ContentslistsavailableatScienceDirect
SensorsandActuatorsA:Physical
journalhomepage:www.elsevier.com/locate/sna
Ahydrogel-basedintravascularmicrogrippermanipulatedusingmagneticfieldsଝ
Jui-ChangKuo,Hen-WeiHuang,Shu-WeiTung,Yao-JoeYang∗
DepartmentofMechanicalEngineering,NationalTaiwanUniversity,Taipei,Taiwan
article
info
abstract
Articlehistory:
Received15September2013
Receivedinrevisedform15January2014Accepted11February2014
Availableonline15March2014
Keywords:Hydrogel
IntravasculardeviceMagneticnanoparticleMicrogripper
Thisstudypresentsamagnetichydrogel-basedmicrogripperthatcanbewirelesslymanipulatedusingmagneticfields.Theproposeddevicecanmovefreelyinliquidswhendrivenbydirectcurrent(dc)mag-neticfields,andperformagrippingmotionbyusingalternatingcurrent(ac)magneticfields.Thedeviceisfabricatedfromabiocompatiblehydrogelmaterialthatcanbeemployedforintravascularapplica-tions.Theactuationmechanismforgrippingmotionsisrealizedbycontrollingtheexposuredoseonthehydrogelcompositeduringthelithographyprocess.Thepreliminarycharacterizationofthedeviceisalsopresented.Themeasurementresultsshowthatthegrippingmotionreachedafullstrokeatapproximately38◦C.Bydispersingmultiwallcarbonnanotubes(MWCNT)intothematerial,theoverallresponsetimeofthegrippingmotiondecreasesbyapproximately2-fold.Devicemanipulationssuchasthegrippingmotion,translationalmotion,androtationalmotionarealsosuccessfullydemonstratedonapolyvinylchloride(PVC)tubeandinapolydimethylsiloxane(PDMS)microfluidicchannel.
©2014ElsevierB.V.Allrightsreserved.
1.Introduction
Cardiovasculardiseaseshavebecomeincreasinglycommonworldwide.Thecoronaryarteriesarecriticalvesselsforsupplyingtheheartwithnutrients,andcoronaryarteryanomaliesoftencausecardioplegiaanddeath[1,2].Therefore,bloodvesseltherapyhasrecentlybecomeapopularmedicalpractice.Intravascularsurgeryisoneofthepossiblemethodsofbloodvesseltherapy[3,4].Ingen-eral,intravascularsurgeryrequiresassistancefrommicrodevicestodeliverdiagnosticandtherapeuticmodalities[5,6],andseveraltypesofuntetheredmicrodevicehavebeendeveloped.
Typically,untetheredmicrodevicesscavengeenergyfromtheenvironmentandconvertthatenergyintomechanicalenergyforinducinglocomotionbyusingcertainprinciples[7].Donaldetal.proposedanuntetheredmicrorobot,operatedusingelectrostaticforce.Thedevicewasequippedwithacurvedsteeringarmthatwasmountedonanuntetheredscratchdriveactuator.Theproposeddevicecouldberemotelycontrolledtotravelthroughcomplexpaths[8].Fukutaetal.presentedamicromachinedpneumaticactu-atorthatcanbeemployedforair-jetplanarmicromanipulation,and
ଝSelectedPaperbasedonthepaperpresentedatThe17thInternationalCon-ferenceonSolid-StateSensors,ActuatorsandMicrosystems,June16-20,2013,Barcelona.Spain.
∗Correspondingauthor.Tel.:+886233662712.E-mailaddress:yjy@ntu.edu.tw(Y.-J.Yang).
alsoproposedapull-involtageminimizationmethodforreducingthevoltagerequiredforelectrostaticactuation[9].Erdemetal.proposedamicrorobotthatwaspropelledbycilia-likethermalbimorphactuatorarrays.Groupsofciliawerecontrolledindepen-dentlyforgeneratingplanarmotionwiththreedegreesoffreedom[10].Huetal.proposedahydrogel-basedmicrorobotthatwasoptothermallyactuatedusinglaser-inducedbubbles.Theproposeddevicedidnotconsistofsolidmaterials,butratheremployedagasbubbleinaliquidmediumforphysicallymanipulatingobjects[11].Recently,magneticallydrivenmicrodeviceshaveattractedattentionbecausetheycanbewirelesslydrivenandprovidearelativelylargeactuationforce[12–19].Ingeneral,theycouldbeoperatedinmagneticallytransparentmedia,suchasair,vacuum,conductingliquids,andnon-conductingliquids.Frutigeretal.pro-posedmicrorobotsthatwereoperatedusingwirelessmagneticmicro-actuators.Themicrorobotcouldbeactuatedusingalternat-ingcurrent(ac)magneticfields,whichdirectlytransformedintomechanicalactuationwithoutrequiringintermediateconversionbyusinganelectroniccircuit[20].Leongetal.proposedamass-producible,tetherlessmicrogripper.Thelocomotionofthedevicecouldbemanipulatedmagnetically,andthegrippingmotioncouldbetriggeredbycontrollingthetemperature[21].Jiangetal.pro-posedaball-shapedmicrorobotwithrollingcapabilities.Drivenbymagneticfields,thedevicecouldfreelyrollon3Dsurfacesinair,water,orsiliconoil[22].Tottorietal.proposedamagneticheli-calmicroswimmer,fabricatedusing3Ddirectlaserwriting.Thedevicewascapableofperformingsteerablecorkscrewmotions
http://dx.doi.org/10.1016/j.sna.2014.02.028
0924-4247/©2014ElsevierB.V.Allrightsreserved.
122
J.-C.Kuoetal./SensorsandActuatorsA211(2014)121–130
Fig.1.Theschematicoftheproposedmicrogripper.Thedevicecanmovefreelyinliquidwhendrivenbydcmagneticfields,andperformgrippingmotionsbyusingacmagneticfields.
inwater[23].Kimetal.proposedamicromachinedmagnetichydrogelcellcarrierfabricatedusingasingleultraviolet(UV)expo-sure.Theprimaryapplicationoftheproposeddevicewastheactiveseparationofcellcarriersfromtheoriginalsolution[24].Bergelesetal.developedservoingmagneticintraocularmicrodevices,whichwereproposedforapplicationssuchastargeteddrugdeliveryandtheretinalveincannulationprocedure.Analgorithmthatlocalizesthemicromachineddevicebasedontheshapeofdeviceshasalsobeenproposed[25].
Forintravascularsurgery,itisdesirabletousemicrodevicestoperformclinicalactionssuchasdrugdelivery,sensing,andsurgery.Certainstudieshaveemployedsoftmaterialsthatrequiresimplefabricationprocesses,andhavedemonstratedthereversibilityofshapechanginginresponsetostimuli[26–32].However,becauseofchallengesinfabricationandmanipulation,mostmicrodevicescanonlybeoperatedaseitherafreelymovableunitoranendeffec-tor.Inthisstudy,ahydrogel-basedmicrogripperisproposedthatcanbewirelesslyactuatedfortranslational,rotational,andgrip-pingmotionsbyusingdirectcurrent(dc)andacmagneticfields[33].Theproposeddevice,whichismadeofabiocompatiblehydro-gelmaterial,issuitableforintravascularapplications.Inaddition,themicrogrippercanbefabricatedusingasimplelithographytech-nique.
Theremainderofthisstudyisorganizedasfollows:theoper-ationalprinciplesanddesignarepresentedinSection2.TheproposedfabricationprocessofthemicrogripperisdescribedinSection3.ThemeasuredresultsofthefabricatedmicrogripperandthediscussionarepresentedinSection4.Finally,Section5drawstheconclusions.
2.Design
Fig.1showstheschematicoftheproposedmicrogripper.The
devicecanmovefreelyinliquidswhendrivenbydcmagneticfields,andperformgrippingmotionsbyusingacmagneticfields.Poten-tially,theproposeddevicecangripanobjectsuchasabloodclotinabloodvesselforintravasculartherapy.Inaddition,thepro-poseddevice,whichismadeofahydrogelmaterial,issuitableforintravascularapplicationsthatrequirebiocompatibility.
Fig.2(a)showstheoperationalprincipleofthedevicelocomo-tion.Fe3O4nanoparticles(NPs)andmultiwallcarbonnanotubes(MWCNTs)weredispersedinthethermoresponsivehydrogel.BecauseofthedispersedFe3O4NPsinthehydrogel,themove-mentofthedevicecanbewirelesslycontrolledbyapplyingdcmagneticfields.AsshowninFig.2(a),withoutapplyingexternalmagneticfieldsduringthefabricationprocess,thenanoparti-clesarerandomlydispersedinthepre-gelsolutionofhydrogel.
Whenapplyinganexternalmagneticfieldduringprocess,thesuperparamagneticnanoparticlesformchain-likenanostructuresalongthedirectionoftheappliedmagneticfield[15].Hence,thefabricatedhydrogel-basedmicrogripperpossessesaspecificmag-neticaxis,whichisexpectedtoenableamoreprecisemanipulation.Whenthedirectionoftheappliedmagneticfieldsischanged,thedevice,whichhasaspecificmagneticaxis,canrapidlyrotateorrealignalongthedirectionofthefields.
Fig.2(b)showsthatthegrippingmotioncanberealizedbythebimetallichydrogelcompositewithlayersofdifferentcross-links.Hydrogelpolymerscontainpendentbenzophenoneunitsthatallowthetuningofcross-linksbyusingirradiationdoses[26].Bycontrollingtheexposuredoseonthehydrogelcompositeduringthelithographyprocess,thefabricatedhydrogelwithlayersofdifferentcross-linkscaninducedifferentshrinkingresponsesatlowercriti-calsolutiontemperatures.Byapplyingacmagneticfields,theFe3O4NPsareheatedbecauseoftheNéelandBrownianrelaxationpro-cess,whichinturninducestheinternaltemperatureelevationofthehydrogelmatrix[27].Becauseofthenon-homogeneousshrink-ingresponsesinthehydrogelstructure,thetemperatureelevationcreatesaninternalstressgradient,causingthedeformationofthestructure,thusgeneratingthegrippingmotion.Inaddition,bydis-persingMWCNTmoleculesinthehydrogel,thecompositeexhibitsashorterthermalresponsetimebecauseoftheenhancementofthemasstransportofwatermolecules[28–30].
Themagneticforce(Fm)exertedonthemicrogripperforatrans-lationalmotion(inx-direction)isproportionaltothegradientofthemagneticfield[34]:
Fm=VbM∇Bx
(1)
whereVbisthevolumeofthemagnetizedobjectwithauniformmagnetizationM,andBxisthemagneticfieldinx-direction.
Asthemicrogrippermovesinx-directiondrivenbythemagneticfieldgradient,thedevicealsoexperiencesadragforceactingbythefluid.Thetypicalformofthedragforceforanobjectimmersedinafluidcanbewrittenas[35–37]:
Fd=
1
CdfAv22m
(2)
wherefisthedensityofthefluid,vmistherelativevelocityoftheobjectwithrespecttothefluidmedium,Aisthecrosssectionalareaoftheobject,andCdisthedragcoefficient.Inlaminarflowregime,thedragcoefficientanddragforceforasphereshapecanbeapproximatedas:
Cd,shpere=
2424Á
Re=;F(3)
fvmD
d,sphere=3DÁvm
Similarly,foracirculardiskparalleltotheflow,thedragcoeffi-cientanddragforcecanbewrittenas[35–37]:
Cd,disk=
13.613.6Á
Re=;FfvmD
d,disk=1.7DÁvm
(4)
where(Re=fvmD/Á)istheReynoldsnumber,andDisthediam-eteroftheobject.Also,thecrosssectionalareain(2)is:
2A=
D4
(5)
Sincethemicrogripperisneitheraspherenoracirculardisk,wemayemploythesimilarformshownin(3)and(4),andwritethedragforceforthemicrogripperas:
Fd,gripper=SDGÁvm
(6)
whereDGisthelengthofthegripper,andSistheshapecorrect-ingconstantofthemicrogripper.ThediscussionoftheupperandlowerlimitsofSisdescribedinAppendix.
J.-C.Kuoetal./SensorsandActuatorsA211(2014)121–130
123
Fig.2.Theoperationalprinciplesof(a)themovingand(b)thegrippingmotions.
Asthemicrogripperisdrivenbythemagneticgradientatacon-stantvelocity,theforcebalancebetweenthemagneticforceandthedragforce(i.e.,Fd=Fm)givestheapproximaterelationshipbetweenvelocityandmagneticgradient:
vm
VM∇Bx=b
SDÁ
(7)
3.Fabrication
Theproposedmicrogripperwasfabricatedusingathermore-sponsivehydrogelthathadFe3O4NPs(PVPcoated,NanostructuredandAmorphous)andMWCNTs(GoldenInnovationBusinessCom-panyLtd;averagediameter:30nm)dispersedthroughout.ThediameteroftheFe3O4NPswasapproximately20–30nm;therefore,thefabricatedmagneticstructuresaresuperparamagnetic.Fig.3showsthepreparationofthepre-gelsolution.Fortheoptimaldis-persionoftheMWCNTsinthehydrogel,anaqueous2wt%sodiumdeoxycholate(DOC)solutionwasusedasthesurfactanttodis-perseMWCNTsataconcentrationof0.5mg/mL[28].Subsequently,theaqueousDOC-MWCNTsolutionandFe3O4NPs(1mg/mL)werecompletelymixedusinganultrasonicagitatorat40kHzfor3h.Thepre-gelsolutionwascomposedof1.5gofN-isopropylacrylamide(monomers),57.1Lofacrylicacid(monomers),266.5mgofbenzophenoneacrylamide(crosslinker),and2.5mgofazobisisobu-tyronitrileasaphoto-initiator[26];allinthepreparedaqueousDOC-MWCNTs-Fe3O4solution.Byexposingthepre-gelsolutiontoUVlight,cross-linkingwasachieved.
Fig.4showsthefabricationprocessoftheproposedmagnetichydrogel-basedmicrogripper.Fig.4(a)showsthepre-gelsolutiondropsonaglasssubstrate.Atrenchwasformedonaglasssubstratebyusingahydrofluoricacidetchingprocess.Themagneticfieldswerethenappliedacrossthepre-gelsolution(Fig.4(b)),whichcausedthesuperparamagneticNPsinthepre-gelsolutiontoformchainsalongthedirectionoftheappliedmagneticfields.Themag-nitudeoftheappliedmagneticfieldswas5mT.Figs.4(candd)showthefirstUVexposureforpatterningtheprimarystructureofthemicrogripperwiththefirstphotomask.TheUVexposuredosewas2J/cm2.Thepre-gelsolutionwasphoto-polymerizedusingthe
UVexposure,whichfrozethealignmentsofthesuperparamag-neticNPsinthepolymerizedregion.Theprimarystructureofthemicrogripperwasthenpatterned(Fig.4(e)).
Toavoidtheadhesionofthefabricatedhydrogeltothephotomask,thesurfaceofthephotomaskwastreatedwithoctade-cyltrichlorosilane(OTS)moleculessothatitssurfacepropertiescouldbecomemorehydrophobicandhavealowsurfaceenergy.ThemaskwasthoroughlyrinsedwithDIwateranddriedwithnitro-gengas.Itwasthenplacedina1mMOTSsolutionintoluenefor15minatroomtemperature.
Fig.4(fandg)showthesecondUVexposureforcreatinghighercross-linkingareawiththesecondphotomask.TheUVexposuredosewas4J/cm2.Fig.4(h)showsthebimetallicstructuresonthemicrogripperthatwascreatedusingthistwo-stepUV-exposureprocess.AsshowninFig.4,thefirsthydrogelandthesecondhydro-gelindicatethelowandhighlevelsofcross-linking,respectively.Fig.4(iandj)showthefabricateddeviceafteritwaswashedwithDIwater.
Thefabricatedhydrogelcompositeswereslicedusingacryostatmicrotomeinordertoobservethedistributionofnanoparticlesinthecomposites.ThephotographsoftheslicedhydrogelcompositesareshowninFig.5.Thewhiteareaisthehydrogelmatrix,andtheblackandbrownareasaretheclustersofmagneticnanoparticles.Fig.5(a)showsthehydrogelcompositethatwasnotmagnetizedbythemagneticfieldsduringthefabricationprocess.Themag-neticnanoparticlesofthiscompositearerandomlydispersedinthehydrogelmatrix.Fig.5(b)showsthehydrogelcompositethatwasmagnetizedbythemagneticfieldsduringthefabricationprocess.Thedirectionoftheappliedmagneticfieldduringtheprocessisalsoshowninthefigure.Themagneticnanoparticlesinthecompositeareself-assembledaschain-likestructuresalongthedirectionofthemagneticfieldsappliedduringthefabricationprocess.
Thecharge-coupleddevice(CCD)imagesofthefabricatedmicrogripperareshowninFig.6.Fig.6(a)isthetopviewofthemicrogripper.Thelengthofthefabricatedmicrogripperisapprox-imately700m.Thewidthofthegrippertipisapproximately100m.Fig.6(b)showsthesideviewofthemicrogripper.Thethicknessofthefabricateddeviceisapproximately100m.
124
J.-C.Kuoetal./SensorsandActuatorsA211(2014)121–130
Fig.3.Thepreparationofthepre-gelsolution.
4.Measurementsanddiscussion
Tocharacterizethemagneticpolymerstructures,avibratingsamplemagnetometerwasusedtomeasurethehydrogelsam-pledispersedwithmagneticNPs.Fig.7showsthemagnetization
measurementofthefabricatedstructuredispersedwithFe3O4NPs.Theremanentmagnetizationatzeroappliedfieldsisconsiderablysmall,whichindicatesthatthesuperparamagneticcharacteristicoftheNPsastheparticlesizeissmallerthanthecriticalsizeforsuperparamagnetism.Moreover,thecurvesfortheforward
Fig.4.Thefabricationprocessoftheproposedmagnetichydrogel-basedmicrogripper.
J.-C.Kuoetal./SensorsandActuatorsA211(2014)121–130
125
Fig.5.Thephotographsoftheslicedhydrogelcomposites.(a)Thehydrogelcompositethatwasnotmagnetizedbythemagneticfieldsduringthefabricationprocess.(b)Thehydrogelcompositethatwasmagnetizedbythemagneticfieldsduringthefabricationprocess.
Fig.6.TheCCDimagesofthefabricatedmicrogripper:(a)thetopview,and(b)thesideviewofthedevice.
andthebackwarddirectionsarecongruent,whichindicatestheorientation-independentproperties.TheinsetofFig.7showsthephotosofthepre-gelsolutionswithandwithoutdispersedmag-neticNPs.
TheexperimentalsetupforoperatingthemicrogripperisshowninFig.8.AsshowninFig.8(a),twopairsofHelmholtzCoils(HelmholtzcoilAandHelmholtzcoilB)werearrangedperpen-dicularlyandthecentersofthecoilsweretheoperationalregions(microfluidicchip).HelmholtzcoilAconsistsofcoilA-1andcoilA-2.HelmholtzcoilBconsistsofcoilB-1andcoilB-2.Thefig-ureontherightsideofFig.8(a)isthetopviewofthesystem.ThetwoHelmholtzcoilpairsgenerateduniformmagneticfieldsintheoperationalregion.TheHelmholtzcoilsareemployedtorotatethemicrogripper.Thetranslationalmotionofthemicrogripperisachievedbyturningononlyonecoilofeachcoilpair.Theacrylicframesofthecoilswerefabricatedusingalasermachiningsystem.Awindingmachine(SW-022,ShiningSun)wasemployedtowrapthecopperwiresontheframes.Thespecificationsoftheimple-mentedHelmholtzcoilswerelistedinTable1.ThephotosoftheimplementedHelmholtzcoilsareshowninFigs.8(bandc).
TheHelmholtzcoilswereconnectedtodcpowersupplies(GPD-4303S,GWInstek),controlledbyacomputer,usingtheGPIB®interface.Toremotelyactuatethegrippingmotionofthemicro-gripper,themicrofluidicchip,includingthemicrogripper,wasplacedontopoftheinductioncoilofa3kWinductionheater(LT-04-250,LantechIndustrialCo.,Ltd.)withanoperatingfrequencyof250kHz.TheobservationofthemicrogripperwasperformedusinganopticaltubeandaCCDcamera.AGaussmeter(Model6010,F.W.Bell)wasusedtomeasurethemagneticfields.Thetemperatureofthemicrogripperwasmeasuredusinganinfraredthermalimager(Ti55FT,Fluke).
Themeasuredmovingdistancesofthemicrogripperwithdif-ferentmagneticgradientsareshowninFig.9.NotethatforMeasurement-A,themeasuredmagneticfluxdensityatthecen-teroftheoperationregionis5mT.Similarly,forMeasurement-BandMeasurement-C,themeasuredmagneticfluxdensitiesatthecenteroftheoperationregionare10mTand15mT,respectively.Themovingvelocitiesofthemicrogripperarelinearlyproportionaltotheappliedmagneticfieldsproducedbythemagneticcoil.Eachdatapointonthecurveistheaverageresultobtainedbymea-suringthreedeviceswiththesamedesignandconfiguration.The
Table1
ThespecificationsoftheimplementedHelmholtzcoils.
Description
HelmholtzcoilA
HelmholtzcoilB
Fig.7.MagnetizationmeasurementofthefabricatedstructuredispersedwithFe3O4NPs.
CoilturnsRadius
DiameterofcopperwireDistancefromcenter
40090mm0.85mm90mm
400
110mm0.85mm110mm
126
J.-C.Kuoetal./SensorsandActuatorsA211(2014)121–130
Fig.8.Experimentalsetupforoperatingthemicrogripper:(a)schematicofthemagneticdrivingsystemofthemicrogripper.(b)TheimplementedHelmholtzCoils.(c)Themicrofluidicchipwasplacedontopoftheinductioncoiloftheinductionheater.
80706050403020100-100 5 10 15 20 25 Measurement-A Measurement-B Measurement-CDistance (mm)
Fig.9.Themeasuredmovingdistancesofthemicrogripperwithdifferentmagneticgradients.
errorbarsindicatethemeasuredmaximalandminimalvalues.ThecurvesshowsthetranslationalmotionsofthemicrogrippercanbedrivenwithdifferentvelocitiesbycontrollingtheappliedelectriccurrenttocoilA-1.
Fig.10showsthegrippingmotionoftheproposedmicrogrip-per.Fig.10(a)showstheoriginalstateofthemicrogripper.Afterapplyingacmagneticfields,themicrogripperwasheated,andthegrippingmotionwastheninducedbythenon-homogeneousshrinkingresponsesinthehydrogelstructure,asshowninFig.10(bandc).Thisgrippingmotioncanbepotentiallyusedfortheappli-cationsinsurgeryassistanceordrugdeliveryinthebloodvesselforintravascularapplications.
Fig.11presentsthemeasureddeformationofthemicrogrip-perindifferentdirectionsasthetemperatureincreased.Becauseofdifferenttemperature-dependentshrinkingresponsesinthegrip-perstructure,thegrippingmotionwasachievedbyelevatingthetemperature.Themeasurementresultsshowthatthedeforma-tionalongX1-directionwassubstantiallylargerthanthosealongtheX2-directionandY-direction,whichfacilitatesthedesirable
Time (sec)J.-C.Kuoetal./SensorsandActuatorsA211(2014)121–130
127
Fig.10.Thegrippingmotionoftheproposedmicrogripper.
Fig.11.Themeasureddeformationsofthemicrogripperindifferentdirectionsastemperatureincreased.
grippingmotionofthemicrogripper.Thegrippingmotionreachesafullstrokeatapproximately38◦C.Theresultsalsoindicatethatthetemperaturerangeforoperatingthemicrogripperisaboutfrom28◦Cto38◦C.Notethattheoperationtemperaturerangecanbeadjustedbycontrollingthequantitiesofcross-linkingandthedesignofbimetallicstructure.
Fig.12showsthetransientresponsetimesofthegrippingmotionsofthemicrogripper,obtainedbymeasuringthechangesinthesizeofthegapbetweenthegrippertips.Thegrippingmotionofthemicrogripperwasinducedbyapplyingacmagneticfields.Thestrengthoftheacmagneticfieldwas50kA/m,andthefrequencywas250kHz.Theinsetshowsanopticalimageofthemicrogripper
Fig.12.Thetransientresponsetimesofthegrippingmotionsofthemicrogripper,obtainedbymeasuringthechangesinthesizeofthegapbetweenthegrippertips.Theinsetshowsanopticalimageofthemicrogripperbefore(left)andafter(right)activation.
before(left)andafter(right)activation.Thepurposeofintroduc-ingMWCNTsintothehydrogelistocreatemoreporousstructures,whichinturnenhanceswatermoleculartransportinthehydro-gel[28–30].AsshowninFig.12,thetimeconstantofthegrippingmotiondecreasesasthehydrogelwasdispersedwithMWCNTs.Theresponsetimeconstantofthegrippingmotiondecreasesbyapproximatelytwofold.
Fig.13showsthemanipulationofthemicrogripperonapolyvinylchloride(PVC)tube.Themagneticcoilscangeneratemagneticfieldsofdifferingmagnitudesindifferentdirections,andthereforeenablethemanipulationofthedirectionsoftheresultingmagneticfieldsintheoperationalregion.Themanipulationofthe
Fig.13.ThemanipulationofthemicrogripperonaPVCtube.
128
J.-C.Kuoetal./SensorsandActuatorsA211(2014)121–130
Fig.14.Theoperationprocedureforrotationalandtranslationalmotionsusingcoils.
Fig.15.ThemanipulationofthemicrogripperinamicrofluidicchannelofthePDMSmicrofluidicchip.
J.-C.Kuoetal./SensorsandActuatorsA211(2014)121–130
129
microgrippercanbefreelycontrolledusingdifferentdirectionsofmagneticfields.
Fig.14showstheoperationprocedureofthemagneticcoils.InFig.14(a),allthecoilsareturnedoff,andthemicrogripperisinanarbitraryposition.InFig.14(b),bothcoilA-1andcoilA-2areturnedon(i.e.,Helmholtzcoilconfiguration),andthegripperisrotatedtobealignedwithHelmholtzcoilAbecauseofthealignednanoparti-clechainsinthehydrogelcomposite.Fig.14(c)illustrateshowthetranslationalmotionofthedeviceisachieved.Inthiscase,coilA-2isonandcoilA-1isoff.Becauseofthegradientofmagneticfieldinthisconfiguration,thedeviceisattractedtowardcoilA-2.Thismethodforactuatingtranslationalmotionshasbeenpresentedinvariousarticles([13,14,25]).Finally,asshowninFig.14(d),thedeviceisrotated180◦whenbothcoilA-1andcoilA-2(i.e.,Helmholtzcoilconfiguration)weredrivenwiththepolaritywhichisoppositetothatinFig.14(b).NotethatasthemicrogripperispropelledbytheactuationconfigurationshowninFig.14(c),thegeneratedmagneticfieldgradientisinfactnotuniform.Therefore,thegeneratedmag-neticpropulsionforceisalsonotuniform,andingeneralcannotbeeasilycontrolled.
Fig.15showsthemanipulationofthemicrogripperinamicrofluidicchannelofthepolydimethylsiloxane(PDMS)microflu-idicchip.ThePDMSmicrofluidicchipwasfabricatedusingthesoftlithographyprocess.ThewidthofthechannelofthePDMSmicrofluidicchipis2mm.Byapplyingvariousdirectionsofmag-neticfields,themicrogrippernavigatesfromthestartingpointtothedestination.
5.Conclusion
Amagnetichydrogel-basedmicrogripperwaspresentedinthisstudy.Theproposeddevicecanbewirelesslyactuatedfortransla-tional,rotational,andgrippingmotionsbyusingdcandacmagneticfields.Thedeviceisfabricatedusingabiocompatiblehydrogelmaterial,andissuitableforintravascularapplicationsorothermedicalpurposes.BycontrollingtheUVexposuredoseonthehydrogelcompositeduringthelithographyprocess,theactuationmechanismforgrippingmotionswasrealized.Thepreliminarycharacterizationofthedevicewasalsopresented.Thegrippingmotionreachedafullstrokeatapproximately38◦C.Theoperationofthedevice,suchasthegrippingmotion,translationalmotion,androtationalmotion,wasdemonstratedonaPVCtubeandaPDMSmicrofluidicchannel.
Acknowledgement
ThisworkwassupportedinpartbytheNationalScienceCouncil,Taiwan,ROC(Contractno:NSC100-2221-E-002-075-MY3).
AppendixA.Appendix
InlowReynoldsnumberregime,theviscousdragforceactingonanobjectisstronglydependentonthetotalsurfaceareaimmersedinthefluid[36].Therefore,thedragforceactingonthecirculardisk(paralleltoflow)showninFig.A1(a)shouldbelargerthanthedragforceactingonthegrippershowninFig.A1(b),becausethetotalsurfaceareaofthegripperislessthanthatofacirculardiskwithadiameterwhichisthesameasthegripper’ssidelengthDG.Asaresult,comparingEq.(6)with(4),theshapecorrectingconstantSinEq.(6)shouldbelessthan1.7.
Inaddition,thelowerlimitofScanbeestimatedbyconsideringacirculardisk(seeFig.A1(c))whichhasthesametopsurfacearea(·D2e/4,andDe
isthediameterofthedisk)asthatofthemicrogripper.Thedragforceactingonthiscirculardisk(paralleltoflow)shouldbesmallerthanthatactingonthegripper,becausethegripper,
Fig.A1.(a)AcirculardiskwithdiameterofDG.(b)ThemicrogripperwithsidelengthofDG.(c)AcirculardiskwithdiameterofDewhichhasthesametopsurfaceareaasthatofthemicrogrippershownin(b).Notethatthecirculardisksandthemicrogripperhavethesamethickness.
whichhassamesurfaceareaasthedisk,hasamuchmorecomplexgeometry.
Thelengthofthegripper(DG)isabout700m.Also,basedonthemasklayout,thetotaltopsurfaceareaofthegripperisabout1.71×105m.Therefore,thediameterofthedisk(De)isabout467m,andthelowerlimitofSisabout1.13(=1.7×De/DG).Insummary,accordingtothissimpleanalysis,therangeoftheshapecorrectingconstantisestimatedtobe1.13AppendixB.Supplementarydata
Supplementarydataassociatedwiththisarticlecanbefound,intheonlineversion,athttp://dx.doi.org/10.1016/j.sna.2014.02.028.
References
[1]J.H.Mieres,ReviewoftheAmericanHeartAssociation’sguidelinesforcardio-vasculardiseasepreventioninwomen,Heart92(2006)10–13.
[2]A.Prasad,C.S.Rihal,R.J.Lennon,H.J.Wiste,M.Singh,D.R.Holmes,Trendsin
outcomesafterpercutaneouscoronaryinterventionforchronictotalocclu-sions:a25-yearexperiencefromthemayoclinic,J.Am.Coll.Cardiol.49(2007)1611–1618.
[3]M.Lange,C.Ertmer,H.V.Aken,M.Westphal,Intravascularvolumetherapywith
colloidsincardiacsurgery,J.Cardiothorac.Vasc.Anesth.25(2011)847–855.[4]S.Toropygin,M.Krause,I.Riemann,M.Hild,P.Mestres,B.Seitz,E.Khurieva,
K.W.Ruprecht,U.Loew,Z.Gatzioufas,K.Konig,Invitrononcontactintravascu-larfemtosecondlasersurgeryinmodelsofbranchretinalveinocclusion,Curr.EyeRes.33(2008)277–283.
[5]U.Schnakenberg,C.Kruger,J.-G.Pfeffer,W.Mokwa,G.V.Bogel,R.Gunther,T.
Schmitz-Rode,Intravascularpressuremonitoringsystem,Sens.ActuatorsA:Phys.110(2004)61–67.
130
J.-C.Kuoetal./SensorsandActuatorsA211(2014)121–130
[6]D.Tanase,J.Goosen,P.J.Trimp,P.J.French,Multi-parametersensorsystemwith
intravascularnavigationforcatheter/guidewireapplication,Sens.ActuatorsA:Phys.97–98(2002)116–124.
[7]M.Hagiwara,T.Kawahara,F.Arai,Localstreamlinegenerationbymechanical
oscillationinamicrofluidicchipfornoncontactcellmanipulations,Appl.Phys.Lett.101(2012)074102–74111.
[8]B.R.Donald,C.G.Levey,C.D.McGray,I.Paprotny,D.Rus,Anuntethered,elec-trostatic,globallycontrollableMEMSmicro-robot,J.Microelectromech.Syst.15(2006)1–15.
[9]Y.Fukuta,Y.-A.Chapuis,Y.Mita,H.Fujita,Design,fabrication,andcontrol
ofMEMS-basedactuatorarraysforair-flowdistributedmicromanipulation,J.Microelectromech.Syst.15(2006)912–926.
[10]E.Y.Erdem,Y.-M.Chen,M.Mohebbi,J.W.Suh,G.Kovacs,R.B.Darling,K.F.
Bohringer,Thermallyactuatedomnidirectionalwalkingmicrorobot,J.Micro-electromech.Syst.19(2010)433–442.
[11]W.Hu,K.S.Ishii,Q.Fan,A.T.Ohta,Hydrogelmicrorobotsactuatedbyoptically
generatedvaporbubbles,LabChip12(2012)3821–3826.
[12]C.Yu,J.Kim,H.Choi,J.Choi,S.Jeong,K.Cha,J.-O.Park,S.Park,Novelelectro-magneticactuationsystemforthree-dimensionallocomotionanddrillingofintravascularmicrorobot,Sens.ActuatorsA:Phys.161(2010)297–304.
[13]M.S.Sakar,E.B.Steager,D.H.Kim,A.Julius,M.Kim,V.Kumar,G.J.Pappas,Mod-eling,controlandexperimentalcharacterizationofmicrobiorobots,Int.J.RobotRes.30(2011)647–658.
[14]C.Pawashe,S.Floyd,M.Sitti,Modelingandexperimentalcharacteriza-tionofanuntetheredmagneticmicro-robot,Int.J.RobotRes.28(2009)1077–1094.
[15]J.Kim,S.E.Chung,S.-E.Choi,H.Lee,J.Kim,S.Kwon,Programmingmagnetic
anisotropyinpolymericmicroactuators,Nat.Mater.10(2011)747–752.
[16]S.Jeong,H.Choi,J.Choi,C.Yu,J.-O.Park,S.Park,Novelelectromagneticactua-tion(EMA)methodfor3-dimensionallocomotionofintravascularmicrorobot,Sens.ActuatorsA:Phys.157(2010)118–125.
[17]H.Choi,K.Cha,J.Choi,S.Jeong,S.Jeon,G.Jang,J.-O.Park,S.Park,EMAsystem
withgradientanduniformsaddlecoilsfor3Dlocomotionofmicrorobot,Sens.ActuatorsA:Phys.163(2010)410–417.
[18]S.M.Jeon,G.H.Jang,H.C.Choi,S.H.Park,J.O.Park,Magneticnavigationsystem
fortheprecisehelicalandtranslationalmotionsofamicrorobotinhumanbloodvessels,J.Appl.Phys.111(2012)07E702.
[19]G.Kosa,P.Jakab,G.Szekely,N.Hata,MRIdrivenmagneticmicroswimmers,
Biomed.Microdevices14(2012)165–178.
[20]D.R.Frutiger,K.Vollmers,B.E.Kratochvil,B.J.Nelson,Small,fast,andunder
control:wirelessresonantmagneticmicro-agents,Int.J.RobotRes.29(2010)613–636.
[21]T.G.Leong,C.L.Randall,B.R.Benson,N.Bassik,G.M.Stern,D.H.Gracias,Tether-lessthermobiochemicallyactuatedmicrogrippers,Proc.Natl.Acad.Sci.U.S.A.106(2009)703–708.
[22]G.-L.Jiang,Y.-H.Guu,C.-N.Lu,P.-K.Li,H.-M.Shen,L.-S.Lee,J.A.Yeh,M.T.-K.
Hou,Developmentofrollingmagneticmicrorobots,J.Micromech.Microeng.20(2010)1–11.
[23]S.Tottori,L.Zhang,F.Qiu,K.K.Krawczyk,A.Franco-Obregon,B.J.Nelson,
Magnetichelicalmicromachines:fabrication,controlledswimming,andcargotransport,Adv.Mater.24(2012)811–816.
[24]L.N.Kim,S.-E.Choi,J.Kim,H.Kim,S.Kwon,Singleexposurefabricationand
manipulationof3Dhydrogelcellmicrocarriers,LabChip11(2010)48–51.[25]C.Bergeles,B.E.Kratochvil,B.J.Nelson,Visuallyservoingmagneticintraocular
microdevices,IEEETrans.Robot.28(2012)798–809.
[26]J.Kim,J.A.Hanna,M.Byun,C.D.Santangelo,R.C.Hayward,Designingresponsive
buckledsurfacesbyhalftonegellithography,Science335(2012)1201–1205.[27]N.S.Satarkar,W.Zhang,R.E.Eitel,J.Z.Hilt,Magnetichydrogelnanocomposites
asremotecontrolledmicrofluidicvalves,LabChip9(2009)1773–1779.
[28]X.Zhang,C.L.Pint,M.H.Lee,B.E.Schubert,A.Jamshidi,K.Takei,H.Ko,A.Gillies,
R.Bardhan,J.J.Urban,M.Wu,R.Fearing,A.Javey,Optically-andthermally-responsiveprogrammablematerialsbasedoncarbonnanotube–hydrogelpolymercomposites,NanoLett.11(2011)3239–3244.
[29]S.Joseph,N.R.Aluru,Whyarecarbonnanotubefasttransportersofwater,Nano
Lett.8(2008)452–458.
[30]J.-C.Kuo,P.-H.Kuo,Y.-T.Lai,C.-W.Ma,S.-S.Lu,Y.-J.Yang,Apassiveiner-tialswitchusingMWCNT-hydrogelcompositewithinterrogationcapability,J.Microelectromech.Syst.22(2013)1057–7157.
[31]T.S.Shim,S.-H.Kim,C.-J.Heo,H.C.Jeon,S.-M.Yang,Controlledorigamifoldingof
hydrogelbilayerswithsustainedreversibilityforrobustmicrocarriers,Angew.Chem.Int.Ed.51(2012)1420–1423.
[32]L.D.Zarzar,P.Kim,J.Aizenberg,Bio-inspireddesignofsubmergedhydrogel-actuatedpolymermicrostructuresoperatinginresponsetopH,Adv.Mater.23(2011)1442–1446.
[33]J.-C.Kuo,S.-W.Tung,Y.-J.Yang,Ahydrogel-basedintravascularmicrogripper
manipulatedusingmagneticfields,in:TechnicalDigestofthe17thInterna-tionalConferenceonSolid-StateSensorsandActuators,Barcelona,Spain,June,2013,pp.1683–1686.
[34]W.H.Hayt,J.A.Buck,EngineeringElectromagnetic,7thed.,McGraw-hill,New
York,2006.
[35]B.R.Munson,D.F.Young,T.H.Okiishi,Fundamentalsoffluidmechanics,5thed.,
JohnWiley&Sons,SanDiego,2006.
[36]F.S.Sherman,Viscousflow,2nded.,McGraw-hill,NewYork,1990.
[37]K.B.Yesin,K.Vollmers,B.J.Nelson,Modelingandcontrolofuntetheredbiomi-crorobotsinafluidicenvironmentusingelectromagneticfield,Int.J.RobotRes.25(2006)527–536.
Biographies
Jui-ChangKuoreceivedtheB.S.degreeinCivilEngineeringandtheM.S.degreeinMechanicalEngineeringfromNationalChiaoTungUniversity,Hsinchu,Taiwan,in2008and2010,respectively.HeiscurrentlyworkingtowardthePh.D.degreeinMechanicalEngineeringatNationalTaiwanUniversity,Taipei,Taiwan.Hismainresearchinterestsincludebio-MEMSdevices,applicationsofhydrogelmaterial,andothertopicsinmicrosystemdevicedesignandfabrication.
Hen-WeiHuangreceivedhisB.S.degreeandM.S.degreeinMechanicalEngineeringatNationalTaiwanUniversity,Taiwanin2011and2012,respectively.Currently,heisaresearchassistantinResearchCenterofAppliedScience,AcademiaSinica.Hisresearchinterestsincludewirelesssensornetwork,embeddedsystemsforbiomed-icalapplications,bistablemicroactuators,microfluidicsandLabOnaChip.HeisamemberofIEEE.HeisalsotherecipientoftheoutstandingcreativityperformancescholarshipoftheCTCIFoundation.
Shu-WeiTungreceivedtheB.S.degreesindepartmentofMechanicalEngineeringfromNationalTaiwanUniversity,Taiwan,in2011.HeiscurrentlyworkingtowardtheM.S.degreeinDepartmentofMechanicalEngineeringatNationalTaiwanUni-versity,Taiwan.Hisresearchinterestsincludeapplicationsofhydrogelmaterials,micromachiningtechniques,andmicrotiparrays.
Yao-JoeYangreceivedtheB.S.degreeinMechanicalEngineeringfromNationalTaiwanUniversity(NTU),theM.S.degreeinMechanicalEngineeringfromtheUniversityofCalifornia,LosAngeles,andtheM.S.andPh.D.degreesinelectricalengi-neeringfromtheMassachusettsInstituteofTechnology,Cambridge.HewaswithCoventorInc.,Cambridge,asaSeniorApplicationEngineer.CurrentlyheisaDistin-guishedProfessoroftheDepartmentofMechanicalEngineering,NationalTaiwanUniversity,andservesastheDepartmentChairman.HisresearchinterestsincludeMEMS,nanotechnology,high-precisionmicromachining,flexiblesensingarrays,biomedicaldevices,microfluidics,micromechanics,andsemiconductordevices.HeservesastheboarddirectoroftheChineseInstituteofAutomationEngineering(CIAE),theboarddirectoroftheChineseSocietyofMechanicalEngineers(CSME).HeisalsotheboarddirectorofASMETapeiChapter.HewastherecipientoftheOut-standingResearchAwardaswellastheDr.Da-YuWuMemorialAward(NationalOutstandingYoungResearcherAward)oftheNationalScienceCouncil.HewasalsotherecipientoftheNTUOutstandingResearcherAward.
因篇幅问题不能全部显示,请点此查看更多更全内容