SystematicMethodsforthe
ComputationoftheDirectionalFieldsandSingularPointsofFingerprints
AskerM.BazenandSabihH.Gerez
AbstractÐThefirstsubjectofthispaperistheestimationofahighresolutiondirectionalfieldoffingerprints.Traditionalmethodsarediscussedandanewmethod,basedonprincipalcomponentanalysis,isproposed.Themethodnotonlycomputesthedirectioninanypixellocation,butitscoherenceaswell.Itisproventhatthismethodprovidesexactlythesameresultsastheªaveragedsquare-gradientmethodºthatisknownfromliterature.Undoubtedly,theexistenceofacompletelydifferentequivalentsolutionincreasestheinsightintotheproblem'snature.Thesecondsubjectofthispaperissingularpointdetection.Averyefficientalgorithmisproposedthat
Âindexandprovidesaextractssingularpointsfromthehigh-resolutiondirectionalfield.ThealgorithmisbasedonthePoincare
consistentbinarydecisionthatisnotbasedonpostprocessingstepslikeapplyingathresholdonacontinuousresemblancemeasureforsingularpoints.Furthermore,amethodispresentedtoestimatetheorientationoftheextractedsingularpoints.Theaccuracyofthemethodsisillustratedbyexperimentsonalive-scannedfingerprintdatabase.
IndexTermsÐImageprocessing,fingerprintrecognition,directionalfield,orientationestimation,singularpointextraction,principalcomponentanalysis.
æ
1
recognitionhasreceivedincreasinglymore
attentionduringthelastyears.Sincetheperformanceoffingerprintverificationsystemshasreachedasatisfactorylevelforapplicationsinvolvingsmalldatabases,thenextstepisthedevelopmentofalgorithmsforfingerprintidentificationsystemsthatcansearchrelativelylargedatabasesforamatchingfingerprint.Althoughotherapproachesarepossi-ble,like,forinstance,thehashingtechniqueintheminutiaedomain[1],thefirststepinanidentificationsystemisoftencontinuousclassificationoffingerprints[2],[3].Thisreducesthepartitionofthedatabasetobesearchedformatches.Tofacilitatehigh-performanceclassification,algorithmsforaccuratedirectionalfieldandsingular-pointestimationareneeded.
InFig.1a,afingerprintisdepicted.Theinformationcarryingfeaturesinafingerprintarethelinestructures,calledridgesandvalleys.Inthisfigure,theridgesareblackandthevalleysarewhite.Itispossibletoidentifytwolevelsofdetailinafingerprint.Thedirectionalfield(DF),showninFig.1b,describesthecoarsestructure,orbasicshape,ofafingerprint.Itisdefinedasthelocalorientationoftheridge-valleystructures.Theminutiaeprovidesthedetailsoftheridge-valleystructures,likeridge-endingsandbifurcations.Minutiaeare,forinstance,usedforfingerprintmatching,whichisaone-to-onecomparisonoftwofingerprints.
ThispaperfocusesonthedirectionalfieldoffingerprintsandmattersdirectlyrelatedtotheDF.TheDFis,inprinciple,
INGERPRINT
F
INTRODUCTION
perpendiculartothegradients.However,thegradientsareorientationsatpixelscale,whiletheDFdescribestheorientationoftheridge-valleystructures,whichisamuchcoarserscale.Therefore,theDFcanbederivedfromthegradientsbyperformingsomeaveragingoperationonthegradients,involvingpixelsinsomeneighborhood[4].ThisisillustratedinFig.2a,whichshowsthegradientsinapartofafingerprint,andFig.2b,whichshowstheaverageddirec-tionalfield.Whilethegradientsarenotallparallelbecauseoftheendpoint,thedirectionalfieldisbecauseoftheaveragingoperator.TheaveragingofgradientsinordertoobtaintheDFisthefirsttopicofthispaper.
TheestimationmethodthatisdescribedinthispaperenablestheapplicationofDF-relatedtasksthatrequireveryhighresolutionandaccurateDFs.Examplesofthesedemandingtechniquesare,forinstance,theaccurateªextractionofsingularpointsºasdiscussedinSection3andªhigh-performanceclassification.ºTogetherwiththeDF,thecoherencecanbeestimated.Thecoherenceisameasurethatindicateshowwellthegradientsarearepointinginthesamedirection.Anexampleofitsuseishigh-resolutionsegmentation[5],[6].
IntheDF,singularpoints(SPs)canbeidentified.Theextractionofthosesingularpointsisthesecondtopicofthispaper.SPsarethepointsinafingerprintwherethedirectionalfieldisdiscontinuous.Henry[7]definedtwotypesofsingularpoints,intermsoftheridge-valleystructures.Thecoreisthetopmostpointoftheinnermostcurvingridgeandadeltaisthecenteroftriangularregionswherethreedifferentdirectionflowsmeet.ThelocationsofthesingularpointsinanexamplefingerprintaregiveninFig.1c.Apartfromitslocation,anSPhasanorientation;thispaperalsoproposesanestimationmethodfortheorientationofSPs[8].
ThemostcommonuseofSPsisregistration,whichmeansthattheyareusedasreferencestolineuptwofingerprints.Anotherexampleoftheiruseisclassificationoffingerprints
.TheauthorsarewiththeUniversityofTwente,DepartmentofElectricalEngineering,POBox217,7500AE,Enschede,TheNetherlands.E-mail:{a.m.bazen,s.h.gerez}@el.utwente.nl.Manuscriptreceived25July2000;revised24Apr.2001;accepted8Dec.2001.
RecommendedforacceptancebyR.Kumar.
Forinformationonobtainingreprintsofthisarticle,pleasesende-mailto:tpami@computer.org,andreferenceIEEECSLogNumber112593.
0162-8828/02/$17.00ß2002IEEE
906IEEETRANSACTIONSONPATTERNANALYSISANDMACHINEINTELLIGENCE,VOL.24,NO.7,JULY2002
Fig.1.Examplesofafingerprint,itsdirectionalfieldanditssingularpoints:(a)fingerprint,(b)directionalfield,and(c)singularpoints.
Fig.2.Detailedareainafingerprint:(a)thegradientand(b)theaverageddirectionalfield.
intheHenryclasses[9].Theorientationofsingularpointscanbeusedformoreadvancedclassificationmethods,ortoinitializeflowlinesintheDF[9],[10],[11],[12].
Thispaperisorganizedasfollows:First,inSection2,theestimationoftheDFisdiscussed.InSection2.1,thetraditionalmethodofaveragingsquaredgradientsisdis-cussed,while,inSection2.2,anewmethodbasedonprincipalcomponentanalysis(PCA)isproposed.InSection2.3,aproofisgiventhatbothmethodsareexactlyequivalentanditisshownthatthecoherence,whichisameasureforthelocalstrengthofthedirectionalfield,canbeelegantlyexpressedinthetwoeigenvaluesthatarecomputedforthePCA.Then,inSection3,SPsarediscussed.Section3.1describesanefficientmethodfortheextractionofSPsfromtheDF,while,inSection3.2,amethodisproposedfortheestimationoftheorientationoftheSPs.InSection4,somecomputationalaspectsofDFestimationandSPextractionarediscussed.Furthermore,itisshownthatthehigh-resolutionDFcanbeusedtoobtainmoreaccurateblock-DFestimates.Finally,inSection5,anexperimentispresentedwherethetheoryisappliedtofingerprintscontainedinoneofthedatabasesusedfortheFingerprintVerificationCompetition2000[13].Inthatsection,somepracticalaspectsofthealgorithmsaredis-cussedaswell.
onthehigh-frequencypowerinthreedimensions[16],2-dimensionalspectralestimationmethods[15],andmicro-patternsthatcanbeconsideredbinarygradients[10].Theseapproachesdonotprovideasmuchaccuracyasgradient-basedmethods,mainlybecauseofthelimitednumberoffixedpossibleorientations.ThisisespeciallyimportantwhenusingtheDFfortasksliketracingflowlines.Thegradient-basedmethodwasintroducedin[17]andadoptedbymanyresearchers,see,e.g.,[18],[19],[20],[21].
TheelementaryorientationsintheimagearegivenbythegradientvectorqxxYyqyxYy,whichisdefinedas:
!qxxYy
signqxrsxYy
qyxYy
I4dsxYy5
dsxYydxYsigndsxYydxdy2DIRECTIONALFIELDESTIMATION
wheresxYyrepresentsthegray-scaleimage.Thefirst
elementofthegradientvectorhasbeenchosentoalwaysbepositive.ThereasonforthischoiceisthatintheDF,whichisperpendiculartothegradient,oppositedirectionsindicateequivalentorientations.ItisillustratedinFig.2thatsomeaveragingoperationhastobeperformedonthegradientsinordertoobtaintheDF.
VariousmethodsusedtoestimatetheDFfromafingerprintareknownfromliterature.Theyincludematched-filterapproaches[14],[15],[9],methodsbased
2.1AveragingSquaredGradients
Thissectiondiscussestheproblemsthatareencounteredwhenaveraginggradientsandthetraditionalsolutionof
BAZENANDGEREZ:SYSTEMATICMETHODSFORTHECOMPUTATIONOFTHEDIRECTIONALFIELDSANDSINGULARPOINTSOF...907
averagingaveragingsquaredanalysissquaredgradients.gradientsFirst,ispresentedthegeneralandideathen,behindanthecoherence,estimationoftheresultsoftheofDF,thismethodisgiven.Apartfromestimatedorientation.
whichprovidesathismeasuresectionforalsothestrengthdiscussesofthethe2.1.1QualitativeAnalysis
Gradientscannotdirectlybeaveragedinsomelocalneighbor-hoodsinceoppositegradientvectorswillthencanceleachother,althoughtheyindicatethesameridge-valleyorienta-tion.Thisiscausedbythefactthatlocalridge-valleystructuresremainunchangedwhenrotatedover180degrees[21].SincethegradientorientationsaredistributedinacyclicspacerangingfromHto%,andtheaverageorientationhastobefound,anotherformulationofthisproblemisthattheª%EperiodiIn[17],aylisolutionmentoºthishasproblemtobecomputed.
isproposedbydoublingtheanglesofthegradientvectorsbeforeaveraging.Afterdoublingtheangles,oppositegradientvectorswillpointinthesamedirectionand,therefore,willreinforceeachother,whileperpendiculargradientswillcancel.Afteraveraging,thegradientvectorshavetobeconvertedbacktotheirsingle-anglerepresentation.Theridge-valleyorientationisthenperpendicularonlyInofthetheangleversiontoofofthethethedirectiongradientsalgorithmoftheisdoubled,discussedaveragegradientvector.butinalsothispaper,thelengthnotconsideredthegradienteffectascomplexvectorsisnumberssquared,asifthegradientvectorsareaveragethatstrongorientationsthathaveareasquared.highervoteThishasinthethethisotherapproachorientation[21],choices,resultsthanweakerorientations.Furthermore,like,forininstance,thecleanestsettingexpressions.alllengthsHowever,tounityInare[17],foundamethodinliteratureisproposedaswell.
tousethesquaredgradientsforcomputationofthestrengthoftheorientation.Thismeasure,whichiscalledthecoherence,measureshowwellallsquaredgradientvectorssharethesameorientation.Iftheyareallparalleltoeachother,thecoherenceis1andiftheyareequallydistributedoveralldirections,thecoherenceis0.2.1.2QuantitativeAnalysis
Inthissection,thequalitativeanalysisthatwasgivenintheprevioussectionismadequantitative.ThegradientvectorsarefirstestimatedusingCartesiancoordinates,inwhichagradientvectorisgivenbyqxqy.Fordoublingtheangleandsquaringthelength,thegradientvectorisconvertedtoºpolarºcoordinates,inwhichitisgivenbyq&q9.Thisconversionisgivenby:
q!4q5q&
qPxqPy9
tnÀIqXPy
aq
x
NotethatÀIP%`q9 IP%isadirectconsequenceofthefacthatqxisalwayspositive.ThegradientvectorisconvertedbacktoitsCartesianrepresentationby:
q! qx
q&!
y
qosq9&sinq9XQ
Usingtrigonometricidentities,anexpressionforthe
squaredgradientvectorsqsYxYqsYythatdoesnotrefertoq&andq9,isfound:
qsYx
!4qP
54&osPq9qPosPq5&9ÀsinPq9qsYy4qP&sinPq9qP&Psinq9
qP5osq9
RxÀqP
y
PqxqyXThisresultcanalsobeobtaineddirectlybyusingtheequivalenceofªdoublingtheangleandsquaringthelengthofavectorºtoªsquaringacomplexnumberº:
qsYxjÁqsYyqxjÁqyPqPxÀqP
yjÁPqxqyX
S
Next,theaveragesquaredgradientÂqsYxqsYyÃ
canbecalculated.Itisaveragedinsomeneighborhood,usingapossiblynonuniformwindow:
4q5sYx qsYx
!qsYy4qsYy
qP5xÀqPy !TqxxÀqyyXPqxqyPqxyInthisexpression,
q
xxqPU
xq
yyqPyV
q
xy
qxqy
W
areestimatesforthevariancesandcrosscovarianceofqx
andqy,averagedoverthewindow.Now,theaverage
gradientdirectionÈ,withÀIP%`È IP%,isgivenby:
ÈIÀ
ÁPqxxÀqyyYPqxyY
IH
wherexYyV
isdefinedas:
`tnÀIxYyyax
X
tnÀItnÀIyaxyax%
forxÀ%
x!H
x``HHyy!`H
H
II
andtheaverageridge-valleydirection,withÀIItoÈ:
P%` P%,isperpendicular&
ÈÈIÀPI%forÈ HP%
ÈbHXIPThecoherenceofthesquaredgradientscanalsobe
expressedusingthesamenotations.Thecoherencegohisgivenby[17]:
gohqsYxYqsYyqsYxYqsYyXIQ
908IEEETRANSACTIONSONPATTERNANALYSISANDMACHINEINTELLIGENCE,VOL.24,NO.7,JULY2002
sameIfallthedirection,squaredthegradientsumofvectorsthemoduliarepointinginexactlythecoherencemodulusgradientvalueofthesumofthevectors,oftheresultingvectorsequalsinalengthvectorsareofequally1.Onthedistributedotherhand,inallifdirections,thesquaredcoherenceofthesituations,valuesumofofthevectorswillequal0,resultingintheaprovidingthetherequiredcoherence0.Inmeasure.
willbetweenvarybetweenthese0twoandextreme1,thus2.2PrincipalComponentAnalysis
Thisdirectionalpaperproposesasecondmethodtoestimatetheprincipalfieldfromthegradients,whichisbasedonorthogonalcomponentanalysis(PCA).PCAcomputesanewthebasevariancebaseofthegivenprojectionamultidimensionalononeofthedateaxessetsuchthatminimal.ismaximal,eigenvectorsItofturnswhiletheprojectionontheotherofthisonenewistheautocovarianceoutthatthematrixbaseisofthisformeddatasetbytheGaussianqWhenapplyingPCAtotheautocovariancematrixof[22].thexqyFromcalculated.
thisjointgradientvectors,itprovidesthe2-dimensionalfunction,probabilitythemaindensitydirectionfunctionoftheofgradientsthesevectors.canbegradientTheestimatevectorpairsoftheisgivenautocovarianceby:
matrixgofthe !g
q qxxqxyqPqxq!
xyqyy
qx
qPyxqyy
XIRInvectorsthisestimate,arezero-mean,theassumptioni.e.,
ismadethatthegradientiqxiqyH
IS
inwindowawindowinthegivenfingerprint.Thisistrueinanyvalue.valuesThen,inwhichthegradientthefingerprintisdefinedhasasatheconstantmeangrayexpectationthatconstantofhavethethegradientsamedifferenceoftwoisexpectation.zero.Therefore,thesmallnumbermeanofisridge-valleyreasonabletransitions.
inwindowsTherequirementthatcontainofadensityThelongestautocovariancefunctionaxisvisIofgiventhe2-dimensionalbytheeigenvectorjointprobability!variance.ThisaxiscorrespondsmatrixthatbelongstotothelargesteigenvalueoftheIgradientofperpendicularorientation.thegradientsislargest,thedirectionandsotointhewhichªaverageºtheshortestbelongsaxisvalleyorientationtothevto.thisTheaxisridge-valleyand,therefore,orientationsgivenbyarethePsmallestThisistheisgiveneigenvaluedirectionby:
!oftheTheeigenvectoraverageridge-thatP.vPX
IT
simpleTheªstrengthºstrengthfunctionbetweenoftr0theofandtwothe1,eigenvalues.orientationcanbedefinedasaitisdefinedInby:
ordertolimitthetr
!IÀ!P
!I!P
X
IU
Again,!ifallgradientsoverHallandangles,tr!I,while,areinpointingcaseofinauniformthesamedistributiondirection,PI!PandtrH.
2.3Comparison
Inmethodsthissection,methodsofDFaestimation.comparisonAismadebetweenthetwocoherencearesectiongohexactlyandequivalentproofanditisisgivenshownthatthatboththemathematicalprovidesstrengthtrareequivalentaswell.Thisdetailsabriefdescriptionoftheproofs;thecalculatedTheproofcanbefoundinAppendixAandB.asdescribedbystartsbyderivingtheaveragegradient,intheSectionmethod2.1.ofInAppendixaveragingA,squareditisshowngradientsthat:
q!
I4IqxÁPqq5xxÀqyyIPqxxÀqyyPRqPxyyqxy
IVwith
rIPqxxÀqyyIqPqxxÀqyyPRqPxyXIW
autocovarianceNext,itisshownthatthisvectoristhatbothmethodsmatrixareequivalent.
g,asdefinedin(14),aneigenvectorwhichprovesof
gradientThecoherenceareexactlymethodequalas(seegohwell.(13)),calculatedInandAppendixthestrengthusingB,itistrtheshown(seesquaredthat
(17))qtrgoh
qÀqxxyyPRqPxy
qxxqyy
XPH3SINGULARPOINTEXTRACTION
ThethesubjectofthissectionisFig.pointsinafingerprintwhereextractiontheDFofisthediscontinuous.SPs,whichareInone3,arecontainingtwosegmentsacoreofandtheonefingerprintofFig.1areshown,cannotsomewhereonebelocatedinthecenterofthecontainingsegments.aHowever,delta.ThetheySPswhichridge-valleymoreaccuratelythanwithinthewidthofisapproximatelystructure10inthegray-valuefingerprint,theInFig.4,theDFofthosesegmentspixelsforisthisshown.example.
FromthisDF,accuracyexactstraightforwardofSPonlylocationonepixel.canbeAlthoughdetermineditseemseasilylikewithandifferentliterature.
algorithmstasktoforextractSPextractiontheSPsfromaveryaretheknownDFs,manyfromareas.In[23],differenceThen,firstaareasfeatureofhighcurvatureareidentifiedassearchofaroundadoublebetweencoretheestimatedvectorisdirectionestimatedandbythetakingdirectionthebeingacandidate(whorl)area.inThisanumberfeatureofvectorpositionsisclassifiedinacirclecandidatecore,featureareasdelta,ofhighwhorl,curvatureornoneareofthese.In[24],firstasatisfourpositionsvectorisconstructedaroundthebytakingtheselected,averagetoo.directionsThen,aareclassifiedasacoreordelta.candidateIn[18],someSP.Thisreferencefeaturemodelsvectorsquaresshiftedmeasurefit.over[14],forInhow[21],themuchtheDF,thelocalandlocalenergySPsaredetectedbyaleast-DFresemblesoftheDFanisSPusedand,asaFinally,aneuralregionsinisused[25],networktheasaratioisslidedovertheDFtodetectSPs.inmeasureofthetosinesdetectoftheSPs.
DFsintwoadjacentBAZENANDGEREZ:SYSTEMATICMETHODSFORTHECOMPUTATIONOFTHEDIRECTIONALFIELDSANDSINGULARPOINTSOF...909
Fig.3.Segmentsofafingerprintthatcontainasingularpoint.(a)Coreand(b)delta.
Fig.4.Directionalfields.(a)Coreand(b)delta.
Thesemethodsallprovidesomewhatunsatisfactoryresultssincetheyarenotcapableofconsistentlyextractingthesingularpoints.InsteadofprovidingaBooleanoutputthatindicateswhetheranSPispresentatsomelocationornot,theyproduceacontinuousoutputthatindicateshowmuchthelocalDFresemblesaSP.Postprocessingsteps,likethresholdsandheuristics,arenecessarytointerprettheoutputsofthealgorithmsandtomakethefinaldecisions.Themethodthatispresentedinthissectionisbasedon
Âindex,whichwasfirstintroducedin[10].ThethePoincare
ÂindexcanbeexplainedusingtheDFsthatarePoincare
depictedinFig.4.FollowingacounterclockwiseclosedcontouraroundacoreintheDFandaddingthedifferencesbetweenthesubsequentanglesresultsinacumulativechangeintheorientationof%andcarryingoutthisprocedurearoundadeltaresultsinÀ%.However,whenappliedtolocationsthatdonotcontainanSP,thecumulativeorientationchangewillbezero.
ÂindexprovidesthemeansforAlthoughthePoincare
consistentdetectionofSPs,thequestionariseshowtocalculatethismeasure.Apartfromtheproblemofhowtocalculatecumulativeorientationchangesovercontoursefficiently,achoicehastobemadeontheoptimalsizeandshapeofthecontour.Apossibleimplementationisdescribedin[26].Thatpaperclaimsthatasquarecurvewithalengthof25pixelsisoptimal.Asmallercurveresultsinspuriousdetections,whilealargercurvemayignore
core-deltapairswhichareclosetoeachother.Ifthepostprocessingstepfindsaconnectedareaofmorethan
Âindexis!%,acoreorsevenpixelsinwhichthePoincare
deltaisdetected.Inthecaseofanareathatislargerthan20connectedpixels,twocoresaredetected.
InSection3.1,weproposeanefficientimplementationofan
ÂindexSPextractionalgorithmthatisbasedonthePoincare
andmakesuseofsmall2-dimensionalfilters.ThealgorithmextractsallsingularpointsfromtheDF,includingfalseSPsthatarecausedbyaninsufficientlyaveragedDF.Further-more,thealgorithmdetermineswhetheracoreoradeltaisdetected.
Section3.2presentsanalgorithmforestimatingtheorientationofSPs.Asfarasweknow,thereexistsonlyoneearlierpublicationoncomputingtheorientationofSPs[23].ThatmethodexaminestheDFatanumberoffixedpositionsinacirclearoundtheSPandtakesthepositionwheretheDFpointsbesttowardtheSPasorientationoftheSP.ThemethodthatisdescribedbelowusestheentireneighborhoodoftheSPfortheorientationestimate,thusprovidingmuchmoreaccurateresults.
3.1ExtractionofSingularPoints
Intheimplementationthatisproposedinthispaper,choicesofthesizeandshapeofthecontourdon'thavetobemade.Postprocessingstepsarenotnecessaryandthecumulativeorientationchangesovercontoursareimplemented
910IEEETRANSACTIONSONPATTERNANALYSISANDMACHINEINTELLIGENCE,VOL.24,NO.7,JULY2002
Fig.5.Squareddirectionalfields.(a)Coreand(b)delta.
Fig.6.Gradientofsquareddirectionalfields.(a)Coreand(b)delta.
efficientlyinsmall2-dimensionalfilters.ThemethodcomputesforeachindividualpixelwhetheritisanSP,andisthereforecapableofdetectingSPsthatarelocatedonlyafewpixelsapart.ThispropertyisespeciallyusefulfortheextractionofSPsfromblock-directionalfields(BDFs),whichestimateonedirectionforeachnÂnblock.Specialcarehastobetakenthathigh-resolutionDFsaresufficientlyaveragedsuchthatspuriousSPsareeliminatedbeforehand,astheSP-extractionalgorithmwilldetectallSPspresentintheDFofagivenresolution.
Thealgorithmfirsttakesthesquareddirectionalfield(SDF).Thiseliminatesthestepof%whichisencounteredin
ItheDFbetweentheorientationsIP%andÀP%.The
ÂindexeschangetoP%,ÀP%,and0for,respectively,aPoincare
core,adelta,andnoneofthese.TheorientationoftheSDF,denotedbyP,isdepictedinFig.5fortheareasaroundSPs.Summingthechangesinorientationcorrespondstosummingthegradientsofthesquaredorientation.Thegradientvectortcanbeefficientlyprecalculatedfortheentireimageby:
45 !dPxYy
txxYydxrPxYydPPIxYyXtyxYy
dygradientvectorsofthesquaredorientationaroundboth
singularpointsareshowninFig.6.
ThenextstepistheapplicationofGreen'sTheorem,whichstatesthataclosedline-integraloveravectorfieldcanbecalculatedasthesurfaceintegralovertherotationofthisvectorfield:
s
wxdxwydyrotwxwydxdyde
ePP
dwydwx
ÀdxdyY
dxdyewherexandydefinethecoordinatesystem,eisthearea,
anddeisthecontouraroundthisareaandwxwyisthevectorfield.Thistheoremisappliedtothesummationofthegradientsofthesquaredorientationoverthecontour:
txÁÁxtyÁÁyrottxtysndex
ÁxYÁylongde
e
dtydtxÀXdxdyPQ
e
Inthecalculationofthediscreteversionofthisgradient,
bothcomponentsoftshouldbecalculatedªmoduloP%,ºsuchthattheyarealwaysbetweenÀ%and%.ThismakesthetransitionfromPÀ%toP%continuousor,inotherwords,theorientationisconsideredtobecyclic.The
SinceallSPshavetobeextractedfromtheDF,eistakenasasquareofonepixel.Thisresultsinaveryefficient
Âindex.ApplicationmethodforcomputationofthePoincare
oftheproposedmethodwillindeedleadtothedesiredSPlocations.UnlikeallotherSPextractionmethods,acore
ÂindexofP%,adeltainÀP%whiletheresultsinaPoincare
BAZENANDGEREZ:SYSTEMATICMETHODSFORTHECOMPUTATIONOFTHEDIRECTIONALFIELDSANDSINGULARPOINTSOF...911
Fig.7.Rotationofthegradientofthesquareddirectionalfields.(a)Coreand(b)delta.
Fig.8.Referencemodelsofsingularpoints.(a)Coreand(b)delta.
indexforallotherpixelsintheimageisexactlyequalto0.ThisisillustratedinFig.7.
TheexactlocationsoftheSPsintheDFarejustbetweenthepixels.OurmethoddetectsanSPinallneighboringpixelsofthepoint,becauseoftheregionofsupportofthegradientoperator.ThisresultsinSPdetectionsthathaveasizeofPÂPpixels,ascanalsobeseeninFig.7.
usefulnessofthesquaredgradientsiscausedbythefactthat,whenthegray-scaleimagerotatesaroundthecore,allcomponentsoftheSDFrotateoverthesameangle,asshowninAppendixC.Therefore,themodelofacorethathasrotatedoveranangle9,isgivenbyareferencemodelwithallitscomponentsmultipliedbyej9.
hporeY9hporeYrefÁej9X
PT
3.2OrientationofSingularPoints
Thelastsubjectofthispaperistheestimationoftheorientations9oftheextractedSPs.Themethodthatisdescribedhere,makesuseofthesquaredgradientvectorsintheneighborhoodofanSP,bothfortheimagetobeanalyzedandforareferenceSP.First,referencemodelsoftheDFsaroundstandardcoresanddeltasareconstructed.ForacoreatxYyHYH,thereferencemodelthatdescribestheSDFisgivenby:
yYÀx
hporeYrefpxPyP
and,foradeltaatxYyHYH,itisgivenby:
ÀyYÀx
hpdeltYrefpX
xPyP
PSPR
Thispropertyisusedfortheestimationoftheorientationofthecore.Theorientationofthecorewithrespecttothereferencemodelisfoundbytakingtheelement-by-elementproductoftheobservedsquaredgradientdatahporeYosxYyandthecomplexconjugatedofthereferencemodelhporeYrefxYy.ThisisdepictedinFig.9c.Then,theelementsaresummedandthesumisdividedbythenumberofmatrixelementsx,andtheangleoftheresultingvectoristaken.
g9
IÃ
hporeYrefxYyÁhporeYosxYyXxxYy
PU
NotethatjhporeYrefjjhpdeltYrefjIforallxYy.TheDFs
thatareassociatedwiththesemodelsareshowninFig.8.TheSDFintheneighborhoodofacore,repeatedinFig.9a,ideallylookslikethereferencemodelinFig.9b.The
Therelativeorientationofadeltawithrespecttothereferencemodelisgivenbyonethirdoftheangleoftheelement-by-elementproduct,asalsoshowninAppendixC:
IIÃ
hhpdelt9YrefxYyÁhpdeltYosxYyXQxxYy
PV
912IEEETRANSACTIONSONPATTERNANALYSISANDMACHINEINTELLIGENCE,VOL.24,NO.7,JULY2002
Fig.9.Processingstepsinthecalculationoftheorientationofacore.(a)SDFaroundcore.(b)SDFaroundreferencecore.(c)Orientationestimate.
Theaveragingoperatorprovidesanaccurateandunbiasedestimatefortheorientations9gand9h.Iftheobservedcoreisexactlyarotatedversionofthereferencecore,theorientationestimategives:g9
IÃj9
hporeYrefxYyÁhporeYrefxYyÁexxYy
IhporeYrefxYyPÁej9
xxYyej99X
WhenapplyingtheorientationestimatetothecoreofFig.3,itisfoundtoberotated4degreesclockwisewithrespecttothereferencecoreofFig.8,whilethedeltaofFig.3isfoundtoberotated8degreescounterclockwisewithrespecttothereferencedeltaofFig.8.Thiscorrespondstotheestimatesthatweremadebyvisualinspection.
PW
estimatedbymeansofdecimationofthehigh-resolutionDF.Scale-spacetheorytellsthataveragingwithaGaussianwindowminimizestheamountofartifactsthatareintroducedbysubsampling[4].ThiswillreducethenumberoffalsesingularpointsintheDFconsiderably.
Frommultiratesignalprocessing,itisknownthatthefilteringanddecimationstepscanbeimplementedveryefficientlyusingpolyphasefiltersbyinterchangingtheorderofdecimationandfiltering[27].Usingthismethod,thecalculationofaRÂRBDFisexpectedtotake40msona500MHzPentiumIII,whilethecalculationofanVÂVBDFisexpectedtotakeonly20ms.SincetheSPextractionalgorithmmakesuseofsmall2-dimensionalfilters,ittakes150msforaQHHÂQHHDF.Itisexpectedtotakeonly10mstoextracttheSPsfromaRÂRBDFofafingerprintofQHHÂQHHpixels.
5EXPERIMENTALRESULTS
4COMPUTATIONALASPECTS
ForefficientcalculationoftheDFandthecoherence,oneshouldnotuseeitherofthetwobasicmethods.Instead,first(7),(8),and(9)areusedforestimationofqxx,qyy,andqxy,andsubsequently(51)and(58)areusedforcalculationoftheDFandthecoherence.Whencalculatingthoseforallpixelsintheimage,thesummationsoverreducetolinearfilteroperations,whichcanbeimplementedveryeffi-ciently.Ona500MHzPentiumIIIcomputer,anefficientC++implementationforcalculationoftheDFandthecoherencetakesapproximately300msofprocessingtimeforafingerprintof300by300pixels.
FormostDF-relatedtasks,suchahighresolutionestimateisnotneeded.Inthesecases,asimpleblock-directionalfield(BDF)withblocksof,forinstance,VÂVpixelsprovidesenoughaccuracy.TheclassicalwaytoestimateaBDFistopartitiontheimageintoblocksandestimateqxx,qyy,andqxyastheaverageoftheblock.Sometimes,overlappingblocksareusedforsomemorenoisesuppression.However,averagingwithauniformwindowdoesnotsuppressthehigh-frequencynoisesufficiently.Therefore,aliasingintroducesartifactsintheDF,which,inturn,createsfalsesingularpoints.Thecauseofthisproblemisthatthelengthoftheaveragingfilterissettothesamenumberasthedecimationrate.Thiscanbesolvedbydecouplingthesizeandtheshapeoftheaveragingfilterfromthesubsamplingrate.WeproposetheuseofanalternativeBDFcalculationmethodthatisbasedonthehigh-resolutionDF.Ineachblock,qxx,qyy,andqxyare
Inthissection,someexperimentswillbepresentedinwhichthepreviouslyderivedresultsareappliedtoalargenumberoffingerprints.ItwillbeshownthatapplicationofthesemethodsenablestheestimationofveryaccurateandhighresolutionDFs,accurateSPlocations,andcorrectorienta-tionsofthesingularpoints.
WehaverunourexperimentsontheseconddatabaseoftheFVC2000contest[13].Thisdatabasecontainsfingerprintimagesthatarecapturedbyacapacitivesensorwitharesolutionof500pixelsperinch.Thismeansthattwoadjacentridgesarelocatedeightto12pixelsapart.Inthisdatabase,110untrainedindividualsareenrolled,eachwitheightprintsofthesamefinger.
SincethereexistsnogroundtruthfortheDFoffingerprints,objectiveerrormeasurescannotbeconstructed.Therefore,itisdifficulttoevaluatethequalityofaDFestimatequantitatively.Alternatively,thequalityofaDFestimatehastobemeasuredindirectly.Thissectionisorganizedasfollows:First,inSection5.1,thequalityoftheDFisassessedbymeansofmanualinspection.Next,inSection5.2,thenumberoffalseSPsisusedasameasureforthequalityofaDFestimate.However,thismeasurealsodependsonthesegmentationmeasureused.Then,Section5.3presentsexperimentalresultsontheorientationestimationoftheSPs.
5.1DirectionalFieldEstimation
Mostauthorsprocessfingerprintsblockwise[9],[20].Thismeansthatthedirectionalfieldisnotcalculatedforallpixelsindividually.Instead,theaverageDFiscalculatedinblocksof,forinstance,16by16pixels.Inthissection,itwill
BAZENANDGEREZ:SYSTEMATICMETHODSFORTHECOMPUTATIONOFTHEDIRECTIONALFIELDSANDSINGULARPOINTSOF...913
Fig.10.Gray-scalecodeddirectionalfieldandcoherence.(a)Directionalfieldand(b)coherence.
Fig.11.Gradientsanddirectionalfieldforvariousvaluesof'.
beshownthattheprocessingcanbecarriedoutpixelwise,leadingtoahighresolutionandaccurateDFestimate.
ThefirstexperimentconsidersthefingerprintofFig.1.AlthoughtheDFisonlyshownatdiscretestepsinFig.1b,itisestimatedforeachpixel.Thisisillustratedinthegray-scalecodedFig.10a.Inthatfigure,theanglesintherangeof
IÀIP%toP%haveuniformlybeenmappedtothegray-levelsfromblacktowhite.Thefigureissomewhatchaoticattheborderssincethoseareareasthatconsistofnoise.However,asshowninFig.10b,thecoherenceisverylowinthesenoisyareas[5].Inthisfigure,blackindicatesgohH,whilewhiteindicatesmaximumcoherence.
Next,anexperimentiscarriedouttoillustratetheeffectsofthechoiceofthewindow.WehavechosenaGaussianwindow,inaccordancewiththescale-spacetheory[4].InFig.11,theDFinasmallsegmentofPSÂPHpixelsisshown.Thissegmentcontainsabrokenridgethatisalmosthorizontal.Inthisexperiment,'ischosenintherangefrom'Ito'S.ItcanbeseenthattheDFisveryerraticforsmallvaluesof'.For
highervaluesof',theDFbecomesmoreuniform,andthelinesgetlonger,indicatinghighercoherencevalues.
Fromthisexperiment,awindowwith'Sseemsagoodchoice.Forthisvalue,theDFaroundabrokenridgeissufficientlyaveraged.Thewindowhasthenaneffectiveregionofsupportofapproximately20pixels(P'oneachside),whichcorrespondstoapproximatelytworidge-valleystructures.
5.2SingularPointExtraction
InSection3,ithasbeenshownthattheSPextractionmethodcorrectlyextractsSPsfromthesmoothDFofFig.4.ThiswasalsoillustratedinFig.1cforthefingerprintofFig.1a.Inthissection,thequestionwillbeansweredabouthowwellthemethodperformsonalargersetofDFsthatareestimatedfromrealfingerprints.
AsalreadymentionedinSection3,ourmethodextractsallSPsfromtheDF.Incasethedirectionalfieldisnotaveragedsufficiently,thismayresultinmanyfalsesingularpoints.ADFthathasnotbeenaveragedatall,maycontain
914IEEETRANSACTIONSONPATTERNANALYSISANDMACHINEINTELLIGENCE,VOL.24,NO.7,JULY2002
Fig.12.Extractedsingularpointsforvariousvaluesof'.
asmanyas100spuriouscore-deltapairs,especiallyinnoisyregionslikethebordersoftheimage.WhenaveragingtheDF,thesepairseithermergeanddisappearorfloatofftheborderoftheimage[21].ThisisillustratedinFig.12,wheretheextractedSPsareshownforvariousvaluesof'.AnotherexampleofthisbehaviorcanbeseenfromFig.11.For'I,asmanyasfivefalsecoresandfivefalsedeltascanbeidentified,whichalldisappearfor'!Q.
Infingerprintrecognition,onlytheSPsattheridge-valleyscalearevalidSPs.ThismeansthattheSPshavetobeextractedfromaDFthatisestimatedatthisscale[4].Thecoarse-scaledirectionalfieldcanbeobtainedbyaveragingitusingthealgorithmsofSection2.Next,theproposedSPextractionmethodcanbeapplied.Infact,scaleandsingularpointextractionaretwodifferentproblems.TheSPextractionmethodwillonlyprovidesatisfactoryresultsifthescaleischosenwellbysufficientaveraging.Sinceafingerprintnevercontainsmorethantwocore-deltapairs,thismightprovideachecktoseewhethertherightscalehasbeenreached.Experimentshaveshownthat'Tisoptimalforthedatabasethatisusedinthissection.
EvenwhentheDFhasbeenaveragedsufficiently,thenoisyregionsoutsidethefingerprintareamaystillcontainsomesingularpoints,ascanalsobeseenfromFigs.10aand12.Moreaveragingintheseregionsoflowcoherencedoesnotalwayssolvethisproblem:Somefalsesingularpointswillremain.Thismayalsobethecaseinfingerprintregionsthatareverynoisy.
AsolutionistousesegmentationinordertodiscardthefalseSPs.Segmentationisthepartitioningoftheimageina
ªforegroundºfingerprintareaandaªbackgroundºnoisearea.Aftersegmentation,allSPsthatareinthebackgroundcanbediscarded.Segmentationofinkedfingerprintimagesisarelativelystraightforwardtasksincethebackgroundcontainsnotmuchnoise.Therefore,measureslikethelocalmeangraylevelandthelocalvarianceofthegraylevelcanbeused[19].However,thesegmentationoflive-scannedfingerprintimagesismuchharder,sincetheycontainmuchmorebackgroundnoise.Therefore,moreadvancedsegmen-tationmethodsthatuse,forinstance,thecoherenceasmeasurehavetobeused.
Inourexperiment,SPsareextractedfromthefirstprintsofallfingersofthesecondFVC2000database,usingthemethodofSection3andaGaussianwindowwith'T.Forthepurposeofreference,theSPsinallprintsweremarkedbyhumaninspection.TheaveragenumberoffalseandmissedSPsareshowninTable1,whilethedistributionof
TABLE1
ResultsofSPExtraction
BAZENANDGEREZ:SYSTEMATICMETHODSFORTHECOMPUTATIONOFTHEDIRECTIONALFIELDSANDSINGULARPOINTSOF...915
Fig.13.Distributionofthenumberoffalsesingularpointsforvarioussegmentationmethods.(a)Nosegmentation.(b)Manualsegmentation.(c)Segmentation1.(d)Segmentation2.
Fig.14.SPextractionforexamplesfromeachofthefiveHenryclasses.(a)Whorl.(b)Leftloop.(c)Rightloop.(d)Arch.(e)Tentedarch.
Fig.15.ExampleofextractionofspuriousSPs.(a)Fingerprint.(b)CenterArea.(c)DFofcenterarea.
thenumbersoffalseSPsisshowninFig.13forfourdifferenttypesofsegmentation:
Nosegmentation,thewholeimageistakenasfingerprintregion.2.Manualsegmentation.
3.Highresolutionsegmentationalgorithmthatuses
thecoherenceestimateasfeatureandmorphologicaloperatorstosmooththesegmentationresult[5].4.Highresolutionsegmentationalgorithmthatuses
thecoherence,themean,andthevarianceofthefingerprintimageasfeaturesandmorphologicaloperatorstosmooththesegmentationresult[6].InFig.14,theextractedSPsforfingerprintsofthefiveHenryclassesareshown.ItcanbeseenthattheSP-extractionalgorithmhasnodifficultiesindistinguishing1.atentedarch,whichcontainsonecoreandonedelta,fromanarch,whichcontainsneitherofboth.Furthermore,thefigureshowsthatthedeltaintherightloopisnotdetected,althoughitisvisibleintheimage.Thesegmentationboundary,whichisalsoshowninthefigure,positionsthisdeltajustoutsidetheforegroundarea.
InFig.15,anexampleoftheextractionofspuriousSPsisshown.Fromthesurroundingsofthenoisycenterarea,itcanbeconcludedthatthisareashouldcontainonecore.However,theDFcontainstwocoresandonedeltainthisarea.FromtheshortlinesintheDFofFig.15c,itcanbeseenthatthecoherenceisverylowinthisarea.ThesefalseSPscanbeeliminatedbyfurtheraveragingtheDF,butthattakesawindowaslargeas'II.Inthiscase,itwouldbeabettersolutiontodevelopsegmentationalgorithmsthatarecapableofdetectinglow-qualityareasanddiscardspurious
916IEEETRANSACTIONSONPATTERNANALYSISANDMACHINEINTELLIGENCE,VOL.24,NO.7,JULY2002
core-deltaofentireveryprint,badpairsshouldquality,fromthesebehavingareas.rejectedalowFurthermore,fingerprintsentirely.
coherencevalueinthe5.3OrientationofSingularPoints
Theorientationlastexperimentexperiment,ofmarkedfirstSPsusingshowstheaccuracyoftheestimatedtheorientationsthemethodofofSectionallvalid3.2.SPsInthisautomatically.
manually.Next,theseorientationsaredeterminedareeThethe99
Àdistribution9,isasfollows:oftheTheerrorsestimateofistheunbiasedorientations,sinceFurthermore,meanerrorwhichthevarianceismenofe9theÀHXHIPÀHXUdegrees.HprovidesXPIIPmeansandegrees.thatthestandarddeviationestimateisis'Ponlye9H'XHRR,e9accurateTherefore,estimateweofconcludetheorientationsthatourofmethodSPs.
6CONCLUSIONS
Indirectionalthispaper,provenfieldsanewPCA-basedmethodforestimating
asthatthismethodfromfingerprintsprovidesexactlyisproposed.theSinceitisviewtheestimatingandtraditionalanincreasemethod,themethodofferssameadifferentresultstheanªaverageºofgradient.insightItonispointedtheproblemoutofeithermethodsaccuracytoestimatethatareahigh-resolutionpresentedinthisDFpaperortoimprovecanbeusedthatthethisTheimplementedpapersingular-point-extractionofblockdirectionalfields.
offersconsistentbinarymethoddecisionsthatisproposedandcanbeintionpostprocessing.SPextractionveryefficiently.anddoesItiscapableofhighresolu-resolutiontheDFFurthermore,notitisneedshowntousethatheuristicahigh-SPorientationcanofSPs.beTousedfurtherfortheaccurateestimationofdevelopedextraction,improvetheerrorratesofathataccuratesegmentationalgorithmshavetobediscardedfingerprint.arefromThen,capabletheseareas.
spuriousofdetectingcore-deltalow-qualitypairsareascanbeinACKNOWLEDGMENTS
ThisComputationalresearchhasbeencarriedoutwithinthetherhein-Westfalen,EuropeanCommission,IntelligenceCenterinthescopeTheoftheNetherlands,(ECIC),subsidizedEuregioInterregProgram.
andNord-byAPPENDIXAEQUIVALENCE
OF
DFESTIMATIONMETHODS
ItPCA-basedwillbeproventhatthesquaredgradientmethodandequivalent.methodwhichwasgivenTheprooffortobe:
startstheestimationbyderivingofthetheDFinverseareexactlythe
of(4), qqsYx! sYyqPPqqP!xÀyxqyXQHgivenSubstitutingby
thelowerpartofthisexpression,whichis
qy
qsYyPqx
QI
intotheupperpart,givenby
qsYxqPxÀqP
y
QP
gives
qRxÀqsYxqP
x
ÀIRqsYyHXQQ
Solvingthisforqxgives:
VbbrbbbIbbPqPqqsYxPsYxqPsYybPbbbrq`ÀIPqPPqsYxqPsYxqPsYy
xbbrbIQR
bbbbPqqsYxÀPqPbPsYxqPbbbrsYyXÀIqPPqsYxÀPqPsYxqPsYy
qThealwayssecondpositive.andfourthFurthermore,solutionscansince
beeliminatedsincexisqqPsYxqP
sYy!qsYxYthenumber.thirdTherefore,solutionresultsonlytheinfirstthesquaresolutionrootisvalid:
ofanegative
rqqxIPPqsYxPqPsYxqPsYyXQSoverThenextstepistoconsiderthesquaredgradients,averagedthewindowandtosubstitute,accordingto(6):
qsYxqxxÀqyyQTqsYyPqxyX
QU
squaredTheaveragegradients,gradients,are:
derivedfromtheaveragedqx
IrqPrPqsYxPqsYxPqsYyP
IqQVPqxxÀqyyIPqxxÀqyyPRqPxyand
qy
qsYyqxyPqxqx
rqIIqxy
X
QW
Pqxx
ÀqyyPqxxÀqyyPRqPxy
Now,itwillbeshownthatthevector:
q!4qP5qxIIPqxxÀqyyIqPqxxÀqyyRqPxyyÁ
xy
RH
with:
rIPqxxÀqyyIqPqRqP
xxÀqyyPxyRI
isdefinedaneigenvectorin(14).Thisofautocovariancewillprovethatmatrixbothmethodsg,whichare
is
BAZENANDGEREZ:SYSTEMATICMETHODSFORTHECOMPUTATIONOFTHEDIRECTIONALFIELDSANDSINGULARPOINTSOF...917
equivalent.expressionmustForhold:
theeigenvectorsofg,thefollowinggÁÁÃY
RP
wherethethecolumnsofaretheeigenvectorsofgandÃexpressiondiagonalcorrespondingmustmatrixeigenvaluealsooftheholdcorresponding!foroneeigenvectoreigenvalues.isvThisIwithI:
gÁvI!IÁvI
RQ
Inordertoshowthis,qxqyissubstitutedforvI
!vIqqx
yRR
intheleft-handsideof(43).Thisgives:g ÁvIqxxqxy!ÁI
Á4
qxyqyy
IPqxxÀqyyIqPqPRqP5xxÀqyyxyI
Pqxy
TIIqÁPPPQRq
xxPqxxÀqyyPq
qqxxÀqyyRqxyqxyU
SXxyIPqxxÀqyyIPqxxÀqyyPRqPxyqxyqyy
RS
theThisuppermusthalfbeofequalthesetoexpressions,!IÁqxYqywe.Calculatingfind:
!Ifrom
qq
xxII
PqxxÀqyyqxxÀqyyPRqPxyqP
!PxyIIqPqxxÀqyyIPqxxÀqyyPRqPxyRT
which,bymultiplyingnumeratoranddenominatorbyIPqxxÀqyyÀIqPqÀq
xxyyPRqPxyYcanbesimplifiedto:
!IqIPqxxqyy
IPq
xxÀqyyPRqPxyX
RU
Fromthelowerhalfoftheseexpressions,wefind:!I
q
xyIPqxxÀqyyIqPRqPPqxxÀqyyxyqxyqyy
qxy
RV
whichcanbeeasilysimplifiedto:
!III
qPqxxqyyqP
PxxÀqyyRqPxy
RW
areqSincebothexpressionsgivethesameresultfor!I,
xYexactlyqyisequivalent.
aneigenvectorofg.Therefore,bothmethodsitsItcorrespondingisnotdifficulteigenvaluetoderivethe!secondeigenvectorvPandP:
4vIPqxxÀqyyIqI
q5
xxÀqyyPRqPqPxySH
xy
4vIIP
Pqxx
Àqq5
yyÀPqxxÀqyyPRqPqxy
SI
xy
!qIIPqxxqyy
IPqPRqP
xxÀqyyxySP!IqPPqxxqyyÀ
IPqxxÀqyyPRqPxy
SQ
Notethat!Iisalwayslargerthanorequalto!PconfirmingthattheaveragegradientangleisalignedwithvI.TheDF,whichisperpendiculartothegradientisalignedwithvP.
APPENDIXB
EQUIVALENCE
OF
goh
AND
tr
Bysubstituting(52)and(53),trisgivenby:
tr
!IÀ!P!qI!P
qxxÀqyyPRqPxy
SR
qxxqyy
X
Ontheotherhand,gohisgivenby:
gohqsYxYqsYySS
qsYxYqsYy
Ywhere,bysubstituting(4),
vqsYxYqsYyu
ut
23P23PqsYxqsYyvu
u
t23P2qP3P
xÀqPyPqxqy
qqxxÀqyyPRqPxy
ST
and
qqsYxYqsYyqP
sYxqP
sYy
qqP
xÀqPyPPqxqyPqqRPPR
xPqxqyqySU
qqP
xqPyP
qP
xqP
y
qxxqyyX
Therefore,thecoherenceoftheaveragingmethodis
givenby:
918IEEETRANSACTIONSONPATTERNANALYSISANDMACHINEINTELLIGENCE,VOL.24,NO.7,JULY2002
qPgoh
qÀqxxyyPRqxy
qxxqyy
SV
whichprovestheequivalenceofgohandtr.
APPENDIXC
ROTATIONOFSINGULARPOINTS
Itcanbeproventhat
hporeY9hporeYrefÁej9
SW
byusingpolarnotation&sY0sinsteadofxYyforapositioninthereferencemodeloftheSPs.TheorientationoftheSDFisgivenby:
PoreYref&sY0s0sI
P%
TH
andtheDFisgivenby:
oreYref&sY0sII
P0sR%X
TITheproblemistodeterminetheSDFatposition&sY0s
afterrotationofthereferencemodeloveranangle9.Thesamplepointat&sY0saftertherotationislocatedat&sY0sÀ9beforetherotation:
oreYref&sY0sÀ9IP0sÀ9I
R%X
TP
Therotationadds9totheorientationatthesamplepoint:
oreY9&sY0sII
P0sÀ9R%9X
TQ
Now,therotatedDFcanbeconvertedbacktothe
rotatedSDF:
PoreY9&sY0s0sI
P%9PoreYref&sY0s9TR
whichcompletestheproof.FromtheformulaitbecomesobviousthattheSDFmodelofacorehastoberotatedoverP%Followinginordertotheobtainsametheprocedureoriginalmodel.
foradelta,itcanbeproventhat
hporeY9hporeYrefÁejQ9X
TS
Now,theorientationoftheSDFisgivenby:
PdeltYref&sY0sÀ0sI
P%X
TTFollowingthesameprocedureasforthecoregives:
deltY9&sY0sÀIP0sÀ9I
R%9
TUand:
PdeltY9&sY0sÀ0sI
P%Q9PdeltYref&sY0sQ9XTV
ThiscorrespondstothefactthatadeltahastoberotatedoverPQ%inordertoobtaintheoriginalmodel.
REFERENCES
[1]R.S.UsingGermain,ScienceTransformationA.Califano,ParameterandS.Clustering,ºColville,ªFingerprintIEEEMatching
[2]
R.DatabasesCappelli,andEng.,D.vol.Maio,4,no.and4,D.pp.ComputationalMaltoni,42-49,1997.
ªIndexingControl,forEfficient1:nMatching,ºProc.SixthFingerprintInt'l[3]
2000.
Automation,RoboticsandVision(ICARCV2000),Conf.Dec.J.DatabasesdeBoer,A.M.Bazen,andS.H.Gerez,ªIndexingFingerprint12th[4]2001.
Ann.WorkshopBasedonCircuits,MultipleSystemsFeatures,ºandSignalProc.Processing,ProRISC2001,Nov.T.[5]
KluwerLindeberg,A.M.AcademicScale-SpacePublishers,TheoryinComputerVision.Boston:FingerprintsBazenandGradients,ºBasedS.H.onGerez,thePrincipalªDirectional1994.
ComponentFieldAnalysisComputationofLocalfor[6]SystemsA.M.Images,ºBazenandSignalProc.ProRISC2000,11thAnn.WorkshopCircuits,andProcessing,S.H.Gerez,Nov.ªSegmentation2000.
[7]andProc.ProRISC2001,12thAnn.WorkshopCircuits,ofFingerprintE.R.Signal[8]
Routledge,Henry,Processing,ClassificationNov.2001.
SystemsandUsesofFingerPrints.London:A.M.DirectionalBazen1900.
andS.H.Gerez,ªExtractionofSingularPointsfromCTIT[9]Netherlands,WorkshopFieldsofFingerprints,ºMobileComm.inPerspective,K.pp.Mobile41-44,Comm.,Univ.ofTwente,Enschede,The[10]Recognition,KaruandA.K.Jain,Feb.ªFingerprint2001.
Classification,ºM.vol.29,no.3,pp.389-404,1996.
Pattern[11]PatternKawagoeM.M.S.Recognition,andA.Tojo,ªFingerprintPatternClassification,ºworkChong,T.H.vol.17,no.3,pp.295-303,1984.
[12]
vol.A.M.30,forno.FingerprintNgee,andR.K.L.Gay,ªGeometricFrame-9,pp.1475-1488,ImageClassification,ºPatternRecognition,forVideo-BasedFingerprintBazenandMatching,ºS.H.Gerez,1997.
Proc.ªAnThirdIntrinsicInt'lCoordinateConf.Audio-Systemand[13]
2001.
BiometricPersonAuthentication(AVBPA2001),JuneD.ªFVC2000:Maio,D.Maltoni,R.Cappelli,J.L.Wayman,andA.K.Jain,report,[14]
bias.csr.unibo.it/fvc2000/.
Univ.FingerprintofBologna,VerificationItaly,Sept.Competition,º2000,availableBiolabfrominternalhttp://G.A.NeuralDretsÈm,ªFingerprintFingerprintNetworkandH.G.Liljenstro
Subclassification:AS.B.andFaceApproach,ºRecognition,IntelligentBiometricTechniquesin[15]Press,Lee,andS.Tsutsui,eds.,pp.L.C.109-134,Jain,BocaU.Halici,Raton,I.Fla.:Hayashi,CRCC.L.FingerprintWilson,1999.
G.T.Candela,andC.I.Watson,ªNeural[16]no.Classification,ºJ.ArtificialNeuralNetworks,Networkvol.1,L.[17]FilterO'Gorman2,pp.203-228,M.Design,ºand1994.
PatternJ.V.Recognition,Nickerson,vol.ªAn22,ApproachtoFingerprintVision,Kass[18]Mar.Graphics,andA.Witkin,no.1,pp.29-38,1989.andImageªAnalyzingOrientedPatterns,ºComputerA.R.1987.
Processing,vol.37,no.3,pp.362-385,OrientedRaoandR.C.Jain,ªComputerizedFlowFieldAnalysis:[19]Intelligence,TextureFields,ºIEEETrans.PatternAnalysisandMachineN.FeatureRatha,S.vol.Chen,14,andno.A.7,pp.Jain,693-709,ªAdaptiveJulyFlow1992.
OrientationBased[20]vol.A.K.28,Extractionpp.inFingerprintImages,ºPatternRecognition,AuthenticationJain,L.1657-1672,Hong,[21]no.SystemS.Nov.UsingPankanti,1995.
Fingerprints,ºandR.Bolle,ªAnIdentity-P.9,pp.1365-1388,Sept.Proc.IEEE,vol.85,[22]vol.Perona,ªOrientationDiffusions,º1997.
IEEETrans.ImageProcessing,C.W.7,[23]Processing.Therrien,no.3,pp.457-467,Mar.1998.
O.UpperDiscreteSaddleRiver,RandomSignalsandStatisticalSignalbyNakamura,DirectionalK.DistributionGoto,andPatterns,ºT.Minami,N.J.:Prentice-Hall,1992.
Systems,ªFingerprintComputers,ClassificationControls,[24]vol.V.S.13,FingerprintSrinivasanno.5,pp.81-89,1982.
[25]
1992.
Images,ºandN.N.PatternMurthy,Recognition,ªDetectionvol.25,ofSingularno.2,pp.Points139-153,inA.K.BasedJain,S.Prabhakar,L.Hong,andS.Pankanti,ªFilterbank-no.5,pp.Fingerprint846-859,Matching,ºMay2000.
IEEETrans.ImageProcessing,vol.9,BAZENANDGEREZ:SYSTEMATICMETHODSFORTHECOMPUTATIONOFTHEDIRECTIONALFIELDSANDSINGULARPOINTSOF...919
[26]L.[27]Proc.HongJ.G.11thandScandinavianA.K.Jain,Conf.ªClassificationImageAnalysis,ofFingerprintImages,º
SignalProakis,1992.Processing.C.M.Rader,NewYork:F.Ling,MacmillanandC.L.Nikias,June1999.
PublishingAdvancedCompany,Digital
AskerelectricalM.Twente,engineeringBazenreceivedtheMScdegreeinresearchTheNetherlands,fromthein1998Universityforhisofprocessing,onhigh-resolutionparametricradaryearfinishingatThomson-CSFwhichhecontinuedforonemoreandhisPhDSignal.Currently,heisvariousSystemsthesisattheChairofSignalstopicsattheUniversityofTwenteonfingerprints,largematchingelasticallyingrobustdeformedminutiaeinfingerprintextractionrecognition,includ-fingerprints,fromandlow-quality
imagefingerprintprocessing,databases.patternrecognition,Otherresearchandcomputationalinterestsincludeindexingintelligence.
signalandSabihelectricalH.appliedengineeringGerezreceivedandthetheMScPhDdegreedegreeininThesciencesfromtheUniversityofTwente,tively.Netherlands,ElectricalHehasin1984and1989,respec-Twente1984-1989)asEngineeringworkedfortheDepartmentofanassistantattheUniverstityof1990).Startingandfromasanresearcher(intheperiod2001,assistantheprofessor(sinceSemiconductor,andDesignacademicCenterHengelo,activitiesThewithapositioniscombiningatNational
hisprocessing,teachingAlgorithmsforandinterestsVLSIcomputationalincludeDesignAutomationintelligence.designautomation,Netherlands.VLSIdesign,Hisresearchsignal(Wiley,Heis1999).
theauthorofthebookFpleaseFormorevisitourinformationDigitalLibraryonthisathttp://computer.org/publications/dlib.
oranyothercomputingtopic,
因篇幅问题不能全部显示,请点此查看更多更全内容