例题
中线是三角形中的重要线段之一。为了解决几何问题,常常采用“倍长中线法”添加辅助线。倍长中线法的过程是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题。
倍长中线最重要的一点是延长中线一倍,完成SAS全等三角形模型的构造。常用的辅助线添加方法有两种:一是将中线延长到某一点,使其等于另一条边,然后连接这两个点构造全等三角形;二是通过作垂线和延长线来间接倍长中线。
例1:在△ABC中,已知AB=5,AC=3,求中线AD的取值范围。
例2:在△ABC中,已知AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证BD=CE。
例3:在△ABC中,已知AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证AF=EF。
例4:在△ABC中,已知AB≠AC,D、E在BC上,且DE=EC。过D作DF//BA交AE于点F,DF=AC。求证AE平分∠BAC。
例5:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证∠C=∠BAE。
自检自测:
1、在△ABC中,已知BD=DC=AC,E是DC的中点,求证AD平分∠BAE。
2、在四边形ABCD中,已知AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。试探究线段AB与AF、CF之间的数量关系,并证明你的结论。
3、在△ABC中,已知AD为中线,DE平分∠BDA交AB于E,DF平分∠ADC交AC于F。求证BE+CF>EF。
4、在直角△ABC中,已知CM⊥XXX于M,AT平分∠BAC交CM于D,交BC于T,XXX于E。求证CT=BE。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务