您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页1998 Measurement of Particle Velocities in Conical Spouted Beds Using an Optical Fiber Probe

1998 Measurement of Particle Velocities in Conical Spouted Beds Using an Optical Fiber Probe

来源:意榕旅游网
4520Ind.Eng.Chem.Res.1998,37,4520-4527

MeasurementofParticleVelocitiesinConicalSpoutedBedsUsinganOpticalFiberProbe

MartinOlazar,*Marı´aJ.SanJose´,SoniaAlvarez,AlbertoMorales,andJavierBilbao

DepartamentodeIngenierı´aQuı´mica,UniversidaddelPaı´sVasco,Apartado644,48080Bilbao,Spain

Theverticalcomponentsofparticlevelocitiesinthespoutandannularzonesofconicalspoutedbedshavebeenexperimentallydeterminedfordifferentvaluesbothofcontactorgeometricfactors(angleandairinletdiameter)andofoperatingconditions(particlediameter,stagnantbedheight,andairvelocity)bymeansofanopticalfiberprobe.Basedontheeffectoftheoperatingvariablesonthelongitudinalandradialprofilesoftheparticlevelocities,acorrelationhasbeendeterminedfortheircalculationatanypositioninthespoutzone.ThecorrelationproposedbyNe´methandPallaiforthecalculationoftheaverageparticlevelocityatthewallincylindricalspoutedbedshasbeenproventobevalidinconicalspoutedbeds.

Introduction

Recentstudiesonconicalspoutedbedshavefocusedonthedevelopmentoffundamentalhydrodynamicmodelstocharacterizetheirphysicalbehavior(Olazaretal.,1992,1993b,1995a;SanJose´etal.,1993,1995).However,muchofthisworkhasfocusedongas-phaseflow.Thepresentworkseekstoextendthepreviousstudiestoincludethesolidbehaviorintheseunits.Specifically,theverticalcomponentsoftheparticlevelocitiesareexperimentallydeterminedwiththeaidofanopticalfiberprobe.

Giventheirversatilityingasandsolidflow,conicalspoutedbedsareasuitablecontactmethodwhenshortgasresidencetimesarerequiredandwhenavigorousgas-solidcontactisneededduetothecharacteristicsofthesolid,suchaswideparticlesizedistribution(Olazaretal.,1993a;SanJose´etal.,1994),irregulartexture(Olazaretal.,1994a),orstickynature(Olazaretal.,1994b,1997).Asisevidentfromthesepapers,thesolidflowinconicalcontactorsisconsiderablydifferentfromthatincylindricalcontactors.Thistermisappliedtobothspoutedbedsmadeupofacylindricalcolumnwithaflatbottomandtoconventionalspoutedbeds,conical-cylindrical,inwhichmostofthebediswithinthecylindricalsection.Consequently,inthelattercase,thesolidflowinthecylindricalsection(mostofthebed)ishardlydependentonthedesignoftheconicalsection.Thespecificconicalcontactorused,withthegeometricfactorsthatinfluenceitshydrodynamics,isshowninFigure1.

Severalauthors(MathurandGishler,1955;Thorleyetal.,1959;MikhailikandAntanishin,1967;GorshteinandMukhlenov,1967;LefroyandDavidson,1969;MathurandEpstein,1974;VanVelzenetal.,1974;Kmiec,1980;SuciuandPatrascu,1978;Dayetal.,1987;KimandCho,1991;Royetal.,1994)studiedtheparticlevelocityincylindricalspoutedbedsanddeterminedthatthemaximumvelocityisreachedattheaxisofthespout,nearthebottomofthecontactor.Theseauthorsignoredtheradialcomponentoftheparticlevelocityin

*Towhomcorrespondenceshouldbeaddressed.Tele-phone:34-4-4647700,ext.2575.FAX:34-4-4648500.E-mail:iqpolaum@lg.ehu.es.

Figure1.Geometricfactorsofthecontactor.

thespout.VanVelzenetal.(1974)proposedthefollowingequationforthecalculationofparticlevelocityalongtheaxis:

υz(0))[υz(0)]max1-1-

[(zzm

)]2

(1)

wherethemaximumvelocityattheaxisiscalculatedfromtheoperatingconditionsusingtheempiricalrelationship(VanVelzenetal.,1974):

F0.5G1.09

[υz(0)]max)40

dpD00.5H00.35Dc0.25

(2)

Thelongitudinalpositionofthemaximumvelocityiscalculatedasfollows(VanVelzenetal.,1974):

F0.4G1.18

zm)1.60.67

dpDc

(3)

Theaforementionedauthorsacceptedaparabolicradialprofileforparticlevelocityatanylevelinthespout.EpsteinandGrace(1984)proposedthefollowingequation:

υz)υz(0)1-

[()]rrs

m

(4)

10.1021/ie9800243CCC:$15.00©1998AmericanChemicalSociety

PublishedonWeb10/07/1998

wheremvariesbetween1.3and2.2,dependingontheoperatingconditions(m)2.0forMathurandEpstein(1974)).

TheradialprofiledeterminedbyHeetal.(1994)ismorecomplex,sincethemaximumparticlevelocityinthespoutisslightlydisplacedfromtheaxisintheuppersectionofthebed.ThisdisplacementofthemaximumvelocitywastheoreticallypredictedbyKrzywanskietal.(1992),whoattributedittoradialmovementoftheparticlesandinterparticlecollisionsinthespout.

Thefewpapersdealingwithparticlevelocitiesinconicalspoutedbedsrevealpeculiarcharacteristicsoftheparticlevelocityinthespout.Thus,Kmiec(1980)andBoulosandWaldie(1986)determinedthatthemaximumvelocitiesinthespoutsoftheconicalspoutedbedsarehigherthanthosecorrespondingtothecylin-dricalspoutedbedsandthattheyarereachedclosertothebase.RobinsonandWaldie(1978)andBoulosandWaldie(1986)provedthatneartheinterface,theparticlesdescendrelativelyquicklyjustpriortoentryinthespout.

Intheannularzoneofthecylindricalspoutedbeds,severalauthors(Thorleyetal.,1959;SuciuandPatras-cu,1978;Becker,1961;MathurandEpstein,1974;VanVelzenetal.,1974;Roveroetal.,1985;Dayetal.,1987;BenkridandCaram,1989;Royetal.,1994)determinedthatinthecylindricalsectionofthebed,theradialprofileoftheparticledownwardvelocityisalmostflat,withasmallvelocitydecreasenearthecontactorwallandattheinterfacebetweentheannularandspoutzones(BenkridandCaram,1989;KimandCho,1991;Heetal.,1994).Theparticlevelocityhasnoradialcomponentuntiltheparticlereachestheconicalsection,wheretheverticalcomponentincreasesandtheradialcomponentishigh.Mostoftheaforementionedauthorsassumealineardecreaseoftheparticlevelocityastheparticlesdescendalongthecylindricalsection.SuciuandPatrascu(1978)proposedthefollowingequationforthecalculationoftheaveragevelocityintheannularzone,asafunctionofthelongitudinalposition:

(υjz

a))0.043+0.16

(H

)(5)

Royetal.(1994)determinedthattheevolutionofvelocitywiththelongitudinalpositionisnotlinearbut,duetotheincreaseofbedvoidagewithlongitudinalposition(Heetal.,1994),isproportionaltoz0.65.ExperimentalSection

Theexperimentalunitwasdescribedinpreviouspapers(Olazaretal.,1992,1993b;SanJose´etal.,1993).Thestudyhasbeencarriedoutusingcontactorsmadeofpoly(methylmethacrylate).Thevaluesofthegeo-metricfactors)defined0.36m;inangle,Figureγ1)are33,as36,follows:and45°;columndiameter,Dctheircorrespondingheightoftheconicalsection,Hand0.36m;airinletdiameter,D0.03,c)0.50,0.45,0)0.04,and0.05m.Thedesignoftheairinletforsystemstabilitywasdescribedindetailinapreviouspaper(Olazaretal.,1992).Thestagnantbedheightwasvariedbetween0.05and0.30m.Thesolidsusedwereglass)3,4,spheresand5mm.

(density)2420kgm-3)ofdiametersdpTheprobeusedformeasurementoftheverticalcomponentofparticlevelocityatanypositioninthebedwasdescribedinapreviouspaper(Olazaretal.,1995b)

Ind.Eng.Chem.Res.,Vol.37,No.11,19984521

Figure2.Verticalcomponentoftheparticlevelocityinthespoutzone,atdifferentlongitudinalpositions.γ)33°,D3mm,H0)0.03m,d)p0)0.18m,u)ums.

andconsistsofanencasingofstainlesssteel,whosemaximumandminimumdimensionsare5.0and1.5mm,respectively,whichcontainsthreeopticalfibersarrangedinparallel.Whentheparticlepassesinfrontoftheprobehead,itreflectslightemittedbythecentralfiber.Thelightreflectediscollectedinsuccessionbythetwolateralfibersandissenttotwoanalogicalchannels.Fromastatisticalanalysis,bymeansofthecross-correlationfunction(incorporatedtotheMATLAB5.1program),thesignalswithastatisticallysignificantcorrelationcoefficient(indicatingthatthesameparticlespassinfrontofbothfibers)areaccepted.Thesecoef-ficientsarehigherthan90%inthespoutzoneandhigherthan60%intheannularzone.Fromtheeffectivedistancebetweenthetworeceivingfibersandthedelaytimebetweenthetwosignals,τ(timecorre-spondingtothemaximumvalueofthecross-correlationfunction),itcanbeascertainedwhetherthedisplace-mentisupwardordownward(positiveornegativetimedelay),andthevelocityoftheparticlealongthelongi-tudinaldirectioncanbecalculated:

υz)

deτ(6)

Theeffectivedistance,donarotarydiskofknownangulare)3.3mm,wasdeterminedvelocityfollowingtheproceduredescribedbyBenkridandCaram(1989).+12TheV).signalsA12-Vpasslightthroughsourceasendssignallightamplifiertotheemitting(-12tofiber,andafiltercontrolstheintensityofthebeam.Ananalogical/digitalinterfacesendsthedatatothecom-puterforprocessing.

Thedownwardvelocityoftheparticlesalongthewallhasbeenmeasuredbyatechniquebasedonvideorecordingandimagetreatment,whichwasdescribedinapreviouspaper(Olazaretal.,1996).Results

ParticleVelocitiesintheSpout.Asanexampleoftheresultsobtainedinthespoutzonebymeansoftheopticalfiber,theverticalcomponentsoftheparticlevelocityinthespoutareschematicallyoutlinedinFigure2foroneoftheexperimentalsystemsstudied.Thedelimitationoftheinterfacebetweenthespoutandannularzones,whichisdrawninFigure2,wascarried

4522Ind.Eng.Chem.Res.,Vol.37,No.11,1998

Figure3.Longitudinalprofilesoftheverticalcomponentofparticlevelocityinthespoutzone.γ)33°,Du)u0)0.03m,dp)3mm,H0)0.18m,ms.Points,experimentalresults.Lines,calculatedwitheqs7-9.

Figure4.Radialprofilesoftheverticalcomponentoftheparticlevelocityinthespoutzone.γ)33°,D0)0.03m,dp)3mm,H0)0.18m,u)ums.Points,experimentalresults.Lines,calculatedwitheqs7-9.

outinapreviouspaper(Olazaretal.,1995b)bymeansoftheopticalprobe.Thespoutshapeisqualitativelysimilarforalltheexperimentalsystemsstudied.Atfirst,itwidensinaverypronouncedwaynearthecontactorinletandthenthereisaneck,andfinallythespoutwidensagainuptothebedsurface.Itisnote-worthythattheaveragediameterofthespoutismuchgreaterthanthecontactorinletdiameter.

ThevaluesoftheverticalcomponentoftheparticlevelocityplottedinFigure2areshowninmoredetailinFigures3and4,wherethelongitudinalandradialprofiles,respectively,areplotted.Inthesefigures,pointsareexperimentalresultsandlinesarecalculatedwiththecorrelationsproposedfurtheron.

InFigure3,itisobservedthatatagivenradialposition,theverticalcomponentoftheparticlevelocityreachesamaximumvalueatagivenlongitudinalpositionnearthebottom.Astheradialpositionishigher,thismaximumbecomeslesspronouncedandislocatedatahigherlongitudinalposition.

InFigure4,itisobservedthattheverticalcomponentoftheparticlevelocityhasamaximumvalueattheaxisforallthelongitudinalpositions.Besides,thehigherthelongitudinalpositionalongthespout,thelesspronouncedthismaximum.

Theradialandlongitudinalprofilesofvelocityinthespoutchangewiththegeometryofthespoutand,consequently,withtheoperatingconditionsthatinflu-

encethisgeometry.Withtheaimofanalyzingindetailtheeffectoftheoperatingconditionsontheparticlevelocity,thevelocityresultsobtainedforseveralradialpositionsalongtheaxisandnearthebottomwillbesubsequentlystudied.Theseresultsarerepresentativeoftheshapeofthevelocityprofilesinthespout.

InFigure5,theeffectbothofthegeometricfactorsofthecontactor(angleandinletdiameter)andoftheoperatingconditions(particlediameter,stagnantbedheight,andairvelocity)onthelongitudinalprofileoftheverticalcomponentoftheparticlevelocityalongthespoutaxisisanalyzed.

Theseresultsshowthatthemaximumparticleveloc-ityisreachedatapositionbetween0.02and0.03mfromtheairinlet,andthispositionisnotsignificantlyaffectedbytheoperatingvariables.However,athigheraxiallocations,theparticlevelocitydecreaseslinearlywithdistance.

Ofthevariablesstudied,Figure5,thestagnantbedheightappearstohavethemostsignificanteffectonthemaximumparticlevelocity.Particlesizealsohasagreatinfluence(althoughsmallerthanthatofthestagnantbedheight).Theothervariableshaveasmallerinfluence.

Whentheeffectoftheoperatingvariablesisanalyzed,stagnantbedheightistheoneofgreaterinfluence,Figure5d.Thus,thehigherthestagnantbedheight,thehighertheparticlevelocityalongthespoutaxis.Thisisfollowedbyparticlesize,whichalsohasagreatinfluence,Figure5c.Astheparticlesizeissmaller,theparticlevelocityalongthespoutaxisincreasesnotice-ably.Theinfluenceoftheremainingvariablesissmaller.Whenthecontactorangle,Figure5a,andtheairvelocity(overthatcorrespondingtotheminimumforspouting)areincreased,Figure5e,theparticlevelocityalongthespoutaxisincreasesslightly,whereasastheairinletdiameterisincreased,theparticlevelocitydecreases,Figure5b.

Theradialprofileoftheverticalcomponentofparticlevelocityatthebaseofthespout,atz)0.025m,isanalyzedinFigure6.Pointsareexperimentalresults,andlinesarecalculatedwiththecorrelationsproposedfurtheron.Thevariablesofgreaterinfluenceare,inorderofinfluence,stagnantbedheight,Figure6d,particlesize,Figure6c,andairinletdiameter,Figure6b(inthiscaseduetothemodificationofthespoutgeometryinducedbyachangeininletdiameter).Theinfluenceofthecontactorangle,Figure6a,andofairvelocity,Figure6e,aresmall.

Withtheaimofhavinganequationvalidforcalcula-tionoftheparticlelocalvelocities,severalmathematicalexpressionsweretried.ThebestfitwasobtainedwithanexpressionsimilartothatproposedbyEpsteinandGrace(1984),i.e.,eq4,buttakingintoaccountthat,inconicalspoutedbeds,theradialprofileoftheverticalcomponentofvelocitychangeswiththelongitudinalpositionand,consequently,theexponent(namedmwillalsochangewithbedlevel.Theproposedexpres-z)sionis

υz)υz(0)[1-

(rmz

r)](7)

s

Bynonlinearregressionfittingoftheexperimentalresults(Box,1965)toeq7,theparameterm3.0.Intheuppersectionztakesvaluesbetween1.0andofthespout,mztakesthevalue1.0foralltheexperimental

Ind.Eng.Chem.Res.,Vol.37,No.11,19984523

Figure5.Effectofthegeometricfactorsofthecontactor(a,contactorangle;b,inletdiameter)andoftheoperatingconditions(c,particlediameter;d,stagnantbedheight;e,airvelocity)onthelongitudinalprofilesoftheverticalcomponentoftheparticlevelocityalongthespoutaxis.

systemsstudied,whilethemaximumvalueofmz(mz)m0)isreachedatadistancebetweenz)0.020andz)0.030mfromthecontactorinlet.Ithasbeenproventhatmzdecreasesfromitsmaximumvalue,m0,withthelongitudinalposition,inalltheexperimentalsys-tems,accordingtothefollowingexpression:

mz)1+(m0-1)exp[-100(z-0.025)2]

(8)

Ineq8,m0isafunctionofboththegeometricfactorsofthecontactorandoftheoperatingvariables.Bystudyingthesevariables,groupedintotheconventionaldimensionlessmoduliusedinthehydrodynamicstudyofconicalspoutedbeds(Olazaretal.,1992),thefollow-ingexpressionisobtained:

dp

m0)1.41

Di

()()()-0.31

H0Di

0.77

uums

0.80

γ0.50exp

(-1.87D0

Di

(9)

)Thefittingoftheexperimentalresultsoftheverticalcomponentofthevelocity,υz,toeqs7-9wascarried

outbythecomplexmethodofnonlinearregression(Box,1965)andgaveaglobalregressioncoefficientofr2)0.90,withamaximumrelativeerrorof12%.TheadequacyofthefittingisshowninFigures4and6,wherepointsareexperimentalresultsandlinesarecalculatedwitheqs7-9.

Thevalidityofeq7forthepredictionofthescarceexperimentaldatapublishedintheliteratureforconicalspoutedbedswasanalyzed.Itisnoteworthythatthesedatacorrespondtoparticularexperimentalsystems.Thus,Kmiec(1978)usedshallowbeds,andconse-quently,onlyaqualitativeassessmentmaybemadeaboutthevalidityofeq7,whichprovidesvaluesofthesameorder,althoughslightlysmallerthantheexperi-mentalonesofKmiec(1980).TheresultsofWaldieandWilkinson(1986)areaveragevaluesforthespoutsectionatseverallevels,andtheyarelowerthanthosecalculatedbymeansofeq7.

ParticleVelocityintheAnnularZone.TheresultsofFigures7and8,whichcorrespondtooneoftheexperimentalsystemsstudied,areanexampleofthegeneralshapeofthelongitudinalprofiles,Figure

4524Ind.Eng.Chem.Res.,Vol.37,No.11,1998

Figure6.Effectofthegeometricfactorsofthecontactor(a,contactorangle;b,inletdiameter)andoftheoperatingconditions(c,particlediameter;d,stagnantbedheight;e,airvelocity)ontheradialprofilesoftheverticalcomponentoftheparticlevelocityatthebaseofthespout,atz)0.025m.Points,experimentalresults.Lines,calculatedwitheqs7-9.

Table1.EquationsProposedintheLiteratureforCalculationoftheParticleVelocityattheWall

authors

Thorleyetal.(1959)Becker(1961)

Shigeo(1965)Matsen(1968)Abdelrazek(1969)Ne´methandPallai(1970)

equation

W)υjwAa(1-󰀁a)F)K(D0/Dc)-0.25(Us/Ums)1.23(H0/Dc)1.0

2[(υjw)/gH0]0.4[Ua/(Ums)M]2)B(z/HM)b

whereatz/HM<0.25,B)0.055,andb)1;atz/HM>0.25,B)0.21,andb)2υjw/Ums)7.6×10-3(gDc/Ums2)-0.4(D0/Dc)-0.7(Us/Ums)1.7υjw/(υjw)ms)Us/Umslog(υjw/Ums))(3.42×10-4)Re(H0/Dc)-1.543υjw)(υjw)M(H0/HM)1/3υjw)(υjw)ms(Us/Ums)3/2

(10)

(11)(12)(13)(14)(15)(16)

7,andoftheradialprofiles,Figure8,oftheverticalcomponentoftheparticlevelocityalongtheannularzone.Inthesefigures,pointsareexperimentalresultsandlinesaretracedalongthepointsinordertofollowthetendencyoftheresults.

InFigure7,itisobservedthatgiventheconicalgeometryofthecontactor,theclosertheparticlestothebottomofthecontactor,thehighertheiraccelerationand,consequently,themaximumcomponentofthedownwardvelocityisreachednearthebottomandclosetotheinterfacebetweenthespoutandannularzone.Atthebottomofthecontactor,themaincomponentoftheparticlevelocityistheradialone.Theradialprofilesoftheverticalcomponentoftheparticlevelocity,Figure8,showtheexistenceofamaximumvalueataradialposition,whichshiftstowardhigherradialpositionsasthelongitudinalpositioninthebedishigher.

TheaveragevaluesoftheparticlevelocityinthespoutandannularzonesareplottedinFigure9againstthelongitudinalposition.Asisobserved,theaverageupwardparticlevelocityinthespoutdecreasesalmostlinearlywiththelongitudinalposition.Theaveragedownwardvelocityalongtheannularzonehasaslightaccelerationintheuppersectionofthebedandin-creaseslinearlytowardthebottomofthebed.

Figure7.Longitudinalprofilesoftheverticalcomponentoftheparticlevelocityintheannularzone.γ)33°,H0)0.18m,dp)4mm,D0)0.03m,u)ums.

Figure8.Radialprofilesoftheverticalcomponentoftheparticlevelocityintheannularzone.γ)33°,H)0.03m,u)u0)0.18m,dp)4mm,D0ms.

Figure9.Longitudinalprofilesofaverageparticlevelocitiesinthespoutandannularzones.γ)33°,D)u0)0.03m,dp)4mm,H0)0.18m,ums.

ParticleVelocityattheWall.Thedifferentcor-relationsproposedintheliteratureforcalculationoftheparticledownwardvelocityalongthewallincylindricalspoutedbedsaresetoutinTable1.MathurandEpstein(1974)drewattentiontothelimitationsontheapplicationofthesecorrelations,astheirvaliditywasrestrictedtotherangeofexperimentalconditionsinwhichtheyweredetermined.Severalauthors(Roveroetal.,1985;BoulosandWaldie,1986;Randelmanetal.,1987;Dayetal.,1987;BenkridandCaram,1989;Royetal.,1994;Heetal.,1994)provedthattheparticlevelocityatthewallisseverelyaffectedbywallfriction

Ind.Eng.Chem.Res.,Vol.37,No.11,19984525

Table2.ComparisonoftheExperimentalValuesoftheParticleVelocityattheWallwithThoseCalculated

UsingEquation16ProposedbyNemethandPallai(1970)γ,D0,dp,H0,υjw,ms-1

degmmmu/umsexptleq1633

0.03

0.0040.181.02

3.1×10-21.203.8×10-24.1×10-21.304.2×10-24.6×10-20.005

0.181.023.7×10-21.204.1×10-24.9×10-21.305.0×10-25.5×10-20.040.0040.181.022.8×10-21.203.4×10-23.7×10-21.304.0×10-24.2×10-20.05

0.0040.181.022.2×10-21.202.7×10-23.0×10-21.303.0×10-23.3×10-2360.030.0040.181.023.7×10-21.203.9×10-24.9×10-21.305.2×10-25.5×10-245

0.03

0.004

0.18

1.024.5×10-21.205.2×10-25.9×10-21.30

5.8×10-2

6.6×10-2

andthatitisconsequentlyapoorrepresentationoftheparticlevelocityintheannularzone.

InFigure10,theeffectoftheoperatingvariablesonthelongitudinalprofileoftheparticlevelocityalongthewall(velocitymeasuredinthewalldirection)isana-lyzed.Itisobservedthattheparticlevelocityatthewallincreasesastheparticlesdescend.Atfirst,theincreaseisexponentialandthenthevelocityincreaseslinearlytoamaximumvaluenearthebottomofthebed.Theparticlevelocityatthewallishigherasthevalueofthefollowingvariablesisincreased:contactorangle,Figure10a;particlesize,Figure10c;stagnantbedheight,Figure10d;andairvelocity,Figure10e.Ontheotherhand,theparticlevelocityatthewalldecreasesasthecontactorinletdiameterisincreased,Figure10b.TheadequacyoftheequationsofTable1forpredict-ingtheexperimentalvaluesofthisstudyhasbeenanalyzed.Itmustbepointedoutthateq11(Becker,1961)andeq15(Ne´methandPallai,1970)arenotapplicabletoconicalspoutedbeds,astheseequationstakeintoaccountthemaximumspoutablebedheight,HM.Inconicalspoutedbeds,thereisnomaximumspoutablebedheight(Olazaretal.,1993a,b).Ontheotherhand,inconicalspoutedbeds,thevariationoftheparticlevelocityatthewallwiththelongitudinalpositionisgreat,Figure10,andforthisreason,thevaluesfittedtotheequationinTable1areaveragevaluesbetweenthesurfaceandthebottomofthebed.Ithasbeenproventhateq16proposedbyNe´methandPallai(1970)suitablyfitstheexperimentalresults,Table2,witharegressioncoefficientr2)0.98andarelativeerrorlowerthan3%.Thefittingofeq12proposedbyShigeo(1965)isalsoacceptable,witharegressioncoefficientr2)0.87andarelativeerrorlowerthan14%.Thefittingoftheothercorrelationsispoor.Inthesecalculations,thevalueofDhasbeentakenasthearithmeticmeancforconicalbedsbetweenthebasediameter,Dbedheight,i,andtheupperdiameterofthestagnantDb.Conclusions

Astrongdependencyofthegeometricfactorsofthecontactorandoftheoperatingconditionshasbeenfoundontheverticalcomponentofparticlevelocityinthespoutandannularzonesofconicalspoutedbeds.The

4526Ind.Eng.Chem.Res.,Vol.37,No.11,1998

Figure10.Effectofthegeometricfactorsofthecontactor(a,contactorangle;b,inletdiameter)andoftheoperatingconditions(c,particlediameter;d,stagnantbedheight;e,airvelocity)onthelongitudinalprofilesofparticlevelocityatthewall.

stagnantbedheightandparticlessizehaveagreatinfluenceonthevelocityprofileinthespout.

Themaximumvalueoftheupwardvelocityinthespoutzoneisreachedattheaxisofthespoutandnearthecontactorinlet(atzbetween0.02and0.03m).Forlongitudinalpositionsfurtherawayfromthebottom,themaximumvelocityalsocorrespondstothespoutaxis.Forthemathematicalmodelingofthesolidflowpatterninthespoutzone,theadequacyofeqs7-9hasbeenproveninawiderangeofexperimentalconditions.Theseequations,togetherwithothersdeterminedinapreviouspaper(SanJose´etal.,1998)forcalculationoflocalbedvoidagesinthespoutandannularzones,willbeusedinsubsequentpapersformodelingthesolidflowpatternanddefiningsolidtrajectoriesthroughouttheentirebed.

Thedownwardvelocityoftheparticlesintheannularzonehasamaximumvaluenearthebottomofthecontactorandataradialpositionclosetotheinterfacebetweenthespoutandannularzone.Asthebedlevelishigher,themaximumvelocitycorrespondstoaradialpositionfurtherawayfromtheinterface.Equation16,proposedbyNe´methandPallai(1970),hasbeenproventobesuitableforcalculationoftheaverageparticlevelocityalongthecontactorwall.Acknowledgment

ThisworkwascarriedoutwiththefinancialbackingoftheDepartmentofEducation,UniversityandRe-searchoftheGovernmentoftheBasqueCountry(ProjectNo.PI94/33),andoftheMinisteryofEducationandCultureoftheSpanishGovernment(ProjectDGICYTNo.PB94-1359).Nomenclature

Aa)crosssectionoftheannularzone,m2B,b)parametersineq11

Db,Dc,Di,D0)upperdiameterofthestagnantbedanddiametersofthecolumn,ofthebedbottom,andoftheinlet,respectively,m

de)effectivedistancebetweenthetworeceivingfibers,mm

dp)particlediameter,mm

G)gasmassflowrateperunitofcolumncrosssection,kgm-2s-1

H,Hc,H0)heightsofthedevelopedbed,oftheconicalsection,andofthestagnantbed,respectively,mHM)maximumspoutablebedheight,mm)exponentineq4

m0)parameterdefinedbyeq9

mz)exponentineq7,definedbyeq8

r)radialdistancefromtheaxisoftheconicalcontactor,m

Re)superficialparticleReynoldsnumberrs)spoutradiusatlevelz,m

u,ums)velocityandminimumspoutingvelocityofthegas,ms-1

Ua,Ums,(Ums)M)superficialgasvelocityintheannularzone,minimumspoutingvelocity,andminimumspout-ingvelocityatthe-1

maximumspoutablebedheight,respectively,msW)solidscirculationrate,kgs-1

z)longitudinaldistancefromthebottomoftheconicalcontactor,m

zm)longitudinalpositionofthemaximumparticlevelocity,m

GreekLetters

󰀁a)bedvoidageintheannularzoneγF))contactordensityofangle,thesolid,rad

kgm-3

τυ),υjdelayυtimebetweentwosignals,sww,(w)M,(υw)ms)particlevelocityparalleltothewall,averageparticlevelocity,andparticlevelocitiescorre-spondingtothemaximumspoutablebedheightandminimumspoutingvelocity,respectively,ms-1υz,υjz)componentofparticlevelocityinthezdirectionanditsaveragevalueatagivenlevel,ms-1

υz(0),[υz(0)]max)componentofparticlevelocityinthezdirectionattheaxisanditsmaximumvalue,zone,ms-1υja)averageparticlevelocityintheannularms-1

LiteratureCited

Abdelrazek,I.D.AnalysisofThermo-ChemicalDepositioninSpoutedBeds.Ph.D.Thesis,UniversityofTennessee,Knoxville,1969.

Becker,H.A.AnInvestigationofLawsGoverningtheSpoutingofCoarseParticles.Chem.Eng.Sci.1961,13,245.

Benkrid,A.;Caram,H.S.SolidFlowintheAnnularRegionofaSpoutedBed.AIChEJ.1989,35,1328.

Boulos,M.I.;Waldie,B.High-ResolutionMeasurementofPar-ticlesVelocitiesinaSpoutedBedUsingLaser-DopplerAn-emometry.Can.J.Chem.Eng.1986,64,939.

Box,M.J.ANewMethodofConstrainedOptimizationandaComparisonwithotherMethods.Comput.J.1965,1,42.

Day,J.Y.;Morgan,M.H.,III;Littman,H.MeasurementsofSpoutVoidageDistributions,ParticleVelocitiesandParticleCircula-tionRatesinSpoutedBedsofCoarseParticles.II.ExperimentalVerification.Chem.Eng.Sci.1987,42,1461.

Epstein,N.;Grace,J.R.SpoutingofParticulateSolids.InHandbookofPowderScienceandTechnology;Otten,L.,Fayed,M.E.,Eds.;VanNostrandReinhold:NewYork,1984;Chapter11.

Gorshtein,A.E.;Mukhlenov,I.P.TheMovementofSolidMaterialintheSpoutingBed.Zh.Prikl.Khim.(Leningrad)1967,40,2469.

He,Y.L.;Qin,S.Z.;Lim,C.J.;Grace,J.R.ParticleVelocityProfilesandSolidFlowPatternsinSpoutedBeds.Can.J.Chem.Eng.1994,72,561.

Kim,S.J.;Cho,S.Y.ParticleVelocityandCirculationRateinLiquidSpoutedBeds.Korean.J.Chem.Eng.1991,8,131.Kmiec,A.HydrodynamicsofFlowsandHeatTransferinSpoutedBeds.Chem.Eng.J.1980,19,189.

Krzywanski,R.S.;Epstein,N.;Bowen,B.D.Multi-DimensionalModelofaSpoutedBed.Can.J.Chem.Eng.1992,70,858.Lefroy,G.A.;Davidson,J.F.TheMechanicsofSpoutedBeds.Trans.1nst.Chem.Eng.1969,47,120.

Mathur,K.B.;Epstein,N.SpoutedBeds;Academic:NewYork,1974.

Mathur,K.B.;Gishler,P.E.ATechniqueforContactingGaseswithCoarseSolidParticles.AIChEJ.1955,1,157.

Matsen,J.M.VoidFractionVariationintheSpoutedBedAnnulus.Ind.Eng.Chem.ProcessDes.Dev.1968,7,159.Mikhailik,V.D.;Antanishin,M.V.ThespeedofParticlesandVoidageintheCoreoftheSpoutingBed.VestiAkad.Nauk.BSSRMinskSer.Fiz.Takln.Nauk1967,3,81.Ne´meth,J.;Pallai,I.SpoutedBedTechniqueanditsApplication.Magy.Kem.Lapja.1970,25,74.Olazar,M.;SanJose´,M.J.;Aguayo,A.T.;Arandes,J.M.;Bilbao,J.StableOperationConditionsforGas-SolidContactRegimesinConicalSpoutedBeds.Ind.Eng.Chem.Res.1992,31,1784.

Ind.Eng.Chem.Res.,Vol.37,No.11,19984527

Olazar,M.;SanJose´,M.J.;Pen˜as,F.J.;Aguayo,A.T.;Bilbao,J.

TheStabilityandHydrodynamicsofConicalSpoutedBedswithBinaryMixtures.Ind.Eng.Chem.Res.1993a,32,2826.Olazar,M.;SanJose´,M.J.;Aguayo,A.T.;Arandes,J.M.;Bilbao,J.PressureDropinConicalSpoutedBeds.Chem.Eng.J.1993b,51,53.

Olazar,M.;SanJose´,M.J.;LLamosas,R.;Bilbao,J.Hydrody-namicsofSawdustandMixturesofWoodResiduesinConicalSpoutedBeds.Ind.Eng.Chem.Res.1994a,33,993.Olazar,M.;SanJose´,M.J.;Zabala,G.;Bilbao,J.ANewReactorinJetSpoutedBedRegimeforCatalyticPolymerizations.Chem.Eng.Sci.1994b,49,4579.Olazar,M.;SanJose´,M.J.;Pen˜as,F.J.;Aguayo,A.T.;Arandes,J.M.;Bilbao,J.ASimplifiedModelforGasFlowinConicalSpoutedBeds.Chem.Eng.J.1995a,56,19.Olazar,M.;SanJose´,M.J.;LLamosas,R.;Alvarez,S.;Bilbao,J.StudyofLocalPropertiesinConicalSpoutedBedsUsinganOpticalFiberProbe.Ind.Eng.Chem.Res.1995b,34,4033.Olazar,M.;SanJose´,M.J.;Aguado,R.;Bilbao,J.SolidFlowinJetSpoutedBeds.Ind.Eng.Chem.Res.1996,35,2716.

Olazar,M.;Arandes,J.M.;Zabala,G.;Aguayo,A.T.;Bilbao,J.DesignandSimulationofaCatalyticPolymerizationReactorinDiluteSpoutedBedRegime.Ind.Eng.Chem.Res.1997,36,1637.

Randelman,R.;Benkrid,A.;Caram,H.S.InvestigationoftheSolidFlowPatterninaSpoutedBed.AIChESymp.Ser.1987,83,23.

Robinson,T.;Waldie,B.ParticleCycleTimesinaSpoutedBedofPolydisperseParticles.Can.J.Chem.Eng.1978,56,632.Rovero,G.;Piccinini,N.;Lupo,A.SolidVelocitiesinFullandHalf-SectionalSpoutedBeds.Entropie1985,124,43.

Roy,D.;Larachi,F.;Legros,R.;Chaouki,J.AStudyofSolidBehaviourinSpoutedBedsUsing3-DParticleTracking.Can.J.Chem.Eng.1994,72,2945.SanJose´,M.J.;Olazar,M.;Aguayo,A.T.;Arandes,J.M.;Bilbao,J.ExpansionofSpoutedBedsinConicalContactors.Chem.Eng.J.1993,51,45.SanJose´,M.J.;Olazar,M.;Pen˜as,F.J.;Bilbao,J.SegregationinConicalSpoutedBedswithBinaryandTertiaryMixturesofEquidensitySphericalParticles.Ind.Eng.Chem.Res.1994,33,1838.SanJose´,M.J.;Olazar,M.;Pen˜as,F.J.;Arandes,J.M.;Bilbao,J.CorrelationforCalculationoftheGasDispersionCoefficientinConicalSpoutedBeds.Chem.Eng.Sci.1995,50,2161.SanJose´,M.J.;Olazar,M.;Alvarez,S.;Bilbao,J.LocalBedVoidageinConicalSpoutedBeds.Ind.Eng.Chem.Res.1998,submitted.

Shigeo,N.ParticleBehaviourinSpoutedBeds.Bachelor’sThesis,HokkaidoUniversity,Saporo,Japan,1965.

Suciu,G.C.;Patrascu,M.ParticleCirculationinaSpoutedBed.PowderTechnol.1978,19,109.

Thorley,B.;Saunby,J.B.;Mathur,K.B.;Osberg,G.L.AnAnalysisofAirandSolidsFlowinaSpoutedWheatBed.Can.J.Chem.Eng.1959,37,184.

VanVelzen,D.;Flamn,H.J.;Langenkamp,H.;Casile,A.MotionofSolidsinSpoutedBeds.CanJ.Chem.Eng.1974,52,156.Waldie,B.;Wilkinson,D.MeasurementofParticleMovementinaSpoutedBedUsingaNewMacroprocessorBasedTechnique.Can.J.Chem.Eng.1986,64,944.

ReceivedforreviewJanuary14,1998

RevisedmanuscriptreceivedAugust10,1998

AcceptedAugust11,1998

IE9800243

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务