” 注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 课时九:函数的奇偶性(整体性质) (1)、偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2)、奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. (3)、具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 利用定义判断函数奇偶性的步骤: 1首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则○ 进行下面判断; 2确定f(-x)与f(x)的关系; ○ 3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; ○ 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. (4)利用奇偶函数的四则运算以及复合函数的奇偶性 1)在公共定义域内,偶函数的加减乘除仍为偶函数; 奇函数的加减仍为奇函数; 奇数个奇函数的乘除认为奇函数; 偶数个奇函数的乘除为偶函数; 一奇一偶的乘积是奇函数; 2)复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇。 注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称, (1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 课时十、函数最值及性质的应用 1、函数的最值 1 利用二次函数的性质(配方法)求函数的最大(小)值 ○ 2 利用图象求函数的最大(小)值 ○ 3 利用函数单调性的判断函数的最大(小)值: ○ 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 2、函数的奇偶性与单调性 奇函数在关于原点对称的区间上有相同的单调性; 偶函数在关于原点对称的区间上有相反的单调性。 3、判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较。 4、绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值。 5、在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数。(高一阶段可以利用奇函数f(0)=0)。 指数、对数、幂函数知识归纳 知识要点梳理 知识点一:指数及指数幂的运算 1.根式的概念 的次方根的定义:一般地,如果,那么叫做的次方根,其中 当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根 有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0. 式子叫做根式,叫做根指数,叫做被开方数. 2.n次方根的性质: (1)当为奇数时,;当为偶数时, (2) 3.分数指数幂的意义: ; 注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质: (1) (2) (3) 知识点二:指数函数及其性质 1.指数函数概念:一般地,函数叫做指数函数,其中是自变量,函数的定义域为. 2.指数函数函数性质: 函数 名称 定义 图象 定义域 值域 过定点 奇偶性 单调性 函数值的变化情况 变化对图象的影响 在上是增函数 图象过定点,即当时,. 非奇非偶 在上是减函数 指数函数 函数且叫做指数函数 在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小. 知识点三:对数与对数运算 1.对数的定义 (1)若,则叫做以为底的对数,记作,叫做底数, 叫做真数. (2)负数和零没有对数. (3)对数式与指数式的互化:. 2.几个重要的对数恒等式: ,,. 3.常用对数与自然对数:常用对数:,即;自然对数:,即(其中…). 4.对数的运算性质 如果,那么 ①加法: ②减法: ③数乘: ④ ⑤ ⑥换底公式: 知识点四:对数函数及其性质 1.对数函数定义 一般地,函数叫做对数函数,其中是自变量,函数的定义域. 2.对数函数性质: 函数 名称 定义 图象 定义域 值域 过定点 奇偶性 单调性 函数值的 变化情况 变化对图象的影响 在上是增函数 图象过定点,即当时,. 非奇非偶 在上是减函数 对数函数 函数且叫做对数函数 在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小. 知识点五:反函数 1.反函数的概念 设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成. 2.反函数的性质 (1)原函数与反函数的图象关于直线对称. (2)函数的定义域、值域分别是其反函数的值域、定义域. (3)若在原函数的图象上,则在反函数的图象上. (4)一般地,函数要有反函数则它必须为单调函数. 3.反函数的求法 (1)确定反函数的定义域,即原函数的值域; (2)从原函数式中反解出; (3)将改写成,并注明反函数的定义域. 知识点六:幂函数 1.幂函数概念 形如的函数,叫做幂函数,其中为常数. 2.幂函数的性质 (1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函 数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数 时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时, 图象只分布在第一象限. (2)过定点:所有的幂函数在都有定义,并且图象都通过点. (3)单调性:如果,则幂函数的图象过原点,并且在 上为增函 数.如果,则幂函数的图象在上为减函数,在第一象限内, 图象无限接近轴与轴. (4)奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和 ),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为 偶数为奇数时,则是非奇非偶函数. (5)图象特征:幂函数,当时,若,其图象在直线下方,若,其图 象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下 方. 高中数学必修4知识点 第一章 三角函数 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角 零角:不作任何旋转形成的角2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称角. 第一象限角的集合为k360k36090,k 第二象限角的集合为k36090k360180,k 第三象限角的集合为k360180k360270,k 第四象限角的集合为k360270k360360,k 终边在x轴上的角的集合为k180,k 终边在y轴上的角的集合为k18090,k 终边在坐标轴上的角的集合为k90,k 3、与角终边相同的角的集合为k360,k 为第几象限4、长度等于半径长的弧所对的圆心角叫做1弧度. 5、半径为r的圆的圆心角所对弧的长为l,则角的弧度数的绝对值是6、弧度制与角度制的换算公式:2360,1l. r180,157.3. 1807、若扇形的圆心角为为弧度制,半径为r,弧长为l,周长为C,面积为S,则lr,C2rl, 11Slrr2. 228、设是一个任意大小的角,的终边上任意一点的坐标是x,y,它与原点的距离是 rrx2y20,则sinyxy,cos,tanx0. rrxyPTOMAx9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正. 10、三角函数线:sin,cos,tan. 11、同角三角函数的基本关系:1sin2cos21sin21cos2,cos21sin2; 2sintancossinsintancos,cos. tan12、函数的诱导公式: 1sin2ksin,cos2kcos,tan2ktank. 2sinsin,coscos,tantan. 3sinsin,coscos,tantan. 4sinsin,coscos,tantan. 口诀:函数名称不变,符号看象限. 5sincos,cossin.6sincos,cossin. 2222口诀:正弦与余弦互换,符号看象限. 13、①的图象上所有点向左(右)平移个单位长度,得到函数ysinx的图象;再将函数 ysinx的图象上所有点的横坐标伸长(缩短)到原来的 1倍(纵坐标不变),得到函数ysinx的图象;再将函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍 (横坐标不变),得到函数ysinx的图象. ②数ysinx的图象上所有点的横坐标伸长(缩短)到原来的 1倍(纵坐标不变),得到函数 ysinx的图象;再将函数ysinx的图象上所有点向左(右)平移 个单位长度,得到函数ysinx的图象;再将函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数ysinx的图象. 14、函数ysinx0,0的性质: ①振幅:;②周期:2;③频率:f1;④相位:x;⑤初相:. 2函数ysinx,当xx1时,取得最小值为ymin ;当xx2时,取得最大值为ymax,则 11ymaxymin,ymaxymin,x2x1x1x2. 222 15、正弦函数、余弦函数和正切函数的图象与性质: 性 质 函 数 ysinx ycosx ytanx 图象 定义域 值域 R R xxk,k 21,1 当x2k1,1 当x2kk时, R 2k时,2最值 ymax1;当x2k ymax1;当x2k 既无最大值也无最小值 k时,ymin1. 周期性 奇偶性 k时,ymin1. 2 偶函数 2 奇函数 奇函数 在2k,2k 22k上是增函数;在 单调性 在2k,2kk上是增函数;在2k,2k 在k,k 2232k,2k 22k上是减函数. k上是增函数. k上是减函数. 对称中心k,0k 对称性 对称轴xk2k 对称中心k,0k 2对称轴xkk k,0k 对称中心2无对称轴 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务