您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页毕业设计(论文)-复杂轴类零件工艺分析和加工编程

毕业设计(论文)-复杂轴类零件工艺分析和加工编程

来源:意榕旅游网
目 录

摘 要 .......................................................................................................................... I Abstract ........................................................................................ 错误!未定义书签。 第一章 概述 ............................................................................................................ - 1 -

数控机床的优点 ............................................................................................... - 1 - 数控机床的发展趋势 ....................................................................................... - 2 -

1.2.1 高速、高精加工技术及装备的新趋势 .................................... - 2 - 1.2 .2轴联动加工和复合加工机床快速发展 ..................................... - 3 - 1.2.3 智能化、开放式、网络化成为当代数控系统发展的主要趋势- 3 - 1.2.4 重视新技术标准、规范的建立 .................................................. - 4 - 数控机床的分类 ............................................................................................... - 5 -

按加工工艺方法分类 ................................................................................ - 5 - 按控制运动轨迹分类 ................................................................................ - 6 - 按驱动装置的特点分类 ............................................................................ - 7 -

第二章 工艺分析及加工前的准备 ...................................................................... - 9 -

零件图工艺分析 ............................................................................................... - 9 - 选择设备 ......................................................................................................... - 10 - 确定零件的定位基准和装夹方式 ................................................................. - 10 - 确定加工顺序及进给路线 ............................................................................. - 10 - 2.5 刀具的选择: ......................................................................................... - 12 -

选 择 数控刀具的原则 ...................................................................... - 12 - 切削用量选择 .......................................................................................... - 14 - 工序划分的主要原则; .......................................................................... - 15 - 2.6加工步骤: ............................................................................................ - 17 - 装夹方式和夹具的选择: ............................................................................. - 17 -

.夹具的选择 .......................................................................................... - 17 - .夹具的类型 .......................................................................................... - 17 - .工件装夹方法的选择 .......................................................................... - 18 -

第三章数控机床编程 ............................................................................................ - 18 -

数控车床的编程特点 ..................................................................................... - 18 -

3.1.1 机床坐标轴 .............................................................................. - 19 - 3.1.2 机床原点、参考点、机床坐标系 .......................................... - 19 - 3.1.3 工件原点和 212 件坐标系 .................................................... - 20 - 3.1.4 绝对编程与增量编程 .............................................................. - 20 - 3.1.5 直径编程和半径编程 .............................................................. - 21 - 数控车床的程序 ............................................................................................. - 21 - 第四章总体体会 .................................................................................................... - 30 - 参考文献: ............................................................................................................ - 31 -

- 1 -

第一章 概述

引言

我做的是复杂轴类零件,该零件表面由圆柱、顺圆弧、螺纹等表面组成。其中多个直径尺寸有较严的尺寸精度和表面粗糙度等要求;圆柱φ40㎜、60㎜的尺寸公差要求较高。尺寸标注完整,轮廓描述清楚。零件材料为45钢,无热处理和硬度要求。通过该零件的工艺分析和加工编程我熟悉了轴类别零件的加工过程。

数控机床采用了计算机数控( Computerized Nuinerically Control )系统,因此也称为计算机数控机床或 CNC 机床。数控机床作为一种新型的自动化机床、在具有高自动程度的同时还具有广泛的通用性。

这是因为数控机床都具有以下一些共同的优点:

(1)数控机床能缩短生产准备时间,增加切削加工时间的比率。最佳切削参数和最佳走刀路线的合理使用,能够大大地缩短加工时间,提高生产率。

(2)数控机床按照程序自动加工,不需要人工干预,而且还可以利用软件进行校正及补偿。因此,使用数控机床进行生产,可以保证零件的加工精度。稳定产品质量。

(3)只要改变程序,就能改变数控机床刀具与工件之间的相对运动轨迹,就可以加工不同的零件,使数控加工具备了广泛的适应性和较大的灵活性。从而能够完成很多普通机床难以完成或者不能加工的、具有复杂型面的零件的加工。

(4)许多数控机床能够实现生产加工过程中的自动换刀,使得零件一次性装夹之后,数控机床就能完成零件的多个加工部位的加工,真正实现了一机多用,大节省了设备和厂房面积。生产者可以精确计算生产成本,并对生产进度进行合理的安排,从而在一事实上程度上可以加速资金的周转,切实提高经济效益。

(5)在一般情况下,数控机床在加工生产过程中不需要特别的专用夹具,普通的

- 1 -

通用夹具就能满足数控加工的要求。与普通机床相比,使用数控机床进行生产时,专用夹具设计制造和存放的费用可以大大的减少。

(6)运用数控机床进行生产,能够大减轻工人的劳动强度。

数控技术的应用不但给传统制造业带来了性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面:

1.2.1 高速、高精加工技术及装备的新趋势

效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(CIRP)将其确定为21世纪的中心研究方向之一。

在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。这些都对加工装备提出了高速、高精和高柔性的要求。

从EMO2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右。目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床。美国CINCINNATI公司的HyperMach机床进给速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60 000r/min。加工一薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国DMG公司的双主轴车床的主轴速度及加速度分

- 2 -

别达12*!000r/mm和1g。

在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~1.5μm,并且超精密加工精度已开始进入纳米级(0.01μm)。

在可靠性方面,国外数控装置的MTBF值已达6 000h以上,伺服系统的MTBF值达到30000h以上,表现出非常高的可靠性。

为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。

1.2 .2轴联动加工和复合加工机床快速发展

采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。

当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。因此促进了复合主轴头类型5轴联动机床和复合加工机床(含5面加工机床)的发展。

在EMO2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工。德国DMG公司展出DMUVoution系列加工中心,可在一次装夹下5面加工和5轴联动加工,可由CNC系统控制或CAD/CAM直接或间接控制。

1.2.3 智能化、开放式、网络化成为当代数控系统发展的主要趋势

21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能

- 3 -

化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。

网络化数控装备是近两年国际著名机床博览会的一个新亮点。数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。国内外一些著名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在EMO2001展中,日本山崎马扎克(Mazak)公司展出的“CyberProduction Center”(智能生产控制中心,简称CPC);日本大隈(Okuma)机床公司展出“IT plaza”(信息技术广场,简称IT广场);德国西门子(Siemens)公司展出的Open Manufacturing Environment(开放制造环境,简称OME)等,反映了数控机床加工向网络化方向发展的趋势。

1.2.4 重视新技术标准、规范的建立

如前所述,开放式数控系统有更好的通用性、柔性、适应性、扩展性,美国、欧共体和日本等国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范(OMAC、OSACA、OSEC)的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和规范的制定,预示了数控技术的一个新的变革时期的来临。我国在2000年也开始进行中国的ONC数控系统的规范框架的研究和制定。

数控标准是制造业信息化发展的一种趋势。数控技术诞生后的50年间的信息交换都是基于ISO6983标准,即采用G,M代码描述如何(how)加工,其本质特征是面向加工过程,显然,他已越来越不能满足现代数控技术高速发展的需要。为此,国际上正在研究和制定一种新的CNC系统标准ISO149(STEP-NC),其目的是提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程,乃至各个工业领域产品信息的标准化。

STEP-NC的出现可能是数控技术领域的一次,对于数控技术的发展乃至整个制造业,将产生深远的影响。首先,STEP-NC提出一种崭新的制造理念,传统的制造理念中,NC加工程序都集中在单个计算机上。而在新标准下,NC程序可以分散在互联网上,这正是数控技术开放式、网络化发展的方向。其次,STEP-NC数控系统还可大大减少加工图纸(约75%)、加工程序编制时间(约35%)和加工时间(约50%)。 目前,欧美国家非常重视STEP-NC的研究,欧洲发起了STEP-NC的IMS计划(1999.1.1~2001.12.31)。参加这项计划的有来自欧洲和日本的20个

- 4 -

CAD/CAM/CAPP/CNC用户、厂商和学术机构。美国的STEP Tools公司是全球范围内制造业数据交换软件的开发者,他已经开发了用作数控机床加工信息交换的超级模型(Super Model),其目标是用统一的规范描述所有加工过程。目前这种新的数据交换格式已经在配备了SIEMENS、FIDIA以及欧洲OSACA-NC数控系统的原型样机上进行了验证。

数控加工是对学生完成课程后,对机械加工工艺过程、数控加工工艺和夹具结构进一步了解的练习性的实践环节,是学习深化与升华的重要过程,是对学生综合素质与工程实践能力的培养。

数控机床的分类

按加工工艺方法分类

1.金属切削类数控机床

与传统的车、铣、钻、磨、齿轮加工相对应的数控机床有数控车床、数控铣床、数控钻床、数控磨床、数控齿轮加工机床等。尽管这些数控机床在加工工艺方法上存在很大差别,具体的控制方式也各不相同,但机床的动作和运动都是数字化控制的,具有较高的生产率和自动化程度。

在普通数控机床加装一个刀库和换刀装置就成为数控加工中心机床。加工中心机床进一步提高了普通数控机床的自动化程度和生产效率。例如铣、镗、钻加工中心,它是在数控铣床基础上增加了一个容量较大的刀库和自动换刀装置形成的,工件一次装夹后,可以对箱体零件的四面甚至五面大部分加工工序进行铣、镗、钻、扩、铰以及攻螺纹等多工序加工,特别适合箱体类零件的加工。加工中心机床可以有效地避免由于工件多次安装造成的定位误差,减少了机床的台数和占地面积,缩短了辅助时间,大大提高了生产效率和加工质量。

2.特种加工类数控机床

除了切削加工数控机床以外,数控技术也大量用于数控电火花线切割机床、数控电火花成型机床、数控等离子弧切割机床、数控火焰切割机床以及数控激光加工机床等。

- 5 -

3.板材加工类数控机床

常见的应用于金属板材加工的数控机床有数控压力机、数控剪板机和数控折弯机等。

近年来,其它机械设备中也大量采用了数控技术,如数控多坐标测量机、自动绘图机及工业机器人等。 按控制运动轨迹分类

1.点位控制数控机床

位置的精确定位,在移动和定位过程中不进行任何加工。机床数控系统只控制行程终点的坐标值,不控制点与点之间的运动轨迹,因此几个坐标轴之间的运动无任何联系。可以几个坐标同时向目标点运动,也可以各个坐标单独依次运动。

这类数控机床主要有数控坐标镗床、数控钻床、数控冲床、数控点焊机等。点位控制数控机床的数控装置称为点位数控装置。

2.直线控制数控机床

直线控制数控机床可控制刀具或工作台以适当的进给速度,沿着平行于坐标轴的方向进行直线移动和切削加工,进给速度根据切削条件可在一定范围内变化。

直线控制的简易数控车床,只有两个坐标轴,可加工阶梯轴。直线控制的数控铣床,有三个坐标轴,可用于平面的铣削加工。现代组合机床采用数控进给伺服系统,驱动动力头带有多轴箱的轴向进给进行钻镗加工,它也可算是一种直线控制数控机床。

数控镗铣床、加工中心等机床,它的各个坐标方向的进给运动的速度能在一定范围内进行调整,兼有点位和直线控制加工的功能,这类机床应该称为点位/直线控制的数控机床。

3.轮廓控制数控机床

- 6 -

轮廓控制数控机床能够对两个或两个以上运动的位移及速度进行连续相关的控制,使合成的平面或空间的运动轨迹能满足零件轮廓的要求。它不仅能控制机床移动部件的起点与终点坐标,而且能控制整个加工轮廓每一点的速度和位移,将工件加工成要求的轮廓形状。

常用的数控车床、数控铣床、数控磨床就是典型的轮廓控制数控机床。数控火焰切割机、电火花加工机床以及数控绘图机等也采用了轮廓控制系统。轮廓控制系统的结构要比点位/直线控系统更为复杂,在加工过程中需要不断进行插补运算,然后进行相应的速度与位移控制。

现在计算机数控装置的控制功能均由软件实现,增加轮廓控制功能不会带来成本的增加。因此,除少数专用控制系统外,现代计算机数控装置都具有轮廓控制功能。 按驱动装置的特点分类

1.开环控制数控机床

这类控制的数控机床是其控制系统没有位置检测元件,伺服驱动部件通常为反应式步进电动机或混合式伺服步进电动机。数控系统每发出一个进给指令,经驱动电路功率放大后,驱动步进电机旋转一个角度,再经过齿轮减速装置带动丝杠旋转,通过丝杠螺母机构转换为移动部件的直线位移。移动部件的移动速度与位移量是由输入脉冲的频率与脉冲数所决定的。此类数控机床的信息流是单向的,即进给脉冲发出去后,实际移动值不再反馈回来,所以称为开环控制数控机床。

开环控制系统的数控机床结构简单,成本较低。但是,系统对移动部件的实际位移量不进行监测,也不能进行误差校正。因此,步进电动机的失步、步距角误差、齿轮与丝杠等传动误差都将影响被加工零件的精度。开环控制系统仅适用于加工精度要求不很高的中小型数控机床,特别是简易经济型数控机床。

2.闭环控制数控机床

- 7 -

接对工作台的实际位移进行检测,将测量的实际位移值反馈到数控装置中,与输入的指令位移值进行比较,用差值对机床进行控制,使移动部件按照实际需要的位移量运动,最终实现移动部件的精确运动和定位。从理论上讲,闭环系统的运动精度主要取决于检测装置的检测精度,也与传动链的误差无关,因此其控制精度高。图1-3所示的为闭环控制数控机床的系统框图。图中A为速度传感器、C为直线位移传感器。当位移指令值发送到位置比较电路时,若工作台没有移动,则没有反馈量,指令值使得伺服电动机转动,通过A将速度反馈信号送到速度控制电路,通过C将工作台实际位移量反馈回去,在位置比较电路中与位移指令值相比较,用比较后得到的差值进行位置控制,直至差值为零时为止。这类控制的数控机床,因把机床工作台纳入了控制环节,故称为闭环控制数控机床。

闭环控制数控机床的定位精度高,但调试和维修都较困难,系统复杂,成本高。 3.半闭环控制数控机床

半闭环控制数控机床是在伺服电动机的轴或数控机床的传动丝杠上装有角位移电流检测装置(如光电编码器等),通过检测丝杠的转角间接地检测移动部件的实际位移,然后反馈到数控装置中去,并对误差进行修正。通过测速元件A和光电编码盘B可间接检测出伺服电动机的转速,从而推算出工作台的实际位移量,将此值与指令值进行比较,用差值来实现控制。由于工作台没有包括在控制回路中,因而称为半闭环控制数控机床。

半闭环控制数控系统的调试比较方便,并且具有很好的稳定性。目前大多将角度检测装置和伺服电动机设计成一体,这样,使结构更加紧凑。

4.混合控制数控机床

将以上三类数控机床的特点结合起来,就形成了混合控制数控机床。混合控制数控机床特别适用于大型或重型数控机床,因为大型或重型数控机床需要较高的进给速度与相当高的精度,其传动链惯量与力矩大,如果只采用全闭环控制,机床传动链和工作台全部置于控制闭环中,闭环调试比较复杂。混合控制系统又分为两种形式:

- 8 -

(1)开环补偿型。它的基本控制选用步进电动机的开环伺服机构,另外附加一个校正电路。用装在工作台的直线位移测量元件的反馈信号校正机械系统的误差。

(2)半闭环补偿型。它是用半闭环控制方式取得高精度控制,再用装在工作台上的直线位移测量元件实现全闭环修正,以获得高速度与高精度的统一。其中A是速度测量元件(如测速发电机),B是角度测量元件,C是直线位移测量元件。

第二章 工艺分析及加工前的准备

零件图工艺分析

该零件表面由圆柱、顺圆弧、螺纹等表面组成。其中多个直径尺寸有较严的尺寸精度和表面粗糙度等要求;圆柱直径40㎜、60㎜的尺寸公差要求较高。尺寸标注完整,轮廓描述清楚。零件材料为45钢。如图2-1

图2-1

通过上述分析,可采用以下几点工艺措施。

- 9 -

①对图样上给定的几个精度要求较高的尺寸,因其公差数值较小,故编程时不必取平均值,而全部取其基本尺寸即可。

②在轮廓曲线上,有2处为圆弧,加工时应进行机械间隙补偿,以保证轮廓曲线的准确性。

③为便于装夹和减小误差,坯件右端应先加工,然后再调头加工左断,为了防止在加工左端时加紧右端碰伤右端表面,顾在加紧右端时在表面包上均匀的棉布。

选择设备

根据被加工零件的外形和材料等条件,选用TND360数控车床。

确定零件的定位基准和装夹方式

①定位基准 确定坯料轴线和右端大端面(设计基准)为定位基准。

②装夹方法 左端采用三爪自定心卡盘定心夹紧,右端也采用三爪自定心卡盘定心夹紧装夹方式。

确定加工顺序及进给路线

加工顺序按由粗到精、由近到远(由右到左)的原则确定。即先从右到左进行粗车(留0.25㎜精车余量),然后从右到左进行精车,最后车削螺纹。

TND360数控车床具有粗车循环和车螺纹循环功能,只要正确使用编程指令,机床数控系统就会自动确定其进给路线,因此,该零件的粗车循环和车螺纹循环不需要人为确定其进给路线(但精车的进给路线需要人为确定)。该零件从右到左沿零件表面轮廓精车进给,如图2-2所示。

- 10 -

图2-2 精车轮廓进给路线

该零件从左到右沿零件表面轮廓精车进给,如图2-3所示

图2-3

- 11 -

2.5 刀具的选择:

选 择 数控刀具的原则

刀具寿命与切削用量有密切关系。在制定切削用量时,应首先选择合理的刀具寿命,而合理的刀具寿命则应根据优化的目标而定。一般分最高生产率刀具寿命和最低成本刀具寿命两种,前者根据单件工时最少的目标确定,后者根据工序成本最低的目标确定。

选择刀具寿命时可考虑如下几点根据刀具复杂程度、制造和磨刀成本来选择。复杂和精度高的刀具寿命应选得比单刃刀具高些。对于机夹可转位刀具,由于换刀时间短,为了充分发挥其切削性能,提高生产效率,刀具寿命可选得低些,一般取15-30min。对于装刀、换刀和调刀比较复杂的多刀机床、组合机床与自动化加工刀具,刀具寿命应选得高些,尤应保证刀具可靠性。车间内某一工序的生产率了整个车间的生产率的提高时,该工序的刀具寿命要选得低些当某工序单位时间内所分担到的全厂开支M较大时,刀具寿命也应选得低些。大件精加工时,为保证至少完成一次走刀,避免切削时中途换刀,刀具寿命应按零件精度和表面粗糙度来确定。与普通机床加工方法相比,数控加工对刀具提出了更高的要求,不仅需要冈牲好、精度高,而且要求尺寸稳定,耐用度高,断和排性能坛同时要求安装调整方便,这样来满足数控机床高效率的要求。数控机床上所选用的刀具常采用适应高速切削的刀具材料(如高速钢、超细粒度硬质合金)并使用可转位刀片。

根据对零件图纸的分析,加工所选择的刀具请参看附录(刀具工序卡)。 ① T1 粗车及平端面选用900硬质合金90度外圆车刀,为防止副后刀面与工件轮廓干涉(可用作图法检验),副偏角不宜太小,选κ=350。

② T2 切槽刀,刀宽为4mm,以左刀尖定位。

③ T3 外螺纹刀。精车外圆选用900硬质合金右偏刀,车螺纹选用硬质合金600外螺纹车刀,刀尖圆弧半径应小于轮廓最小圆角半径,取rε=0.15~0.2㎜。

④ T4 内螺纹车刀。精车内圆选用900硬质合金右偏刀,车螺纹选用硬质合金

- 12 -

600外螺纹车刀,刀尖圆弧半径应小于轮廓最小圆角半径,取rε=0.15~0.2㎜。

⑤T5 选用20中心钻钻削中心孔。

⑥T6 内圆切槽刀,刀宽为4mm,以左刀尖定位

将所选定的刀具参数填入数控加工刀具卡片中(见表1),以便编程和操作管理。

表2-1 数控加工刀具卡片

产品名称或 零件典型轴 零件图 代号 名称 号 序刀刀具规格名称 数加工表面 备号 具号 量 注 1 T01 90度外圆车刀 1 车端面及粗车轮廓 右偏刀 2 T02 切槽刀,刀宽1 切槽 以为4mm 左刀尖定位 - 13 -

3 T03 硬质合金6001 精车轮廓,车螺纹 右偏刀 外螺纹车刀 4 5 T04 T05 钻 内螺纹车刀 选用20中心1 1 精车内轮廓,车内螺纹 钻直径20 mm中心孔 6 T06 内圆切槽刀,1 切内槽 以左刀尖定位 刀宽为4mm 编制 核 审 准 批 共 页 页 第 切削用量选择

①背吃刀量的选择 轮廓粗车循环时选ap=3 ㎜,精车ap=0.25㎜;螺纹粗车时选ap= 0.4 ㎜,逐刀减少,精车ap=0.1㎜。

②主轴转速的选择 车直线和圆弧时,选粗车切削速度vc=90m/min、精车切削速度vc=120m/min,然后利用公式vc=πdn/1000计算主轴转速n(粗车直径D=60 ㎜,精车工件直径取平均值):粗车500r/min、精车700 r/min。车螺纹时,参照式(5-1)计算主轴转速n =300 r/min.

③进给速度的选择 选择粗车、精车每转进给量,再根据加工的实际情况确定粗车每转进给量为0.4㎜/r,精车每转进给量为0.15㎜/r,最后根据公式vf = nf计算粗车、精车进给速度分别为200 ㎜ /min和180 ㎜/min。

- 14 -

综合前面分析的各项内容,并将其填入表2所示的数控加工工艺卡片。此表是编制加工程序的主要依据和操作人员配合数控程序进行数控加工的指导性文件。主要内容包括:工步顺序、工步内容、各工步所用的刀具及切削用量等。 工序划分的主要原则; 1、保证加工质量; 2、合理使用设备; 3、先粗后精。 4、先主后次。 5、先基准后其他。 6、尽量减少换刀次数

表2-2 典型轴类零件数控加工工艺卡片 产品名称或代号 程序编号 典型轴 零件名称 零件图号 单位名称 工序号 夹具名称 使用设备 车间 - 15 -

001 三爪卡盘和活动顶尖 床 TND360数控车 主工步号 容 工步内刀具号 刀具规格 轴转速 度 / mm /r.m-1 -1 进给速背吃刀量/ /mm.mmm 注 备1 平端面 T01 25 25 500 自动 自动 自动 2 车外圆 T01 25 25 500 200 3 车外轮廓 T03 500 4 5 切外槽 车外螺纹 调头车另一端轮廓 钻22的孔 精车内孔 切内槽程序 车内螺纹 T02 T03 200 300 6 T01 500 7 8 9 10 T05 T04 T06 T04 200 700 200 300 - 16 -

2.6加工步骤:

在自动编程过程中,加工工艺决策是加工能否顺利完成的基础,必须依据零件的形状特点、工件的材料、加工的精度要求、表面粗糙度要求,选择最佳的加工方法、合理划分加工阶段、选择适宜的加工刀具、确定最优的切削用量、确定合理的毛坯尺寸与形状、确定合理的走刀路线,最终达到满足加工要求、减少加工时间、降低加工费用的目的。

2.7装夹方式和夹具的选择:

.夹具的选择

数控加工对夹具主要有两大要求:一是夹具应具有足够的精度和刚度;二是夹具应有可靠的定位基准。选用夹具时,通常考虑以下几点:

1)尽量选用可调整夹具、组合夹具及其它通用夹具,避免采用专用夹具,以缩短生产准备时间。

2)在成批生产时才考虑采用专用夹具,并力求结构简单。 3)装卸工件要迅速方便,以减少机床的停机时间。

4)夹具在机床上安装要准确可靠,以保证工件在正确的位置上加工。 2.7.2.夹具的类型

数控车床上的夹具主要有两类:一类用于盘类或短轴类零件,工件毛坯装夹在带可调卡爪的卡盘(三爪、四爪)中,由卡盘传动旋转;另一类用于轴类零件,毛坯装在主轴顶尖和尾架顶尖间,工件由主轴上的拨动卡盘传动旋转。

数控铣床上的夹具,一般安装在工作台上,其形式根据被加工工件的特点可多种多样。如:平口钳。

- 17 -

2.7.3.工件装夹方法的选择

数控机床上零件的安装方法与普通机床一样,要合理选择定位基准和夹紧方案,注意以下两点:

1)力求设计、工艺与编程计算的基准统一,这样有利于编程时数值计算的简便性和精确性。

2)尽量减少装夹次数,尽可能在一次定位装夹后,加工出全部待加工表面。 综合以上分析可选用:三抓卡盘。

第三章数控机床编程

1)在一个程序段中,根据图样上标注的尺寸,可以采用绝对值编程、增量值编程或二者混合编程。

2)由于被加工零件的径向尺寸在图样上和测量时,都是以直径值表示。所以直径方向用绝对值编程时,X以直径值表示,用增量值编程时,以径向实际位移量的二倍值表示,并附上方向符号(正向可以省略)。

3)为提高工件的径向尺寸精度,X向的脉冲当量取Z向的一半。

- 18 -

4)由于车削加工常用棒料或锻料作为毛坯,加工余量较大,所以为简化编程,数控装置常具备不同形式的固定循环,可进行多次重复循环切削。

5)编程时,常认为车刀刀尖是一个点,而实际上为了提高刀具寿命和工件表面质量,车刀刀尖常磨成一个半径不大的圆弧,因此为提高工件的加工精度,当编制圆头刀程序时,需要对刀具半径进行补偿。大多数数控车床都具有刀具半径自动补偿功能(G41、G42)这类数控车床可直接按工件轮廓尺寸编程。对不具备刀具半径自动补偿功能的数控车床,编程时,需先计算补偿量 3 机床坐标轴

数控车床是以其主轴轴线方向为Z 轴方向,刀具远离工件的方向为 Z 轴正方向。 X 坐标的方向是在工件的径向上,且平行于横向拖板,刀具离开工件旋转中心的方向为 X 轴正方向。故此 CJK6O32 车床的各轴方向如图3-1,所示:

3-1图

3 机床原点、参考点、机床坐标系

参考点为机床上一固定点,如图 1 一 1 所示,(点 O 即为参考点)。其固定位置,由 X 向与 Z向的机械挡块及电机零点位置来确定,机械挡块一般设定在 Z 轴正向最大位置。当进行回参考点的操作时,装在纵向和横向拖板上的行程开关,碰到挡块后,向数控系统发出信号,由系统控制拖板停止运动,完成回参考点的操作。

- 19 -

机床原点也是机床上的一个固定点。车床的机床原点一般定义在主轴旋转中心线与车头端面的交点或参考点上, CJK6O32 车床其机床原点与参考点重合。见图 1 一 1 所示。

如果以机床原点为坐标原点,建立一个 Z 轴与 X 轴的直角坐标系,则此坐标系就称为机床坐标系。当机床完成回参考点的操作时,即建立机床坐标系。 3 工件原点和 212 件坐标系

工作原点(即程序原点),其是人为设定的点。没定的依据是:既要符合图样尺寸的标注习惯义要便于编程。因此当编程时,一般先找出图样上的设计基准点,并通常以该点作为工作原点数控车床工件原点一般选择在轴线与工件右端而、左端面或卡爪的前端面的交点上。如图 3-1,其以工作右端面与轴线的交点作为工作原点。

如果以工件原点为坐标原汽,建立一个 z 轴与 x 轴的直角坐标系,则此坐标系就称为件坐标系。数控车床上工件坐标系的 2 抽一般与土轴轴线重合。 3 绝对编程与增量编程

确定轴移动的指令方法有绝对指令和增量指令两种。绝对指令是对各轴移动到终点的坐标值进行编程的方法,称为绝对编程法。增量指令是用各轴的移动量直接编程的方法,称为增量编程法。例如,当从 A 直线移动到 B ,如图 3-2 ,两种方法编程如下:

绝对指令编程: G90G01 X60230; 增量指令编程: G91G01 X40Z 一 60 ;

注: G9O 、 G91 为模态功能,可相互注销, G90 为缺省值。

- 20 -

图3-2

3.1.5 直径编程和半径编程

数控车床加:工的是回转体类零件,其横截面为圆形,所以尺寸有直径指定和半径指定两种方法。当用直径值编程时,称为直径编程法:用半径值编程时,称为半径编程法。如图 1 一 2 ,用半径、直径编程法编辑其程序如下:

半径编程:G90G01 X60230 (绝对指令编程) G91 G01 X40Z 一 60 (增量指令编程) 直径编程: G90G01X120230 (绝对指令编程) G91G01X802 一 60 (增量指令编程)

数控车床出厂时一般设定为直径编程。如需用半径编程,要改变系统中相关参数,使系统处于半径编程状态;本章以后,若非特殊说明,各例均为直径编程。

注:当用半径或直径编程法时,系统参数中(机床参数)“直径编程/半径编程”,要设为“ 1 \" 或“0”了

3.2数控车床的程序

T1 90度外圆车刀

T2 切槽刀,刀宽为4mm,以左刀尖定位

- 21 -

T3 外螺纹刀 T4 内螺纹车刀 T5 22的钻头

T6 内圆切槽刀,刀宽为4mm,以左刀尖定位 1、工艺路线

首先粗车、精车外轮廓,然后进行切槽加工,最后车罗纹

然后调头装夹,先粗车、精车外轮廓,然后进行钻孔加工,最后车罗纹 2、确定切削用量

粗车外轮廓:主轴转速为500r/min,进给速度为F/r;精车外轮廓;主轴转速为700r/min,进给速度为F/r;切槽:主轴转速为200r/min,进给速度为Fmm/r;车螺纹:主轴转速为300r/min。

3、数值计算 外螺纹计算

螺纹小径:D小=D公差—1.3X螺距=32—1.3X2=29.4(mm) 螺纹加工超越长度23mm,引入长度1=22=6mm 内螺纹计算

螺纹小径:D小=D公差—1.3X螺距=24-1.3X1.5=22.05(mm)

螺纹加工超越长度22mm, 引入长度1=22=4mm

- 22 -

4程序编制

N1 粗车M32一头的外圆程序 G00 G40 G90 T0101 M03 S500 X80 Z2

G71 U1.5 R0.5 G71 P10 Q11 U0.4 W0 F

N10 G01 G42 X0 F0.1 Z0 X28 X32 Z-2 Z-20 X40 X50 Z-26 X56 X60 Z-28

N11 Z-90 G00 X150 Z150 M05

外圆粗车循环G71 粗加工车许第一个程序段 粗加工程序段 粗加工程序最后一个程序段 - 23 -

N2 粗车外圆程序 G00 G40 G90 G95 T0101 M03 S700 X80 Z2

G70 P10 Q11 G00 X150 Z150 M05 M00

N3 G00 G40 G90 G95 T0303 X80 Z2

G73 U2.1 W0 R3 G73 P12 Q13 U0.4 W0 F

N12 G01 Z-35 F0.1 X60 Z-35

G02 X60 Z-85 R45

N13 G01 X60 Z-90

精加工循环 粗车外轮廓程序 封闭切削循环G73 粗加工程序第一程序段 粗加工程序段 粗加工程序最后一个程序段 - 24 -

G00 X150 Z150 M05

N4 粗车外轮廓程序 G00 G40 G90 G95 T0303 X80 Z2

G70 P12 Q13 G00 X150 Z150 M05

M00 N5 G00 G40 G90 G95 T0202 M03 S200 X60 Z-20 G01 X26 F X60 F

G00 X150 Z150 M05 M00

N6 G00 G40 G90 G95 T0303 M03 S300

精加工循环 暂停 切槽程序 车螺纹程序 - 25 -

X34 Z5

G76 P021060 Q100 R0.1 复合螺纹切削循环指令G76 G76 X29.4 Z-18 P1300 Q400 F G00 X150 Z150 M05 M02

M24一端的加工程序

N1 G00 G40 G90 G95 T0101 M03 S500 X80 Z2

G71 U1.5 R0.5 G71 P10 Q11 U0.4 W0 F N10 G01 G42 X0 F Z0 X40 Z-19

G02 X52 Z-25 R6 F

粗车M24一头的外圆程序 外圆粗车循环G71 - 26 -

G01 X56 F X60 Z-27 N11 Z-40

G00 X150 Z150 M05

N2 G00 G40 G90 G95 T0505 M03 S200 X0 Z5 G01 Z-31 F Z5 F

G00 X150 Z150 M05

N3 G00 G40G90 G95 T0606 M03 S200 G01 X0 Z5 Z-22 X28 F X0 F

钻22的孔切槽程序 - 27 -

Z5

G00 X150 Z150 M05

N4 精车内孔 G00 G40 G90 G95 T0404 M03 S700 X60 Z2 G01 X24.05 Z0 X22.05 Z-2 Z-25 Z5 X60

G00 X150 Z150 M05

N5 G00 G40 G90 G95 M03 S300 X0 Z5

G76 X24 Z-22 P975 Q400 车内螺纹 F

- 28 -

G01 X0 Z5

G00 X150 Z150 M05 M02

- 29 -

第四章总体体会

“数控”这个名词对于人们已经不在陌生了,近二十年来,它越来越多的出现在人们视线中,尤其在长江三角洲,珠江三角洲等东部沿海地区,这里是全国工业制造中心,众多模具企业云集,而模具的需求也与日俱增。社会对从事数控的人才的要求也越来越高。这就要求我们学好专业,学精专业。

在这次毕业设计过程中老师对我的帮助很大,如果没有她细心的指导,我这个失去指南针的船不知何时才能到达彼岸,在这我非常感谢你,在设计的过程中王磊老师对本次的毕业设计的任务、要求、以及说明书的格式、章节的设置都提出了许多宝贵的修改和补充意见,在其中我遇到了不少麻烦,我向她寻求帮助的时候,她总会帮我分析问题,并教我怎么分析,然后找出问题的根源,再列举几种解决的方法,最后解决问题,同时还给我一些意见,这又给我上了一课,因为我现在有能解决问题的能力了。

最后,对本次毕业设计中的各位指导老师和毕业答辩老师表示谢意以及本次设计中的所列参考文献的作者们表示谢意。谢谢你们在本次设计对我的指导,我学会的不仅是这个事情的解决方法更重要的是明白了万事都是一通百通的遇到任何困难都可以解决,只要思想不滑坡方法总比困难多,老师能给我拐杖但给不了我坚强,将来的路还需要我自己走,让我在这五个多月的时间内学到了许多的知识,让我受益匪浅。

致谢

十分感谢指导老师对我所做的这份毕业设计的指导,老师给予的帮助使我的毕业设计能够顺利完成。也感谢学校图书馆为毕业班学生提供的绿色通道,为我们延长借书时间,使我们有足够的时间来查找资料,提高毕业设计论文的正确度。

衷心的感谢老师,也祝愿学校越办越好!

- 30 -

参考文献:

[1] 王志平. 《数控编程与操作》 北京高等教育出版社,2003 [2] 周兰. 《模具设计与制造》 清华大学出版社,2003 [3] 黄卫. 数控技术与数控编程. 机械工业出版社,1998 [4] 史明. 机械加工切削数据手册. 机械工业出版社,1998 [5] 刘江. 数控编程. 机械工业出版社, 1998 [6] 李真峰. 数控加工工艺. 上海交通出版社, 2004

[7] 赵如福. 金属机械加工工艺人员手册. 上海科学技术出版社,1999 [8] 赵长明. 刀具设计手册. 机械工业出版社,1998

[9] 马占永. 机械加工工艺设计实用手册. 航空工业出版社,2003 [10] 陈宏钧. 实用机械加工工艺手册. 机械工业出版社,2001

- 31 -

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务