您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页人教版数学七年级上册1.2有理数教案

人教版数学七年级上册1.2有理数教案

来源:意榕旅游网
1.2

1.2.1教学目标1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.有理数

有理数4.体验分类是数学上的常用处理问题的方法。教学重点重点会把所给的各数填入它所属于的集合里.难点掌握有理数的两种分类.教学过程一、创设情境,导入新课师:同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.学生讨论.二、合作交流,解读探究师:你能列举出一些你已经学过的各类型的数吗?125学生列举:3,5.7,-7,-9,-10,0,,,-3,-7.4,5.2,…356师:你能说说这些数的特点吗?学生回答,并相互补充.教师指出,我们把所有的这些数统称为有理数.你能对以上各种类型的数作出分类吗?正整数整数0负整数有理数分数正分数负分数说明:以上分类,若学生有因难,可加以引导:整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?试一试.正有理数有理数零负有理数负整数负分数正整数正分数说明:让学生感受分类的方法和原则,统一标准,不重不漏.三、应用迁移,巩固提高例1:把下列各数填入相应的集合内:13.1415926,0,2008,-,-7.88,10%,10.1,0.67,-89.2正数集合负数集合整数集合分数集合例2:以下是两位同学的分类方法,你认为他们的分类结果正确吗?为什么?正有理数有理数负有理数正整数正分数负整数负分数有理数正数整数分数负数零四、练习与小结练习:教材练习题.小结:谈一谈今天你的收获.五、作业习题1.2第1题教学反思本课在引入了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性。1.2.2

教学目标数轴

1.了解数轴的概念,知道数轴的三要素,会画数轴.2.能将已知数在数轴上表示出来,能说出数轴上的已知点表示的数.3.掌握数轴的概念,理解数轴上的点和有理数的对应关系;4.感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。教学重、难点重点:数轴的概念.难点:从直观认识到理性认识,建立数轴的概念,正确地画出数轴.教学过程一、创设情境,导入新课问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出温度计所表示的三个温度.出示温度计,并让同学读出任意的三个数.问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)二、推进新课教师:由上述两个问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让学生在讨论的基础上动手操作,在操作的基础上归纳出可以表示有理数的直线必须满足的条件.从而得出数轴的三要素:原点、正方向、单位长度.做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第3个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第4个同学为原点,游戏还能进行吗?问题:1.你能举出一些在现实生活中用直线表示数的实际例子吗?2.如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?3.哪些数表示的点在原点的左边,哪些数表示的点在原点的右边,由此你会发现什么规律?4.每个数表示的点到原点的距离是多少?由此你会发现什么规律?(小组讨论,交流归纳)归纳出一般结论,教材第9页的归纳.三、练习与小结练习:首先布置学生阅读教材,重新梳理知识,然后完成教材练习.小结:谈一谈你对数轴的认识.四、布置作业习题1.2第2题.教学反思数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体现出了从感性认识,到理性认识,到抽象概括的认识规律。1.2.3

教学目标相反数

1.了解相反数的意义.2.借助数轴理解相反数的概念,知道互为相反数的两个数在数轴上的位置关系.3.给出一个数,能说出它的相反数.4.体验数形结合的思想。教学重难点重点:相反数的概念.难点:相反数的识别及理解.教学过程活动1:创设情境,导入新课相反数的概念的引出.演示活动:要一个学生向前走5步,向后走5步.提出问题:如果向前为正、向后为负,向前走5步,向后走5步各记作什么?学生回答.师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.活动2:探索互为相反数的意义师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数.(一个学生板演,其他学生自练)师:这样的两个数即互为相反数,你能试述具备什么特点的两个数互为相反数吗?学生讨论后回答.师指出0的相反数是0.出示投影1.在前面画的数轴上任意标出4个数,并标出它们的相反数.2.分别说出9,-7,0,-0.2的相反数.33.指出-2.4,,-1.7,1各是什么数的相反数?54.a的相反数是什么?1题动手解决,2,3题学生抢答,4题学生讨论后回答.提出问题:a前面加“-”表示a的相反数,-(+1.1)表示什么?-(-7)呢?-(-9.8)呢?它们的结果应是多少?学生活动:讨论、分析、回答.活动3:巩固练习练习:教材练习.1.画一个数轴,并在画的数轴上找出表示+5、-5、+3、-3、1、-1各数的点来,并要标上字母。2.观察上题中的+5、-5、+3、-3、1、-1,发现这三对数有什么特点?3.观察上题中的+5、-5、+3、-3、1、-1,发现这三对数在数轴上的对应点的位置有什么特点?(小组讨论,代表发言,学生点评)出示投影1.-(+4)是________的相反数,-(+4)=________.112.-(+)是________的相反数,-(+)=________.553.-(-7.1)是________的相反数,-(-7.1)=________.4.-(-100)是________的相反数,-(-100)=________.学生活动:思考后口答.学生回答后教师引导:在一个数前面加上“-”表示求这个数的相反数,如果在这些数前面加上“+”呢?学生讨论后回答.思考为1.数轴上与原点的距离是2的点有。个,这些点表示的数是,它们互2.数轴上表示相反数的两个点的原点有什么关系?(独立思考,发现新知,得出结论)活动4:小结与作业小结:谈谈你对相反数的认识.生:让学生回答,可以多让几位学生总结.作业:教材课后练习.教学反思相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.1.2.4

教学目标绝对值

1.理解绝对值的意义,会求一个数的绝对值.2.会绝对值的计算,会比较两个或多个有理数的大小.3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.教学重难点重点1.对绝对值意义的理解.2.有理数大小的比较方法.3.借助数轴利用数形结合的思想方法,理解绝对值的概念及几何意义.难点1.利用绝对值比较两个负数的大小.2.会利用分类讨论的方法解决问题.教学过程一、创设情境,导入新课投影展示教材11页图片,指出:甲、乙两汽车从公路上的同一处地点出发,分别向东西方向行驶10千米,到达A,B两地,(1)若向东行驶记为正,此时甲、乙两车的位置如何表示?(2)此时甲车行驶的路程是多少?乙车行驶的路程是多少?(3)讨论,(2)的两个答案与(1)中的有何不同,怎样理解这两个答案?二、推进新课(1)绝对值的概念师:结合图片指出,一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作│a│.这里a可以是正数、负数、0.然后结合图片让学生回答│10│=________,│-10│________.练习:根据绝对值的定义说出下列各数的绝对值:21-5,3.2,0,100,-2,-,.32学生尝试解决.师进一步提出:以上各数中,①正数有哪几个,它们的绝对值和这个数有什么关系?②负数有哪几个,它们的绝对值和这个数有什么关系?③0的绝对值是多少?引导学生讨论并归纳出:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.师要求学生根据归纳的结果,结合教材11页内容,完成如下填空.(a>0)│a│=(a=0)(a<0)练习:教材11页练习1,2,3.(2)探究有理数大小的比较师:投影展示教材12页的思考.提出问题:①这14个温度中最高的是________,最低的是________.②你能将这七天中每天的最低气温按从低到高排列吗?③你能在数轴上表示出这七天中的最低气温吗?④观察,你所排列的顺序和它们在数轴上的位置有什么联系?生:独立解决①~③小题,然后同学间交流探讨第④小题并归纳出:从低到高的顺序对应于数轴上从左到右的顺序.师:数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即在数轴上,左边的数小于右边的数.出示问题:根据以上规定用“大于”“小于”填空:正数________0,0________负数,正数________负数.生:独立完成然后同学间交流.师:利用数轴用“>”“<”填空:12-6________-5,-3________-2,-________-.23观察结果并讨论,两个负数比较时,你发现了什么规律?生:讨论并归纳结果,两个负数相比较,绝对值大的反而小.师:出示教材例题,然后师生共同完成.说明:两个负数的比较,尤其是两个负分数相比较时,学生易出错,讲解例题时教师应当关注这一点.观察例题,师生共同归纳:异号两数相比较时,只需要考虑它们的________,同号两数相比较时,要考虑它们的________.三、练习与小结练习:1.教材13页练习.2.①大于-3的负整数有几个?是哪些数?②大于-5而小于5的整数有几个?是哪些数?③写出绝对值小于5的所有非正整数④绝对值大于4且不大于9的整数偶哪些?⑤有没有最小的正数,最大的负数?小结:1.说一说你对绝对值的概念的认识.2.谈一谈有理数大小的比较方法.四、布置作业习题1.2第5,6,8,10.教学反思让学生在熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务