1、均匀分布载荷f、dx dy上的力fdxdy是常数、其产生的力矩为xfdxdy(x轴方向类)、对xfdxdy沿受力面积用二重积分积一下就解决了、如果是园形r径向类。
力矩为rrdrda,对rrdrda沿受力面积用二重积分积一下一样解决。对三角形分布在载荷的力和力矩,要确定力矩方向和受力面边界方程。
2、可以将均布载荷看成一个集中力,这个集中力的大小就是均布载荷的面积(q·L),作用于分布区域的中点(L/2)处。
运用均布载荷计算弯矩的公式可以简单认为M=(q*x^2)/2,x是均布载荷的长度。其来历是:q*x是作用在结构上的合力F,单位为N,合力的作用点位于载荷作用的中点,故F的力臂为x/2米,从而弯矩M=(q*x^2)/2。
力矩在物理学里是指作用力使物体绕着转动轴或支点转动的趋向。力矩的单位是牛顿-米。力矩希腊字母是 tau。
力矩的概念,起源于阿基米德对杠杆的研究。转动力矩又称为转矩或扭矩。力矩能够使物体改变其旋转运动。推挤或拖拉涉及到作用力 ,而扭转则涉及到力矩。力矩等于径向矢量与作用力的叉积。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务