您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页2012--Synthesis and functionalization of nanoengineered materials using click chemistry

2012--Synthesis and functionalization of nanoengineered materials using click chemistry

来源:意榕旅游网
ProgressinPolymerScience37 (2012) 985–1003

ContentslistsavailableatSciVerseScienceDirect

ProgressinPolymerScience

journalhomepage:www.elsevier.com/locate/ppolysci

Synthesisandfunctionalizationofnanoengineeredmaterialsusingclickchemistry

GeorginaK.Such,AngusP.R.Johnston,KangLiang,FrankCaruso∗

DepartmentofChemicalandBiomolecularEngineering,TheUniversityofMelbourne,Parkville,Victoria3010,Australia

article

info

abstract

Articlehistory:

Received14July2011Receivedinrevisedform25November2011

Accepted2December2011

Available online 13 December 2011

Keywords:

ClickchemistryThinfilmsParticles

Thesynthesisofnanoengineeredmaterialswithprecisecontrolovermaterialcompo-sition,architectureandfunctionalityisintegraltoadvancesindiversefields,includingbiomedicine.Overthelast10years,clickchemistryhasemergedasaprominentandver-satileapproachtoengineermaterialswithspecificproperties.Herein,wehighlighttheapplicationofclickchemistryforthesynthesisofnanoengineeredmaterials,rangingfromultrathinfilmstodeliverysystemssuchaspolymersomes,dendrimersandcapsules.Inaddition,wediscusstheuseofclickchemistryforfunctionalizingsuchmaterials,focusingonmodificationsaimedatbiomedicalapplications.

© 2011 Elsevier Ltd. All rights reserved.

Contents1.2.

3.

Introduction........................................................................................................................Fundamentalsofclickchemistry...................................................................................................2.1.Copper-catalyzedalkyne-azidecycloaddition..............................................................................2.2.Cu-freealkyne-azidecycloaddition.........................................................................................2.3.Diels–Aldercycloaddition...................................................................................................2.4.Thiol–enereaction..........................................................................................................Applicationofclickchemistryformaterialssynthesis.............................................................................3.1.Clickfilms...................................................................................................................3.2.Clickparticlesandcapsules.................................................................................................

986

986986987987988988988989

Abbreviations:Ab,antibody;ATRP,atomtransferradicalpolymerization;Az,azide;BSA,bovineserumalbumin;Cu,copper;CuAAC,copper-catalyzedalkyne-azidecycloaddition;CB(6),cucurbit[6]uril;CD,cyclodextrin;DA,Diels–Alder[4+2]cycloaddition;DNA,deoxyribosenucleicacid;DOX,doxoru-bicin;EDC,1-ethyl-3-(3-dimethylaminopropyl)carbodiimideenealkene;HYA,hyaluronan;LbL,layer-be-layerassembly;LCST,lowercriticalsolutiontemperature;NAS,N-acroyloxysuccinimide;NCCM,noncovalentlyconnectedmicelle;NHS,N-hydroxysuccinimide;PAA,poly(acrylicacid);PBLG,poly(␥-benzyl-l-glutamate);PCL,poly(␧-caprolactone);PDPA,poly(2-diisopropylaminoethylmethacrylate);PEG,poly(ethyleneglycol);PHEMA,poly(2-hydroxyethylmethacrylate);PGAAlk,alkyne-modifiedpoly(l-glutamicacid);PGA,poly(l-glutamicacid);PMA,poly(methacrylicacid);PMMA,poly(methylmethacrylate);PNIPAM,poly(N-isopropylacrylamide);POEGMA–PDMA–PDEA,poly(oligo(ethyleneglycol)monomethylethermethacrylate)-b–poly(2-dimethylamino)ethylmethacylate-b–poly(2-diethylamino)ethylmethacylate);PPDSM,poly(pyridyldisulfideethylmethacrylate);PS,poly(styrene);PSS,poly(styrenesulfonate);PtBA,poly(tert-butylacrylate);PVPON,poly(N-vinylpyrrolidone);Q␤,capsidofbacteriophage;rDA,retro-Diels–Alder;RGD,arginine–glycine–asparticacid;ROP,ringopeningpolymerization;SAMs,self-assembledmonolayers;SPAAC,strain-promotedcycloadditionofalkynesandazide;SPIO,superparamagneticironoxide.

∗Correspondingauthor.Tel.:+61383443461;fax:+61383444153.E-mailaddress:fcaruso@unimelb.edu.au(F.Caruso).

0079-6700/$–seefrontmatter© 2011 Elsevier Ltd. All rights reserved.doi:10.1016/j.progpolymsci.2011.12.002

986G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

4.

5.

3.3.Clickhydrogelscaffolds.....................................................................................................995Applicationofclickchemistryforfunctionalizationofmaterials..................................................................9954.1.Functionalizationoffilms...................................................................................................9954.2.Functionalizationofparticlesandcapsules................................................................................997Conclusion..........................................................................................................................1000Acknowledgments..................................................................................................................1000References..........................................................................................................................1000

1.Introduction

Thedevelopmentoffunctionalnanoengineeredmate-rialsisfundamentalforadvancesindiversefieldssuchasbiomedicine,optics,andgreenenergyproduction.Thesynthesisofsuchmaterialsrequiressynthetictechniquesthataffordprecisecontrolovermaterialproperties.Inthelastdecade,clickchemistryhasemergedasapromis-ingtechniquetoengineerthearchitectureandfunctionofmaterials[1,2].Typicalclickreactionsdisplayseveralimportantcriteria,suchashighefficiencyundermildcon-ditions,minimalbyproducts,andlimitedsidereactions.Themostwell-documentedexampleisthecopper(Cu)(I)catalyzedalkyne-azidecycloadditiontoform1,2,3tri-azoles.However,recentlyanumberofotherreactions,includingCu-freeclickandDiels–Aldercycloaddition,havealsogeneratedsignificantinterest.

Recently,theapplicationoftheseclicktechniqueshasfoundwidespreaduseinthesynthesisofnovelnanos-tructuredpolymers.Thereareanumberofcomprehensivereviewshighlightingthisarea,detailingthecomplexandinnovativepolymerbuildingblocksthatcanbedesigned[3,4];hencethisreviewwillnotdiscussthesestudies.How-ever,thisenhancedversatilityinpolymerdesignhasledtothedevelopmentandfunctionalizationofarangeofnewnanoengineeredfilms,particlesandscaffolds.Inthistrendarticlewehighlighttherecentdevelopmentsforsynthe-sizingmaterialsusingclickreactions,focusingonmaterialswithapplicationinbiomedicine.Wealsodiscusstheappli-cationofclicktechniquestofunctionalizebothnewandexistingnanoengineeredmaterialstooptimizetheirinter-actionsbothinvitroandinvivo.

2.Fundamentalsofclickchemistry

Sharplessandco-workersintroducedtheconceptofaclickreactionin2001[5].Thereactionswereidentifiedbyastringentsetofcriteria,includingsimplereactioncon-ditions,highefficiency,regio-andstereoselectivity,andamenabletoreactionundermildconditions.Clickreactionsachievethesecharacteristicsbyhavingahighthermo-dynamicforce,usuallygreaterthan20kCalmol−1.Suchreactionsproceedrapidlytocompletionandtendtobehighlyselective.Thelattercharacteristicisimportantforapplicationswherethereisadiverserangeoffunctionalitypresent,forexampleinvivo.

In2002,boththeSharplessandMeldallabora-toriesreportedadramaticincreaseinreactionrateforthetraditionalHuisgencycloadditionusingacop-percatalyst[6,7].Thisnewreaction,termedcopper-catalyzedalkyne-azidecycloaddition(CuAAC),hassince

becomethepremierexampleofclickchemistry.Since2004,thisreactionhasbeenappliedtotheconstruc-tionofnumerousnewmaterialsfromblockcopoly-mersthroughtocomplexdendrimerorself-assembledmaterials[8].

2.1.Copper-catalyzedalkyne-azidecycloaddition

TheCuAACreactionoccursbetweenanorganicazideandaterminalalkyneinthepresenceofCu(I)toforma1,4disubstituted1,2,3triazole(Fig.1a).Thisisincontrasttothenoncatalyzedreaction,whichproceedsunderelevatedtemperaturestoformamixtureof1,4-and1,5-triazoleregioisomers[9].TherateoftheCuAACreactionisover107timesfasterthantheconventionalreaction,whichmeansitproceedsefficientlyatroomtemperature.TheCuAACmechanismiscomplexandsomeaspectsarestillunclear,suchastheformofthecopperacetylideintermediate.How-ever,itbasicallyinvolvesthreekeysteps:firstlythereistheinitialformationofa5-triazolylcopperintermediate.Secondly,thisintermediatecoordinatestheorganicazideandthenthenucleophiliccarbononthecopper(I)acetylidereactswiththeelectrophilicterminalnitrogenontheazide.Finally,thismetallocycleundergoesringcontractionandsubsequentdissociationoftheproducttoregeneratethecatalyst[9].

CuAACproceedsinmanyproticandaproticsolvents,includingwater,andisunaffectedbymostinorganicandorganicfunctionalgroups.Duetoitstoleranceforotherfunctionality,anumberofspeciescanbeaddedwithoutaffectingtheCuAACreaction,includinginorganicazidesinlargeexcess.Cu(I)isrequiredtocatalyzetheclickreac-tion;however,itcaneitherbeaddedorproducedinsitu.OnetypicalapproachistouseaCu(I)saltsuchascopperiodide,chlorideoracetate.However,itcanbechalleng-ingtokeeptheCuactivethroughoutthereaction.AmongthecommonoxidationstatesofCu(0,+1and+2),the+1stateistheleastthermodynamicallyfavored.There-fore,cuprousionscanbereadilyoxidizedtoformCu(II)ordisproportionatetoamixtureofCu(II)andCu(0)[10].Whenpresentinsignificantamounts,Cu(II)canfacili-tateGlaser-typealkynecouplingprocesseswhileimpairingtriazoleformation.Thus,whenusingCu(I)directly,itisoftennecessarytoperformthereactionunderoxygen-freeconditions.

AcommonalternativetotheuseofCu(I),whichremovestheneedforoxygen-freeconditions,wasdevel-opedbyHeinandFokin[10].ThisprocessinvolvescombiningCu(II)salts,suchascopper(II)sulfatepen-tahydrateorcopper(II)acetate,withamildreductantsuchassodiumascorbate.Inadditiontoreducingthe

G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

987

Fig.1.Selectionofreactionsthatbestmeetthecriteriafora“click”reaction:(a)Cu(I)-catalyzedHuisgen1,3-dipolarcycloadditionofalkynesandazides;(b)strain-promotedcycloadditionofalkynesandazides;(c)Diels–Alderreaction;and(d)thiol–enereaction.

Cu(II)intotheactiveCu(I)forreaction,theascorbatealsoreducesanydioxygenpresent,thuslimitinganyoxidativebyproducts.Otherreducingagentsthathavebeenusedincludehydroquinoneandtris(carboxyethyl)phosphine[11].

TheCuAACreactioncanalsobecatalyzedbyCu(I)pro-videdbyelementalcopper,suchasapieceofcopperwireorturning.Althoughusingcoppermetalgenerallyleadstolongerreactiontimesatambienttemperatures,thisapproachhastheadvantageoflowcoppercontaminationlevels.ToimprovetherateoftheCuAACreactionanumberofligandshavebeenused,includingphosphine-oramine-basedsystems[10].ThisbehaviorisprobablyduetoligandstabilizationoftheactiveCu(I)thusimpedingitsdegrada-tion.

OneinherentlimitationwithCuAACistheneedforCu(I)andtheassociatedpotentialtoxicity.Althoughtheeffi-ciencyandlackofsidereactionsoftheCuAACsystemlendsitselftoinvitroandinvivobiologicalcouplingreactions[11,12],anumberofstudieshaveshownthatcoppercanbetoxictocellsatconcentrationsaslowas10␮M[12].Inmaterialsynthesis,Cu(I)canbeefficientlyremovedfrommostmaterialsaftertheclickreactionhasbeenperformed;however,forinsitureactions,freeCu(I)canposeaproblem.Toaddressthis,Finnandco-workershavedemon-stratedthattris-(hydroxypropyltriazolylmethyl)amine-chelatedCu(I)preventscelltoxicityandhastheaddedbonusofacceleratingtheclickreactionfasterthanfreeCu(I)[12].Itwasdemonstratedthatclickcouplingofazide-functionalizedmannantolivingmammaliancells(JurketandHeLa)resultedinnoevidenceoftoxicityafter48h.

2.2.Cu-freealkyne-azidecycloaddition

AnalternativeapproachtoovercomingpotentialissueswithCu(I)toxicityhasbeentoimprovetherateoftheHuisgenalkyne-azidecycloadditionwithouttheneedforacoppercatalyst.ThemostwelldocumentedapproachwasdevelopedbyBertozziandco-workers,andusesafamilyofstrainedalkynescalledcyclooctynestoallowstrain-promotedcycloadditionofalkynesandazide(SPAAC)[13].Inaseriesofstudiesthisgroupdemonstratedthereactionratecouldbetunedbythesubstituentsonthecyclooctynegroup.ThemechanismofSPAACisbasedonintroducingring-strainintothealkynemolecule,whichisreleasedinthetransitionstateofthereaction(Fig.1b).Asitisanaccel-eratedalkyneandazidecycloaddition,itleadstoamixtureofstereoisomers.Otherrelatedsystemshavealsobeeninvestigatedusingdibenzocyclooctynesoroxanorbornadi-enes[14].

2.3.Diels–Aldercycloaddition

AnotherclickreactionrecognizedbySharplessandco-workersistheDiels–Alder[4+2](DA)cycloadditionbetweenadieneandadienophile[5].Thiscycloaddi-tionreactionisattractiveforarangeofapplicationsas,inadditiontobeinghighyielding,regioandstereo-controlledunderreagentfreeconditions,italsoproducesthermoreversibleproducts(Fig.1c)[15].TheDiels–Alderandtheoppositeretro-Diels–Alder(rDA)reactioncanbecontrolledbytemperaturetoformthecyclizedprod-uctandnoncyclizedstartingmaterials,respectively.Thewidevarietyofdieneanddienophilesallowstuningof

988G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

thethermoreversibility;forexamplefuranandmaleimideproductsundergoreversionatapproximately110◦Cwhileantraceneandmaleimideproductsrequiretemperaturesabove200◦C.Thesereactionscanbealsoperformedatmildertemperatures,ashasbeendemonstratedrecentlyforcouplingofpolymersusingcyclopentadieneandacti-vatedRAFTendgroups[16].ThereversiblenatureoftheDAreactionhasledtothedesignofnewmaterialswith‘self-healing’potential,includingpolymerresinsandgels[17].

2.4.Thiol–enereaction

Thethiol–enereaction,basedonathiolandanalkenegroupusingaradicalsourcetocatalyzethereaction,hasalsoreceivedsignificantattentioninmaterialsresearch(Fig.1d).Whilethiol–enechemistryiscommonlyreferredtoasaclickreaction,itisnotedthatduetothehighreactiv-ityofthethiolgrouptoarangeofdifferentfunctionalities,itfallsshortofclickbehaviorasitisnottrulyorthogonal[18].Therefore,thereactionconditionsmustbechosencare-fullytocontrolthispotentialforsimultaneousreactions.Reactionsbetweenthiolsandalkyneorbromoderiva-tiveshavealsobeenreportedintheliterature;however,thiol–eneisthemostwidelyexploredsystem.Therefore,thisreviewwilllimitdiscussiononthiol-basedsystemstothethiol–enereaction.Ifconditionsarecontrolledsothatsidereactionsdonotinterferewiththesystem,thiol–enereactionshavemanyoftheotherbenefitsofaclicksystemandcanalsooffersomeadditionaladvantages[19].Duetothereactivityofthethiolthesereactionsoftenproceedmorerapidlythanotherclicksystems(highconversioncanbeachievedinaslittleas1–10s)[18].

Schlaadandco-workersfirstintroducedtheradicalmediatedthiol–enereactionasapotentialclickreac-tionin2007,highlightingthesimple,highlyefficientandrobustnatureofthereaction[20].Thermal,redoxandphotochemicalmethodologiescanallbeusedtogener-ateradicalstoinitiatethethiol–enereaction.However,theuseofphotoinitiationisparticularlyattractive,asitallowsbothspatialandtemporalcontrolovertheprogressofthereaction.Aswithradicalinitiatedpolymerization,thethiol–enereactionencompassesthreedistinctprocesses[18]:initiation,thepolymerizationorcouplingprocess,andtermination.Thecombinedpropagationandchaintransferreactionproceedatequivalentratesinanidealthiol–enereaction,wherenopolymerizationofthe–eneoccurs.Thisleadstothehighlyefficientsinglecoupledproductinwhichonethiolreactsacrossone–enetoproduceanadditionproduct.Thestepgrowthnatureofthisprocessmeansthattheproductsarehomogenousanduniform,acharacteristicthatisunusualfortypicalphotochemicalreactions.

3.Applicationofclickchemistryformaterialssynthesis

3.1.Clickfilms

Controloverthedesignofnanostructuredsurfacesisfundamentalforapplicationsinthefieldsofdrugdelivery,sensingandoptics.Oneofthemaingoalsistoengineer

thepropertiesoftheinterfacetocontroltheinteractionswiththelocalenvironment.Forexample,fordrugdeliverythesurfacemustbelow-foulinginvivotoallowefficientdeliveryofthetherapeuticwithminimalsideeffects[21].Surfacepropertiescandependonanumberoffactors,includingtopography,functionality,andspatialposition-ingonthesurface.Thereareanumberoftechniquesusedtomodifysurfaceproperties,includingphysicaladsorption,layer-be-layerassembly(LbL)andself-assembledmono-layers(SAMs).However,thereisstillaneedtoimprovetheversatilityoftheseapproachesandthuscombiningthemwithhighyieldingcouplingtechniquesisofsignificantinterest.

Oneofthesimplesttechniquesforsurfacemodifica-tionisdirectpolymerdeposition.RecentlyCuAACandSPAACwerecombinedwithpolymerdepositiontosyn-thesizecrosslinkedpolymercoatings[22].Thefilmsweresynthesizedbydepositinganazide-modifiedpoly(methylmethacrylate)(PMMA)andanalkynecrosslinkerontoanalkyne-modifiedglassslide.Twotechniqueswereusedtocrosslinkthefilm,eitherastandardalkynecrosslinkeratincreasedtemperature(110◦C)orastrainedalkynecrosslinkerwithreducedtemperature(65◦C).Inbothcasesthecoatingwastransparentandstrongandcouldbereadilyfunctionalized.

SAMshavealsobeenusedforsurfacemodification.SAMsareformedbasedonathiol-facilitatedinteractionwithasurface[23].SAMscanbeassembledonavarietyoftemplates,suchasglassandsilicon,butareofparticularinterestongoldsurfacesduetotheefficiencyofthethiolinteraction.Duetothehighefficiencyandthecompatibil-itywithawiderangeoffunctionalitiesandsolvents,clickchemistryhasattractedinterestforthedesignoffunctionalSAMs.Earlystudiesdemonstratedazidefunctionalalkanescouldbeassembledonagoldsurfaceandmodifiedsuccess-fullywithferroceneforapplicationaselectrodes[24].

AnumberofstudieshavealsobeenconductedusingSAMscapableofDAreactions.Inonesuchsystemanelec-troactivehydroquinoneSAMwassynthesizedandwhenanelectricpotentialwasappliedtothehydroquinoneitwasoxidizedtoformaquinone,whichcouldthenundergoaDAreactionwithacyclopentadiene[25].Laterstudiesusedacelladhesionpeptide,RGD,todemonstratecellmigrationonasurface.Inthatworkapoly(ethyleneglycol)(PEG)-basedhydroquinoneSAMwaspatternedwithfibronectin,andthesurfacewasincubatedwithcells.Initiallythecellsgrewonlyinthefibronectinregions;however,whenapotentialwasappliedtothesurfacethehydroquinonewasoxidized.Therefore,whenthesurfacewassubsequentlymodifiedwithRGD-modifiedcyclopentadieneitunder-wentaDAreaction,allowingthecellstomigrateoverthesurface[26].

Layer-by-layerassemblyisanotherwidelyusedapproachfordesigningthinfilms,asitallowsahighlevelofcontroloverpropertiessuchasfilmthickness,compositionandnanostructure.Thetechniquewasdevel-opedbyDecherandHongin1991,andisbasedonthesequentialdepositionofchargedmaterialsontoaplanartemplate[27].Overthelast20yearsthisapproachhasbeenextendedtoarangeoftemplates,suchasemulsiondropletsorcolloidalparticles.Furthermore,LbLmaterials

G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

989

canbeassembledbasedonavarietyofinteractions,includ-inghydrogenbondingandcovalentinteractions[28,29].

AlthoughtheLbLapproachisversatile,thesynthesisofsamechargeorlow-chargefilmsisstillchallengingusingconventionalLbLassembly.In2006,ourgroupcombinedclickchemistryandLbLassemblytoprepareultrathinmultilayerfilms.Theapproachwasbasedonfunc-tionalizingpolymerswithaminorcomponentofeitheralkyneorazidefunctionality,andthenassemblingthesematerialsalternatelyinthepresenceofaCucatalyst.Initialworkshowedthatthisapproachcouldbeusedtoassemblemultilayersofpoly(acrylicacid)(PAA)[30].Laterworkbyourgroupandothersdemonstratedthatthisapproachcouldbeextendedtoarangeofotherpolymers,includingpoly(N-isopropylacrylamide)(PNI-PAM)[31]andpoly(N-hydroxypropylmethacylamide)andpoly(allylaminehydrochloride)[32].Wefurtherdemon-stratedthesynthesisofbiodegradableclickLbL-assembledfilmsusingpoly(l-lysine)orpoly(l-glutamicacid)(PGA)[33]andlow-foulingfilmsusingpoly(ethyleneglycolacry-late)[34].Inthislatterwork,itwasalsodemonstratedthatexcessfunctionalitycouldbeusedtofunctionalizethefilmtotailorsurfaceinteractions.Anumberofothergroupshavedemonstratedthatthisapproachcanbeextendedbeyondlinearpolymers:multilayersofsmallmolecules[35],dendrimers[36]andpolymer/smallmoleculecombi-nations[37]haveallbeenused.Oneinterestingapplicationofthistechniquewasthesynthesisofsuperhydropho-bicsurfaces[38],wherehierarchicalsilicaparticleswereassembledbyreactingalkyne-andazide-modifiedsilicainaseriesofsequentialcycles.Theparticleswerethendepositedonasilicasurfaceandmodifiedwithhydropho-bicfunctionality.Itwasdemonstratedthatthesurfacesweresuperhydrophobicwithacontactanglethatincreasedfrom134◦to152◦withincreasingsilicacouplingcycles.

Therehavealsobeenanumberofstudiessynthesizingclickfilmsusingchemicaldepositiontechniques.Inonesuchsystem,chemicalvapordepositionpolymerizationofsubstituted[2,2]paracyclophaneswasusedtosynthe-sizealkynefunctionalizedpoly-(p-xylylene)films[39].Itwasshownthatthesefilmscouldbepatternedusingazidefunctionalbiotin.Inarelatedapproach,werecentlydemonstratedthesynthesisofclickfunctionalfilmsusingplasmapolymerization[40],athinfilmdepositionpro-cessinwhichaplasmasourceisusedtogeneratea‘glowdischarge’thatactivatesorfragmentsgaseousmonomervapors.Inthatstudy,weutilized1-bromopropanetoyieldbromo-functionalizedplasmafilms,whichcouldberead-ilyconvertedintoazidesurfacesbyreactionwithsodiumazide.

3.2.Clickparticlesandcapsules

Overthelastfiveyearstherehasbeensignificantinter-estinthedesignofnanoengineeredparticles,particularlyforapplicationinbiomedicine[47].Suchadvancedapplica-tionsrequirepreciseandtunablesyntheticstrategiesthatarecompatiblewitharangeofbiologicalspecies.Thus,clickchemistryhasbeenappliedtothesynthesisofarangeofmaterials,includingpolymersomes,micelles,andLbLcapsules(Fig.2).Earlyworkinthisareafocusedon

synthesizingavarietyofnovelpolymers,andthesenewmaterialshavebeenhighlightedinanumberofexcellentreviews[16,18,48].Thisreviewwillfocusontheassem-blyofthesefundamentalbuildingblocksintoparticulatepolymericcarriers,aswellasinorganic-polymerhybrids.Starpolymersareinterestingandversatilepolymericstructures,andarebasedonmultiplepolymericarmsconnectedtoacentralcore.Suchmaterialscanbesyn-thesizedbyeithera“corefirst”oran“armfirst”approach.GaoandMatyjaszewskireportedthesynthesisof4-armpoly(styrene)(PS)starpolymersbyan“armfirst”approach.LinearPSwassynthesizedusingatomtransferradicalpoly-merization(ATRP)andthebromineendgroupwasthenmodifiedtoformanazide[45].Thepolymerswerethencombinedwithafunctionalcorewitheitherone,threeorfouralkynegroupsbyCuAAC.Theyieldsofthe3and4-armstarpolymerwere90%and83%,respectively.Miktoarmstarpolymerscontainmorethanonetypeofpolymericarm.Whittakeretal.reportedthesynthesisofarangeof3-miktoarmstaranddendrimerarchitecturesusingPS,poly(methacrylicacid)(PMA),PAAandpoly(tert-butylacrylate)(PtBA)[49].AtypicalpolymerwassynthesizedbyATRP,andtheendgroupwasthenmodifiedtoanazideandcoupledtoatripropargylamine.Thetworemainingalkynegroupsweresubsequentlycoupledtoadifferentazidemodifiedpolymer,thusforming3-miktoarmstarpoly-mers.DendriticpolymersweresynthesizedbystartingthisprocesswithabifunctionalPS.Inanotherapproach,per-6-(tert-butyldimethylsilyl)-␤-cyclodextrin(CD)wasusedasaninitiatorforthecontrolledring-openingpolymerization(ROP)ofpoly(␧-caprolactone)(PCL)[50].AfterdisilylationfromtheCDcore,theywereconvertedtoazidegroups.TheazidegroupswerethenmodifiedwithPEG.Thesemateri-alswereshowntoself-assembleintoarangeofstructuresinaqueoussolutionbasedonmacromoleculararchitectureandcomposition.

Dendrimersarehyperbranchedmacromoleculessyn-thesizedbyaseriesofiterativeorganicreactions.Thesetree-likemacromoleculesareassembledusingtwomainstrategies,knownasdivergentorconvergentsynthesis[51].Thedivergenttechniqueinvolvesbuildingincreas-inglevelsofbranchingfromapolyfunctionalcorewhiletheconvergentapproachentailsattachmentofpreformeddendrimerwedgestoacentralcore.Whiletherehasbeensignificantprogressinmakingdendrimerssimplyandefficiently,thereisstillaneedforcheaper,moreefficienttechniquestobuildthesestructures,andclickchemistryoffersonesolution.Mullenandco-workerswerethefirsttouseclickchemistryforthedesignofden-drimers.InthisworktheyusedDAtodesignarangeofpoly(phenylene)systems[52].Thesematerialsdemon-stratedinterestingenergyharvestingandlightemittingproperties[53,54].Furan-terminaldendrimerswerealsocombinedwithmaleimidelinkersusingDA.Itwasdemon-stratedthattheseconjugatescouldbedegradedat95◦CthrougharDAreaction[55].Whilethesetemperaturesaretoohighforbiomedicalapplications,itcouldbeenvisagedthattriggeredreleaseofdrug-loadeddendrimerswouldbeofinterestfordeliveryapplications.

TheCuAACreactionhasbeenwidelyusedforthesyn-thesisofdendrimersduetoitsabilitytogivehighyields

990G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

Fig.2.Polymericcarriersystemsinvolvingclickchemistry:(a)polymersomes;(b)polymermicelles;(c)dendrimers;(d)LbLcapsules;(e)starpolymers;and(f)polymernanoparticles.(b)[42]Copyright2009RSCPublishing,reproducedwithpermission;(a)[41]Copyright2009,(c)[43]Copyright2008,(d)[44]Copyright2009,(e)[45]Copyright2006,and(f)[46]Copyright2005,AmericanChemicalSociety,reproducedwithpermission.

andlimitedsideproducts.ThefirststudyofthistypedemonstratedAB2convergentdendrimersynthesisusingarangeofmonomerscontainingbothchloromethylandalkynesmoieties[56].ThechloromethylgroupcouldbereadilyconvertedtoanazidebeforeCuAACreaction,allow-ingstep-by-stepgrowthofdendriticarms.Thesearmswerethencombinedwithacentralmultifunctionalcore[56].InlaterworkadivergentCuAACsyntheticprocesswassuccessfullyappliedtothesynthesisofFrechet-typedendrimers[57].Recently,thiol–enechemistryhasbeenusedtosynthesizepoly(thioether)dendrimers[43].InthisworkanAB2typemonomer1-thioglycerolwasaddedtoamultifunctionalcore.Furthergenerationswerethensynthesizedbyrepetitiveesterificationoftheendgroupswith4-penenoicanhydrideandthenthiol–enecouplingto1-thioglycerol.Thiol–enechemistryisattractiveforthesynthesisofdendrimersbecauseitisextremelyefficient,canbeperformedinbulkanddoesnotrequireadditionalsolvents.However,duetothereactivityofthiolswitharangeofbiofunctionalities,loadingwiththerapeuticcargoneedstobepostthiol–enereaction.Oneofthekeylimita-tionswithusingdendrimersisthetime-intensivesynthesis

ofthesematerials.However,progressinapproacheslikeclickchemistryaresimplifyingtheprocess,allowingmate-rialstobeefficientlysynthesizedathighyields.RecentlyCuAACandthiol–enechemistrywerecombinedtodevelopasynthetictechniquethatallowed6thgenerationden-drimerstobeformedin24h[58].

Clickchemistryhasalsobeenusedforthesynthesisofasymmetricorbow-tiedendrimers.Thefirststudyofthistypedemonstratedtheassemblyof4thgenerationden-drimersusinganhydridechemistrywitheitheranalkyneorazidemoietyatthecore[59].Thisfunctionalitywasthensubsequentlymodifiedtoformabow-tiestructure.

Polymerscanself-assembleintoavarietyofstructures;twoofthemostwell-knownexamplesaremicellesandpolymersomes[60].Micellesaregenerallyspherical,withahydrophobicinteriorandahydrophilicexterior.Incon-trast,polymersomeshaveahollowvesiclestructure,withapolymermembranethathasahydrophobicinteriorandahydrophilicinnerandoutersurface.Whiletherearearangeofpolymerstructuresthatcanbeusedtoassem-blemicellesandpolymersomes,theyaretypicallyformedfromamphiphilicblockcopolymers.Clickchemistryhas

G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

991

becomeanattractivealternativeforthesynthesisofsuchblockcopolymers,especiallywhenitisnotpossibletopoly-merizethembythesamepolymerizationtechnique.Anearlystudyusedanazide-functionaldendrimertocrosslinktheshellofanalkyne-modifiedmicelle,thusformingshell-crosslinkednanoparticles[46].Itiswellknownthatself-assemblyofpolymericmaterialscanbetunedbyvary-inganumberoffactorssuchashydrophilicorhydrophobicblocklength.Inarecentstudy,delBarrioetal.synthesizedaseriesoflinearPEG-dendriticcopolymersbasedonlinearPEGandazobenzene-baseddendrimerscombinedusingCuAAC[61].Itwasdemonstratedthatthedendrimergen-erationnumber,thenumberofazobenzenemesogens,andthePEGmolecularweightcouldbeusedtotunethetypeofpolymerstructureobtained.

MorecomplexstructuresweredesignedbyJiangetal.bysynthesizingamicellebasedonaterminalalkynetri-blockcopolymerpoly(oligo(ethyleneglycol)monomethyl

ethermethacrylate)-b–poly(2-dimethylamino)

ethylmethacylate-b–poly(2-diethylamino)ethylmethacylate)(POEGMA–PDMA–PDEA)[62].Thispolymerwasassem-bledintomicellesandthentheinnerPDMAlayerwascrosslinkedusing2-bis(2-iodoethoxy)ethane.Afour-layernanoparticlewasthensynthesizedbycouplinganazidefunctionalPNIPAMtothesurfaceusingclickchemistry.Thesenanoparticleswerebothtemperature-andpH-responsiveduetothePNIPAMandPDEAcomponents,respectively.AnotherinterestingmicellesystemwasreportedbyQuanetal.[63],whichisbasedonaCDdimerlinkingoftwopolymerchains.An␣–␤CDdimerwassynthesized,whichassociatedwithaphenyl-terminalpoly(NIPAM-co-N-acroyloxysuccinimide(NAS))andaadamantaneterminalPCL,respectively.Thisconjugateself-assembledintomicellesofapproximately100nmindiameter.Thesemicelleswereengineeredwithresponsivecharacteristicsbyfunctionalizingthepoly(NIPAM-co-NAS)withPEGchainsthroughacid-responsivebenzoic-iminegroups.ThePEGgroupswereengineeredtopreventcellularuptakeofthemicellesinphysiologicalcondi-tions;however,tumorstypicallyhavealowerpHthanthestandardphysiologicalenvironment,sowhenthemicellesenteratumor,thedecreaseinpHcausesthePEGchainstoberemoved,allowingthecarrierstobeinternalized(Fig.3).Themicelleswerealsofunction-alizedwithanRGDpeptidetoimprovecellbinding;however,theeffectivenessofthiscomponentwasnotfullyinvestigated.ThePEGgroupsalsoincreasethelowercriticalsolutiontemperature(LCST);thereforeinacidicenvironments,themicellesdeconstructedatalowertemperature(35.5◦Cascomparedto38◦C),leadingtothepossibilityforcargotobereleased.Thiol–enechemistryhasalsobeenusedtopreparefunctionalmicelles.Inarecentstudy,Chenetal.synthesizedmicellesfromthermoresponsivepoly(di(ethyleneglycol)methylethermethacrylateandpoly(2-hydroxyethylmethacrylate)(PHEMA)[42].ThesemicellesweremodifiedtohaveactivealkenegroupsbyreactionofthePHEMAmoietieswith4-pentenoicanhydride,andthenformedglycomicellesbyathiol–enereactionwithglycothiose.Thesemicelleswereshowntobethermoresponsiveandactiveforlectinbinding.

PolymersomeshavealsobeensynthesizedusingCuAACforbiomedicalapplicationsandhavetheadvantageofpotentiallyloadingbothhydrophilicandhydrophobicther-apeutics.InonestudyvanDongenetal.incorporatedaminorcomponentofaclick-synthesizedpoly(styrenesulfonate)(PSS)–PEGcopolymerwithastandardpoly-mersomeformingcopolymerpolystyrene40-block–poly[l-isocyanoalanine(2-thiophen-3-yl-ethyl)amide]50[64].ThePSS–PEGcopolymerwasfoundtobeincorporatedintothepolymersomestructureandasitcontainedatermi-nalalkyne,thiswasthenusedtopostmodifythestructure.Polymersomescanalsobedesignedcontainingotherfunc-tionalcomponentssuchascyclodextrins[65]orbiologicalmolecules.Oneapproachinvolvestheconjugationofpro-teinswithsyntheticpolymers[66].Suchmaterialshavethepotentialtocontainbuilt-inbioactivity.Dirksetal.synthesizedthistypeofconjugatebycouplingalkyne-modifiedbovineserumalbumin(BSA)toPSwithaterminalazideusingCuAAC[67].Theconjugateswerefoundtoself-assembleintosphericalaggregatesof30–70nmindiameter.Inadifferentsystem,Schatzetal.[68]syn-thesizedasimpleglycoproteinanaloguebycouplinganalkyne-modifieddextrantoanazidefunctionalpolypep-tide,poly(␥-benzyl-l-glutamate)(PBLG),usingCuAAC.Thiscopolymerwasfoundtoself-assembleintosmallpolymer-somes(45nm)bynanoprecipitation.Inarelatedsystem,thesamegroupsynthesizedablockcopolymerofPBLGandhyaluronan(HYA)usingCuAAC,whichformedextremelyuniformpolymersomestructures[41].Thesematerialswerealsosuccessfullyloadedwithdoxorubicinandthiscargowasstablyretainedwithinthepolymersomesforseveralmonths(10%lossat4◦C).

Surfactantscanalsoself-assembleintomicelles;how-ever,theysufferfromlimitedstability.InarecentapproachbyZhangandZhao,alkyne-modifiedsurfactantswereusedtosynthesizestabilizedsurfactantmicellesusingarangeofazidefunctionalcrosslinkersbyCuAAC[69].Thesematerialswereoftheorderof8–10nminsizeandcouldbepostmodifiedusingexcessalkynegroupsonthesurface.Laterworkdemonstratedthatthesecrosslinkedmicellescouldbeusedtoloadsmallhydrophobiccargoover15h.Thiscargowasreleasedextremelyrapidlywhenthecrosslinksweredegraded(Fig.4)[69].

AnothertechniqueforassemblingpolymercarriersisbasedonLbLassembly.Thistechniquecanbeusedtoconstructthinfilmsonparticletemplateswhicharesub-sequentlyremovedtoformpolymercapsules.TheLbLapproachisattractiveforthesynthesisofpolymericcap-sulesforbiomedicalapplicationsasthepolymericbuildingblockscanbetunedtodesigntailoredcarriers[70].Recently,clickchemistryhasbeenappliedtothesynthesisofLbLcapsulescontainingasinglepolymericcompo-nentbysequentialassemblyofazideandalkyne-modifiedpolymersinthepresenceofacoppercatalyst.ThiswasdemonstratedinitiallybyourgroupusingPAAtoformresponsivehydrogelcapsules[71].Laterworkshowedthatthistechniquecouldalsobeappliedtoavarietyofpoly-mers,includingtemperatureresponsivepolymers[72],polypeptidesandpolysaccharides[73].

Arelatedtechniquedevelopedbyourgroupinvolvedcombininghydrogen-bondedLbLfilmswithCuAAC

992G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

Fig.3.Formationofcore–shellnoncovalentlyconnectedmicelles(NCCM)withswitchabletumorcelltargeting:(a)diblockcopolymerassociatedwithan␣–␤cyclodextrindimer;(b)thisconjugateself-assembledintomicelleswithprotectedtargetligandsatpH7.4;(c)tumor-triggereddeshieldingtoswitchonthetargetingpropertythroughremovalofPEGsegmentsatpH<6.8;(d)endocytosisanddrugreleaseafterdestructionoftheofmicellestructureatT>LCST.(d)Apoptosisoftumorcells.[63]Copyright2010,AmericanChemicalSociety,reproducedwithpermission.

stabilization.Hydrogen-bondedLbLfilmsareofsignifi-cantinterestforthedevelopmentofpolymericcarriersbecausetheycanbedesignedtoberesponsivetoarangeofstimulisuchaspHortemperature,althoughtheyaregenerallyonlystableatlowpHandthusrequirecovalentstabilization.Anumberofstabilizationtechniqueshavebeenused,includingmodificationwiththiolsandformingdisulfidecrosslinksorcrosslinkingthecarboxylicacidsusingdiaminecrosslinkersandcar-bodiimide.CuAACisanattractivealternativeasitishighlyefficient,thusensuringthatonlyasmallamountofthefilmismodifiedtoachievethedesiredcrosslink-ing.Inaninitialstudy,analkyne-modifiedpoly(N-vinylpyrrolidone)(PVPON)wasassembledwithPMAbasedonhydrogen-bonding[44].ThisfilmwasstabilizedbyCuAACusingabifunctionalazidecrosslinker.Thiswasthefirstuseofacrosslinkertostabilizesuchfilms,andimpor-tantly,thisapproachallowedtuningofthedegradation

propertiesofthefilm.Onecrosslinkercontainedadisul-fidemoiety,afunctionalitywhichisofinterestbecauseitisstableinoxidizingconditionssuchasthoseinthebloodstreambutsusceptibletodegradationinreducingenvironmentssuchasthosefoundinthecellularcyto-plasm.Thisfilmwascomparedwithanon-degradablevarianttoinvestigatetriggereddegradation.Ineachcase,whenthesacrificialcorewasremovedandthepHincreased,thehydrogen-bondinginteractionbetweenPMAandPVPONwasdisruptedandthePMAwasremoved,leavingsingle-componentPVPONcapsules.Itwasdemon-stratedthatthesecapsuleswerelow-foulingtoarangeofproteinsandcouldbedegradedinsimulatedcellularcon-ditionswhencontainingadisulfidebond.Inlaterwork,wesynthesizedpoly(ethyleneglycol)methacrylate-basedmultilayersusingasimilarapproachandthesecapsulesdemonstratedenhancedlow-foulingpotentialtohumanserum[74].

Fig.4.Hydrophobicencapsulationinmicellesofanalkynylatedsurfactantinthepresenceofanazide-functionalizedcrosslinkerusingclickchemistry.Thecrosslinkerwasdesignedtocontaincleavablebonds.[69]Copyright2010,AmericanChemicalSociety,reproducedwithpermission.

Fig.5.(a)LbLassemblyofdrug-loadedPGAAlkcapsulesfollowedbystabilizationofthecapsulesbycrosslinkingthemultilayerfilmsviaclickchemistryusingabisazidecrosslinker.Theincorporateddrug(DOX)canbetailoredatspecificpositionswithinthemultilayer.(b)Representativeconfocalmicroscope(CLSM)imagesofLIM1899cellstreatedwithDOX-loadedPGAAlkcapsulesafter24hincubation,showingcolocalizationofDOXandcellnuclei.[75]Copyright2010,AmericanChemicalSociety,reproducedwithpermission.

G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003993994G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

Inrelatedwork,thesameapproachwasusedtosyn-thesizePGAcapsulesbyassemblingalkyne-modifiedPGA(PGAalk)withPVPONandthencrosslinkingwithanon-degradablelinker[75].APGAconjugateofawell-knownanti-cancerdrug,doxorubicin(DOX),wasthensynthesized(Fig.5).Itwasshownthatthisconjugatecouldbeincorpo-ratedintoPGAcapsulesinacontrolledlocationanddose.Theconjugateswerefoundtobeactivewithinthecap-sulesbutnotintheconjugateform,indicatingthatthecellinternalizationmechanismwasimportantforconjugatedegradationanddrugrelease.Inlaterwork,thePGAandPVPONcapsuleswerecombinedtoformvariousstratifiedcapsules[76].Itwasdemonstratedthatthedegradationofthesematerialscouldbetunedbythecompositionandarchitectureofthecapsules.Finally,PGAcapsuleswereinvestigatedformultidrugresistancebyloadingwitheitherDOXorpaclitaxelandcomparingthecytoxicityindrugresistantandstandardcells[77].Itwasdemonstratedthatdrugsloadedinthisformcouldpartiallyovercomemul-tidrugresistance.Thiswasattributedtotheinternalizationmechanismbypassingp-glycoproteinonthesurfaceofthecells.PGAcapsuleshavesignificantpotentialfordeliveryapplications,astheyhavetunabledegradationproperties,canbeloadedwitharangeofdrugs,andcanbefunction-alizedusingexcessalkynegroups.

Recently,anewcharge-shiftingcapsulesystemwassynthesizedbasedonpoly(2-diisopropylaminoethylmethacrylate)(PDPA)[78].ThispolymerisofinterestforbiomedicalapplicationsbecauseitissensitivetovariationsinconditionsthatsimulatecellularpH.ThecapsuleswereassembledusingasimilartechniquetoPVPONcapsules(asdescribedearlier)andcrosslinkedwithclick-linkerscontainingdisulfidefunctionality.TheassembledcapsulesdemonstratedvariationsinsizewithpH:atphysiologi-calpH(7.4)theywerecompactbutswelledsignificantlywithadecreaseinpH(6).ItwasdemonstratedthatpH-andredox-potentialcouldbecombinedtoachievetailoredsynergisticreleaseofamodelpeptidecargofromthesecarriers.Thiol–enechemistrycanalsobeusedtostabi-lizeLbLcapsules.PMAcapsuleswereformedbyalternatelydepositingPMA(modifiedwithalkeneandthiolmoieties)andPVPONandthencrosslinkingusingUVlight[79].

Anotherassemblytechniquealsoutilizingthiol–enecouplingwasreportedbyKimetal.[80].Inthatstudy(allyl-oxy)12curcurbit[6]urilwasusedasasynthetichostmoleculewith12allyloxygroupstoreactwithadithiolbythiol–enephotopolymerization.Thistechniqueallowedtheone-potsynthesisofnanocapsuleswithouttheuseofatemplate.

Theuseofpolymerstoformpolymericparticlesiswellstudiedintheliterature.Recently,Davisandco-workersreportedtheuseofpoly(pyridyldisulfideethylmethacry-late)(PPDSM)forthesynthesisofpolymericnanoparticles[81].PEGchainsweregraftedontothePPDSMusingthedisulfidegroupsbyfirstreducingthedisulfidestothiolgroupsandthenreactingwithanacrylatefunctionalPEGbythiol–enechemistry.Itwasdemonstratedthattheseconjugatesformedparticlesof∼100nmwithapolydisper-sityof0.22.Suchcarriersareattractive,astheirsynthesisisstraightforwardandtheycouldbeloadedwithmodelcargoand/ortargetingagentsusingexcessfunctionality

onthepolymerbackbone.AtemplatedassemblyapproachwasreportedbyYapetal.usingpoly(ethyleneglycol)acry-latecopolymers[82].Thesepolymersweremodifiedwithalkynemoietiesandtheninfiltratedintomesoporoussil-icatemplates.Thepolymerswerethencrosslinkedwithabiazidelinkercontainingadisulfide.Thetemplatewasfinallyremoved,leavingapolymerparticle.ItwasalsodemonstratedthattheseparticlescouldbeloadedwithDOXandbothdrugreleaseandparticledegradationcouldbecontrolledbychangingtheredoxpotential.

Poly(ester)nanoparticlesarewidelyreportedintheliteratureandareofinterestastheycandegradeinvivo.Recently,vanderEndeetal.comparedthiol–eneandCuAACreactionsfortheconstructionofpoly(ester)nanoparticles[83].Inthatwork,bothanalkyneandallylpendantpolyesterwassynthesized,andcrosslinkedwithadiazideanddithiol,respectively.Itwasdemonstratedthatparticlesizecouldbetunedbyeitherthecrosslinkingamountorpercentageofpolymermodificationwiththethiol–enereaction,resultinginlargerparticlesingeneral.Recentlytherehasbeenanincreaseintheapplicationoflargerbiologicalmaterials,suchasproteinsorviruses,astherapeuticcarriers.Thistypeofsystemwasdemon-stratedbyFinnandco-workersusingavirus-likeparticleformedfrom180copiesofthecoatproteinbacteriophageQ␤expressedrecombinantlyinEscherichiacoli[84].Theparticlesweremodifiedwithazidegroupsandthenwitharangeofpoly(2-oxazoline)polymers.Itwasreportedthatbyvaryingtheamountoffunctionality,itwaspossibletoeitherpolymer-decoratethevirusorcompletelyencaseitwithinapolymershell;inbothcasesincreasedenzy-maticstabilityofthesystemwasobserved.Inarelatedsystem,Steinmetzetal.conjugatedfunctionalizedC60toacapsidofbacteriophageQ␤,whichisaviralnanoparti-cleapproximately30nminsize[85].Itwasdemonstratedthatconjugateswith45–50C60toeachQ␤particlecouldbesynthesized.

Numerousinorganicmaterialshavealsoshownpromiseforbiomedicalapplications.Recently,CuAACwasusedtoassembleinorganicnanoparticlesintolargeagglomeratedsuperstructures.Suchmaterialscouldhaveapplicationsinmedicalimaging.Core–shellCdSe/ZnSandFe3O4nanopar-ticlesweremodifiedusingpolymerscontainingeitheralkyneorazidegroups[86].Ineachcase,whenalkyneandazidevariantswerecombinedinthepresenceofCu(I),theparticlesaggregatedtoformlargerparticles.Thequantumdots(QDs)formedananoparticleapproximately56nmindiameterwhiletheFe3O4magneticnanoparti-cleswere46nm.Inorganicnanoparticlescanalsobeusedtosynthesizecolloidosomes,whicharehollowcapsuleswherethewalliscomprisedofdenselypackednanopar-ticles.Samantaetal.recentlyusedCuAACtosynthesizecolloidosomesbasedonFe3O4nanoparticles[87].Inthisapproach,alkyne-andazide-modifiednanoparticleswereco-assembledonthesurfaceofanoil-in-wateremulsionandcrosslinkedbyCuAAC.

Janusparticlesareinterestingmaterialswithtwohemi-spherescontainingdifferentproperties.Suchsystemsareofgeneralinterestforapplicationssuchascatalysisandswitchabledevices.Inoneapproach,Zhaoandco-workerssynthesizedJanusparticlesbasedonazide-functionalized

G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

995

silicaparticles[88].Inthatwork,onesurfaceofthesilicaparticlewasburiedinaPSparticleandtheexposedsur-facewasmodifiedwithalkynatedbiotinusingCuAAC.ThePSwasthendissolvedandtheexposedsurfacewasmodi-fiedwithalkynatedPEG.ArelatedtechniquewasreportedbyBhaskaretal.fortheformationofbiphasicparticlesandfibers[89].Thisapproachwasbasedonelectrohydro-dynamicco-jettingoftwodifferentpoly(lactic-co-glycolicacid)polymers,includingpoly[lactide-co-propargylglycol-ide]forsubsequentmodificationwithazidemoietiesusingCuAAC.Theseparationofeachhemispherewasobservedbyconfocalmicroscopy.Recently,ourgroupdemonstratedanotherapproachtoJanusparticlesynthesis[90],basedonmodifyingamine-modifiedsilicaparticleswithabrominefunctionalizedplasmapolymer.Thesilicaparticleswerearrangedonasodiumchloridecrystalsothatonlyonehemispherecouldbemodified.SuccessfulmodificationwasdemonstratedbylabelingthedifferenthemisphereswithCuAACandN-hydroxysuccinimide(NHS),respec-tively,andalsobyremovingthetemplate.

3.3.Clickhydrogelscaffolds

Clickchemistryhasalsobeenappliedtothedesignofhydrogelscaffoldsforapplicationssuchastissueengineer-ingandcellculture.Inoneoftheearlystudies,PEG-basedhydrogelsweresynthesizedbycombiningdiacetyleneandtetraazidePEGderivatives.Thesesystemswerecomparedtotraditionalhydrogelsanditwasfoundthatproper-tiessuchasswellingdegreeand“stresstobreak”wereimprovedintheCuAACcaseandcouldbesystematicallyvariedwithmolecularweightofthePEG[91].OneoftheearliestusesoftheSPAACtechniqueformaterialdesignwasdemonstratedonnetworkformation.Inthatstudytetra-nitrobenzyloxylcarbonyltetra-azidoterminalPtBAstarpolymerswerecrosslinkedusingeitheradifunctionalmonofluorinatedordifluorinatedcyclooctyne[92].Inlaterwork,Ansethandco-workersusedSPAACchemistrytosynthesizeahydrogelnetwork[93].Thiswasdesignedbasedonafour-armpoly(ethyleneglycol)tetra-azidewhichwasreactedina1:1ratiowithbis(difluorinatedcyclooctyne)difunctionalizedpolypeptide.Thepeptidealsocontainedavinylgroupforsubsequentthiol–enemod-ificationandametalloproteinasecleavablesequencetoallowdegradation.Thehydrogelwasfoundtosustaincellswithhighviability(>90%after24h).Thematerialwasthenthiol-functionalizedwitharangeofpeptidesusingalight-inducedthiol–enereaction.Itwasshownthatselectivelyexposingthehydrogelsurfaceallowedspatialandtem-poralcontroloverthecoupling(Fig.6).Subsequentworkshowedthatthistechniquecouldbeusedtocreategradientfilmswithoneormorepeptides[94].

4.Applicationofclickchemistryforfunctionalizationofmaterials

4.1.Functionalizationoffilms

Controloversurfacefunctionalityandinteractionwiththelocalenvironmentarekeytotheperfor-manceofmaterialsusedinbiomedicalapplications[21].

1-Ethyl-3-(3-dimethylaminopropyl)

carbodiimide(EDC)/NHSchemistriesandthiol–maleimidecouplinghavebeenwidelyusedinmaterialssciencetomod-ifysurfaces;however,theseapproachesarelimitedbycross-reactivitywithfunctionalgroupscommonlyfoundinbiology(suchasamines,carboxylicacidsandthiols)andtheaqueousstabilityofthereactivecomponents[95].Biotin/avidininteractionsarealsowidelyemployedforbiomoleculefunctionalization,butcanbehamperedbysignificantnon-specificbindingofbiomoleculesandpotentialimmunogeniceffectsforinvivoapplications[95].Therefore,thespecificandquantitativenatureofclickchemistrylendsitselftosurfaceimmobilization.

Proofofprinciplesurfacemodificationusingclickchem-istryhasbeendemonstratedforthiol–ene[96],DA[97]andCuAAC[98]reactionsusingfluorescentorganicdyes.Tomodifymaterialswithclickfunctionalspeciesitisnec-essarytoengineerthematerialstopresentclickgroupsontheirsurface.Thiscanbeachievedbydirectmodificationusingspincoating[99],SAMs[23]orchemicalvapordepo-sition[39]whereclickgroupsaredirectlyattachedtoasurface,aswellasviaindirectmethods,suchassilanecon-densation[100]andplasmapolymerization[40],whereanamino,thiolorhalogengroupisdepositedonthesurfaceandthensubsequentlyreactedtoformclickmoieties.

Surfacesengineeredforbiomedicalapplicationsaretypicallymodifiedfortworeasons:(i)tolowernon-specificinteractionswithabiologicalenvironment,and/or(ii)toengineerspecificinteractions,suchasforsensorsanddrugdeliverydevices.AsPEGisawidelyusedpolymertolowernon-specificinteractionswiththelocalenvironment,awiderangeofmaterialshavebeenmodifiedwithPEG.Inoneapproach,Ostacietal.demonstratedtheuseofchem-icalvapordepositiontomodifyasiliconsubstratewithalkynes,andanazide-modifiedlinearPEG(20000g/mol)wasthengraftedontothesurface[101].Similarly,cot-tonhasalsobeenclick-modifiedwithPEG[102].Leeetal.combinedcontrolledradicalpolymerizationwithCuAAC[103].SAMswithaterminalATRPinitiatorwasfirstsyn-thesized,andthenapoly(oligo(ethyleneglycol)methylethermethacrylate)wasgrownfromthissurface,asthispolymerisalsowellknowntohavelow-foulingcapabili-ties.ThebromineendgroupoftheATRPinitiatorwasthenmodifiedtoanazidemoiety,allowingeasyCuAACfunc-tionalization.Morerecently,usingaclickLbLapproach,Kinnaneetal.showedthatglassslidescouldbemodifiedwithpoly(ethyleneglycol)acrylatetocreatealow-foulingsurfacethatwasresistanttocelladhesion[34].

Modificationofsurfaceswithbiomoleculesforspecificinteractionsrequirescarefulmaterialsdesignduetothedelicatenatureofthemolecules.Thus,differentclickcou-plingchemistriesarebettersuitedtocertainapplications.Forexample,useofUVlightinthiol–enecrosslinkingcandamageDNA,renderingitinactive,andcysteineresiduesinproteinsarecross-reactivewiththiol–eneclickchem-istryandcanalsoundergoMichaeladditiontomaleimidesusedinsomeDAreactions.NosidereactionsoccurwithCuAACcoupling;however,thepresenceofCu(I)canbealimitationduetotoxicityofCu(I)tolivingcells[12].IthasalsobeenobservedthatfreeCu(I)causessignifi-cantaggregationofproteins[104]duetothechelating

996G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

Fig.6.(a)Formationofahydrogelnetworkbetweenbis(difluorinatedcyclooctyne)-difunctionalizedpolypeptidesandazidecrosslinkersusingtheSPAACtechniqueforpromotingcellgrowth.(b)Thishydrogelnetworkcanbefurtherfunctionalizedutilizinglight-inducedthiol–eneclickreactions.[93]Copyright2009,NaturePublishingGroup,reproducedwithpermission.

effectofglutamicacidandlysineresidues,anditcanalsocausedegradationofsomebiomaterialssuchaspolysac-charides[105].Recentreportshaveshownthatsomeoftheselimitationscanbeovercomebytheadditionofachelatingagent,openingupclickchemistryforpotentialuseininvitroandinvivoapplications[104,106].Similarly,strainedalkynes,particularlycyclooctynesdevelopedby

Bertozziandco-workers,canalsoovercomeCu(I)toxic-itybyactivatingthealkyneandremovingtheneedforacatalyst[13].Whiletheclickreactionitselfremainshighlyspecific,thehydrophobicnatureofthecyclooctynecanleadtonon-specificlocalizationofthealkynewithhydrophobicdomainsinproteins,andmayalsoleadtosol-ubilityissues.However,withtheadventofstrainedalkynes

G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

997

withhigherwatersolubilitytheselimitationsshouldbeovercome.

Fortissueengineeringandimplantapplications,itiscriticaltopromotetheadhesionofthedesiredcellsontoasurface.Todemonstratecontrolledcelladhesion,sur-facescanbemodifiedwithadhesionpromotingpeptides,suchasRGDwhichbindstointegrinreceptorsthatarepresentonanumberofcells.InonesuchstudyabrushPEGacrylatefilmassembledviatheLbLtechniqueandfunc-tionalizedwithalkynegroupswasusedasamodelsurfaceandshowedminimalcelladhesionover72h[34].However,whenthissurfacewasfunctionalizedwithanazide-functionalizedRGDpeptide,celladhesionandgrowthwaspromoted.UsingamutatedRADpeptideasacompari-son,similaradhesiontotheunmodifiedPEGsurfaceswasobserved.Similarly,Beckerandco-workersusedaSAM-coatedcoverslipwithagradientdensityofalkynegroups,andsubsequentlyclickedanazide-modifiedRGDontothesurface[107].Asexpected,greatercelladhesionoccurredwheretherewasahighdensityofRGD.Chelmowskietal.demonstratedthatpeptidebasedSAMscouldalsobesyn-thesized.Thesedemonstratedsimilarlow-foulingtoPEGsurfaces[108].Itwouldbeexpectedthatthesesurfacescouldbereadilytunedtopromotecelladhesioninspecificregions.

Modificationofsurfacesformicroarraysandsen-sorshasalsobeenachievedbyclickchemistry.Chenetal.immobilizedazide-modifiedDNAontospin-coated␣-alkyne-␻-Br-poly(tBA-b-MMA)surfaces[109].Azide-functionalizedDNAwasattachedtothatsurfacewithadensityof1.1×1013/cm2;however,ifthePtBAwasdepro-tectedtoformahydrophilicPAAsurface,a20%increaseinsurfacedensitywasobserved.ThebasepairingofDNAoligomerscanalsobeusedtocreateself-assembledstruc-turesthatcanbeexploitedtopatternsurfaces.ArelatedstudybySunandco-workersusedalkynemodifiedDNAthathybridizesinsolutiontoformorderedstructuresthatcanbeclickedontoanazide-modifiedsiliconsubstrateinaone-stepprocess[110].

Formoreadvancedmicroarraysandsensingappli-cations,morecontrolledsurfacepatterningisrequired.Surfacepatterningtechniquesusingmicrocontactprinting[111],photolithography[112]andelectron-beamlithogra-phy[113]haverecentlybeendemonstrated.Microcontactprintinghasbeenextensivelyemployedtopatternsur-facesusingtheCuAACreaction.Ithasbeenadaptedtoprintsmallfluorescentmolecules[114],DNA[115],sug-ars[116],andcyclodextrins(Fig.7a)[117].Interestingly,ithasbeendemonstratedinsomesystemsthatprintinganazide-modifiedprobeontoalkyne-modifiedsurfacesdoesnotrequiretheadditionofaCucatalysttopromotethereaction.Thisishypothesizedtobeduetothehighlocal-izedconcentrationofthereactantsdrivingthereactiontocompletion.

Microcontactprintinghasalsobeenemployedtopat-ternelectroactivesubstrateswithswitchablecelladhesionproperties.Mrksichandco-workerspatternedahydro-quinone/hexadecaneSAMontitaniumandgold-coatedglasscoverslips[25,26].Thehexadecaneregionswerefunctionalizedwithfibronectintopromotecelladhesion.Thehydroquinonecomponentcanbeoxidizedbythe

applicationofa500mVpotentialtothesubstratetoformquinone,whichactsasadienophileinDAreac-tionswithmaleimides.Itwasshownthatwhenincubatingcellswiththehydroquinone/fibronectinsurface,thecellsonlyadheredtothefibronectinregions;however,afterapplicationofthevoltageandadditionofamaleimide-modifiedRGDpeptide,thecellswereabletomigrateovertheentiresurface(Fig.7b)[26].Thistechniquecanbeusedtostudytheinhibitionorpromotionofcellmigration.

Photolithographycanbeemployedtopatternclickfunctionalsurfacesusingphotoactivatedsurfaces.Locklinandco-workershavedemonstratedthatcyclopropenoneundergoesrapiddecarbonylationwhenexposedto350nmUVlighttoformacyclooctynewhich,inturn,rapidlyundergoesSPAACreactionwithazides[118].Usingacyclo-propenonefunctionalizedsurface,ashadowmaskwasusedtosequentiallyactivateareasonthefilmtoformapatternedsurface.

4.2.Functionalizationofparticlesandcapsules

Thetranslationofclicksurfacefunctionalizationfromplanarsurfacestoparticleshasbeendemonstratedonanumberofsystemsviareactingorganicdyesontothesur-faceoftheparticles.Thisopensupanarrayofapplications,potentiallyleadingtoimprovedcontrolofdrugrelease,targeteddeliveryofdrugstospecificcellsandbiologicalsensors.

Thegatedreleaseofdrugsfromtherapeuticreservoirsiscriticalforthedeliveryofanumberofdrugs.Oneappli-cationofclickchemistryhasbeentosynthesizegatednanoporestocontrolthereleaseofsmallmoleculesfrommesoporousmaterials(Fig.8)[119].Mesoporoussilicawithaporesizeof∼2nmwasfunctionalizedwithalkynegroupswitha1–3carbonaliphaticchainspacingthealkynefromthesurface.RhodamineBwasloadedintothepores,andfollowingloading,thesurfacewascappedwith2-azidoethylamineinthepresenceofcucurbit[6]uril(CB[6]).CB[6]catalyzesthecycloadditionreactionbetweentheazideandalkyneandalsoformsapseudorotaxaneviaaninteractionwiththebisammoniastalksformedbytheclickreaction.TheRhodamineBremainedencapsulatedwithinthemesoporousmaterialswhenashortchainlinkerwasused;however,whenalongerchainwasused,notice-ableleakagewasobserved.WhenthepHwasraisedabove10,thedipoleinteractionswitchedoffcausingtherotax-anetodisassembleandreleasetherhodamine.WhilethepHresponsedemonstratedhereisnotinthephysiologicalrange,itcanbeenvisagedthatpH-inducedreleaseofdrugsinaphysiologicalrangecouldbeachievedbyengineeringthepKaofthebisammoniumgroup.Inarelatedstudy,arotaxanewithacleavablestopperwasusedasthemolecu-larvalveonmesoporoussilica.Thisstudydemonstratestheuseofenzyme-cleavablestopperremoval;however,themechanismcanbereadilytuned.Goodcontrolovercargoreleaseinthissystemwasdemonstrated[120].Biologicalsystemshavealsobeendesignedbasedondouble-strandedDNA[121].

Smallmetallicnanoparticles,suchasQDsandgoldnanoparticles,havebeenfunctionalizedwithtargeting

998G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

Fig.7.(a)Fluorescencemicroscopyimagesofone-stepfunctionalizationoforthogonalpatternedcoumarin-cyclodextrinsurfacesbyclickchemistry,followedbymicrocontactprintingoffluorescentlylabeledmoleculesonthesurfaces[116].(b)Diels–Aldermediatedfunctionalizationofpeptide(right)onplanarsurface(leftandcenter)thatcanbeelectricallyswitchedtoturnoncellmigration.Immobilizationofthepeptideonthesurfaceledtothemigrationofcells(rightopticalimage)fromthecircularregions(leftopticalimage).(a)[117]Copyright2010,AmericanChemicalSociety,reproducedwithpermission;(b)[26]Copyright2001,Wiley-VCHVerlagGmbH&Co.KGaA,reproducedwithpermission.

moleculesandactiveenzymes,suchaslipase,foruseasbiologicalmarkersorsensors[122].Texierandco-workersusedSPAACtocouplemannosamineto10nmgreenfluorescentQDstoavoidtheuseofCu(I),whichhasbeenshowntoquenchthefluorescenceoftheQDs[123].ThefunctionalizedQDsremainedfluorescentaftertheclickcouplingstepandboundeffectivelytoChineseHamsterOvarycells.Thisapproachisaversatiletech-niqueforfluorescentlabelingthatcouldbeextendedtoavarietyofbiomoleculestoexploitthefluores-cencepropertiesofQDs(narrowemissionwavelengthandgoodphotostability).Thishasparticularimplica-tionsforuseininvitroandinvivoimaging.SPAACcouplinghasalsobeenappliedtoantibodyfunctionaliza-tionofchitosanpolymerparticles[105]andpoly(amide)dendrimer[124].

Fordrugdelivery,clickchemistryhasbeenusedtofunctionalizenanoparticleswithtargetingmoleculessuchasfolate[125],RGDpeptides[125–128],tumortarget-ingpeptides[129],andwholeantibodies[104].SmallmoleculessuchasfolateandRGDpeptidesarereadilycou-pledtonanoparticlesbymodifyingthefolateorpeptidewitheitheranazideoralkynegroup.Forexample,Leeetal.showedthatpolymer-coatedliposomeswithalkynegroupscanbemodifiedwithazidefunctionalfolate[125].Thesecapsulesshowedsignificantbindinganduptakeincellsthatexpressedthefolatereceptor.Similarly,usinganalkyne-modifiedRGDpeptide,Luetal.showedthatRGD-functionalizedpolymerparticlesboundtorabbitcornealepithelialcells[126].Inarelatedstudy,Shokeenetal.modifiedPEG-basedmicelleswithvariousamountsofRGDfunctionality(0–50%)andinvestigatedtheeffectthis

G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

999

Fig.8.Graphicalillustrationsofgatednanopores.RhodamineB(RhB)isloadedintheporesofmesoporoussilicaparticlesandcappedbycucurbit[6]uril-catalyzedclickreaction(aandb).UponraisingthepHvalue,rhodamineisreleasedbyswitchingoffthedipoleinteractionsbetweenCB[6]andthebisammoniumstalks(bandc).[119]Copyright2008,Wiley-VCHVerlagGmbH&Co.KGaA,reproducedwithpermission.

functionalityhadoncellularinteractionsandbiodis-tribution[127].Interestingly,significantchangesinbiodistributionoftheirparticleswereseenwhentheyhad10%RGDormore,implyingthereisabalancerequiredbetweentargetingmoietiesandbiodistribution.

Inanovelapproach,Passarellaetal.functionalizednanospongeswitharadiation-inducedtargetingpeptide(GIRLRG)usingthiol–enechemistry[129].WhentumorcellsareexposedtoradiationtheGRP78receptor(whichisrecognizedbytheGIRLRGpeptidesequence)isexpressedonthesurfaceofthecell,makingitanidealcandi-datefornanoparticletargeting.Invivoanimalstudies

demonstratedthattargetednanospongesloadedwithpaclitaxelsignificantlyinhibitedtumorgrowthcomparedtoradiationtreatmentalone[129].

Superparamagneticironoxide(SPIO)particleshavealsobeenfunctionalizedwiththealkynemodifiedcyclicpep-tidesequenceLyP-1whichbindstop32,amitochondrialproteinwhichisoverexpressedonsomecancercells,aswellasmacrophagesandlymphaticendothelialcells[130].TheseLyP-1functionalizedSPIOsboundspecificallytop32expressingcellsbothinvitroandinmousetumormodels.

Folate,p32andintegrinreceptorsarefoundonmanycells,hencefortargetingtospecificcells,antibodies(Abs)

Fig.9.(a)SchemeshowingantibodyfunctionalizationwiththeNHS-PEG2000-Azlinkerandsubsequentcapsulefunctionalizationviaclickchemistry.(b)FluorescencemicroscopyimagedemonstratinghuA33Ab-functionalizedcapsulesselectivelybindtocomplementaryantigenpresentingcells(blue).[104]Copyright2010,AmericanChemicalSociety,reproducedwithpermission.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

1000G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

canofferenhancedspecificity.ForwholeAbfunctionaliza-tion,thepresenceofCu(I)hasbeenfoundtoaggregatetheAbs;however,thepresenceofachelatorfortheCu(I)mini-mizesthisaggregation[104].WehaverecentlyshownthatPVPONcapsulesfunctionalizedwiththehuA33Abspecif-icallybindtocellsthatexpressthehuA33antigen(Fig.9).Invitroexperimentsshowedthatover95%ofhuA33+cellshadcapsulesbound,whereaslessthan5%ofhuA33−cellswereassociatedwiththeAb-functionalizedcapsules.Thesecapsulesshowedspecificbindingtocellsevenwhenthetargetcellwaspresentaslessthan0.1%ofthetotalcellpopulation[104].Inthiscase,theAbwasfunctionalizedwithanazidebyreactingbifunctionalNHS-PEG-AztothelysineresiduespresentontheAb.Thisresultsintheran-domfunctionalizationoftheAb,withanaverageof1azideperAb.Tocontrolthepositionofthefunctionalization,Eliasetal.haveengineeredtheexpressionoftheanti-HER2affi-bodytocontainaC-terminalthioester[131].ThethioesterisreactivetoN-terminalcysteinecontainingpeptidessobyaddinganalkynemodifiedN-terminalcysteinepeptide,theclickfunctionalitycouldbespecificallyattachedtotheC-terminusoftheaffibody.Thisalkyne-modifiedAbwascoupledtoliposomes,dendrimersandSPIOsandshowedspecificbindingtoHER2expressingcells.

5.Conclusion

Inthelast10yearsclickchemistryhasbecomeanimportanttoolformaterialsscience.Thereisnowawell-studiedsetofreactionswhichsatisfymostclickcriteriaandthusthechoiceoftheappropriatereactionforaspecificsetofconditionsisstraightforward.Thismeansanylimitationswithorthogonalityandtoxicity,whilesignificant,canbeefficientlymanaged.Therangeoffunctionalityrequiredisalsodiverseandmeansthatbuildingblockscanbereadilyfunctionalizedwithclickmoieties.Thus,thereissignificantpotentialforcreativecombinationsofexistingmaterialstopushtheboundariesofcurrentcapabilities.Theabilitytofunctionalizeisalsofundamentaltotailoringthesurfacepropertiesofthesematerialswiththeirenvironment.Clickchemistryoffersapowerfultoolboxformaterialscientiststodesignthenextgenerationofmaterialswithtargetedresponsetotheenvironment.Theabilitytosynthesizesuchmaterialsisimportanttomakeimpactinmanyareas.Thisisparticularlytrueinthefieldofbiomedicinewhereknowledgeontheinteractionsbetweensyntheticdeliverysystemsbothinvitroandinvivoisrapidlyexpanding.Thenextfewyearsshouldprovideexcitingopportunitiesinthefieldofclickchemistry,asnewnanoengineeredfilmsandparticulatedeliverysystemsemerge.

Acknowledgments

ThisworkwassupportedbytheAustralianResearchCouncilundertheFederationFellowship(F.C.)andDiscov-eryProjectschemes(F.C.,A.P.R.J.andG.K.S.).

References

[1]MeldalM,TornøeCW.Cu-catalyzedazide-alkynecycloadditions.

ChemRev2008;108:2952–3015.

[2]LahannJ.Clickchemistryforbiotechnologyandmaterialscience.

WestSussex,UK:JohnWileyandSonsPtyLtd.;2009.

[3]LutzJF.1,3-Dipolarcycloadditionsofazidesandalkynes:auniver-salligationtoolinpolymerandmaterialsscience.AngewChemIntEd2007;46:1018–25.

[4]EvansRA.Theriseofalkyne-azide1,3-dipolarcycloadditionand

itsapplicationtopolymerscienceandsurfacemodification.AustJChem2007;60:384–95.

[5]KolbHC,FinnMG,SharplessKB.Clickchemistry:diversechem-icalfunctionfromafewgoodreactions.AngewChemIntEd2001;40:2004–21.

[6]RostovtsevVV,GreenLG,FokinVV,SharplessKB.Astepwise

Huisgencycloadditionprocess:copper(I)-catalyzedregioselective“ligation”ofazidesandterminalalkynes.AngewChemIntEd2002;41:2596–9.

[7]TornøeCW,ChristensenC,MeldalM.Peptidotriazolesonsolid

phase:[1,2,3]-triazolebyregiospecificcopper(I)-catalyzed1,3-dipolarcycloadditionsofterminalalkynestoazides.JOrgChem2002;67:3057–64.

[8]LutzJF,ZarafshaniZ.Efficientconstructionoftherapeutics,bio-conjugates,biomaterialsandbioactivesurfacesusingazide-alkyne“click”chemistry.AdvDrugDelivRev2008;60:958–70.

[9]BockVD,Hiemstra,vanMaarseveenJH.CuI-catalyzedalkyne-azide

“click”cycloadditionsfromamechanisticandsyntheticperspec-tive.EurJOrgChem2006:51–68.

[10]HeinJE,FokinVV.Copper-catalyzedazide-alkynecycloaddition

(CuAAC)andbeyond:newreactivityofcopper(I)acetylides.ChemSocRev2010;39:1302–15.

[11]WangQ,ChanTR,HilgrafR,FokinVV,SharplessKB,FinnMG.

Bioconjugationbycopper(I)-catalyzedazide-alkyne[3+2]cycload-dition.JAmChemSoc2003;125:3192–3.

[12]HongV,SteinmetzNF,ManchesterM,FinnMG.Labelinglivecells

bycopper-catalyzedalkyne-azideclickchemistry.BioconjugChem2010;21:1912–6.

[13]JewettJC,SlettenEM,BertozziCR.RapisCu-freeclickchemistry

withreadilysynthesizedbiarylazacycooctynones.JAmChemSoc2010;132:3688–90.

[14]JewettJC,BertozziCR.Cu-freeclickcycloadditionreactionsin

chemicalbiology.ChemSocRev2010;39:1272–9.

[15]SanyalA.Diels–Aldercycloaddition-cyclorevision:apow-erfulcomboinmaterialsdesign.MacromolChemPhys2010;211:1417–25.

[16]InglisAJ,Barner-KowollikC.Ultrarapidapproachestomild

macromolecularconjugation.MacromolRapidCommun2010;31:1247–66.

[17]MauldinTC,KesslerMR.Self-healingpolymersandcomposites.Int

MaterRev2010;55:317–46.

[18]HoyleCE,LoweAB,BowmanCN.Thiol-clickchemistry:amulti-facetedtoolboxforsmallmoleculeandpolymersynthesis.ChemSocRev2010;39:1355–87.

[19]HoyleCE,BowmanCN.Thiol–eneclickchemistry.AngewChemInt

Ed2010;49:1540–73.

[20]GressA,VlkelA,SchlaadH.Thio-clickmodificationofpoly[2-(3-butenyl)-2-oxazoline].Macromolecules2007;40:7928–33.

[21]BoudouT,CrouzierT,RenK,BlinG,PicartC.Multiplefunctionalities

ofpolyelectrolytemultilayerfilms:newbiomedicalapplications.AdvMater2009;21:1–27.

[22]CanalleLA,vanBerkelSS,deHaanLT,vanHestJCM.Copper-free

clickablecoatings.AdvFunctMater2009;19:3464–70.

[23]VericatC,VelaME,BenitezG,CarroP,SalvarezzaRC.Self-assembled

monolayersofthiolsanddithiolsongold:newchallengesforawell-knownsystem.ChemSocRev2010;39:1805–34.

[24]CollmanJP,DevarajaNK,ChidseyCED.Clickingfunctionalityonto

electrodesurfaces.Langmuir2004;20:1051–3.

[25]YousafMN,MrksichM.Diels–Alderreactionfortheselectiveimmo-bilizationofproteintoelectroactiveselfassembledmonolayers.JAmChemSoc1999;121:4286–7.

[26]YousafMN,HousemanBT,MrksichM.Turningoncellmigration

withelectroactivesubstrates.AngewChemIntEd2001;40:1093–5.[27]DecherG,HongJD.Buildupofultrathinmultilayerfilmsbyaself-assemblyprocess0.2.Consecutiveanionicandcationicbipolaramphiphilesandpolyelectrolytesonchargedsurfaces.BerBunsen-gesPhysChem1991;95:1430–4.

[28]JohnstonAPR,CortezC,AngelatosAS,CarusoF.Layer-by-layerengi-neeredcapsulesandtheirapplications.CurrOpinColloidInterfaceSci2006;11:203–9.

[29]QuinnJF,JohnstonAPR,SuchGK,ZelikinAN,CarusoF.Nextgenera-tion,sequentiallyassembledultrathinfilms:beyondelectrostatics.ChemSocRev2007;36:707–18.

G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

1001

[30]SuchGK,QuinnJF,QuinnA,TjiptoE,CarusoF.Assemblyofultra-thinpolymermultilayerfilmsbyclickchemistry.JAmChemSoc2006;128:9318–9.

[31]BergbreiterDE,LiaoKS.Covalentlayer-by-layerassembly-aneffec-tiveforgivingwaytoconstructfunctionalrobustultrathinfilmsandnanocomposites.SoftMatter2009;5:23–8.

[32]JierryL,AmeurNB,ThomannJ-S,FrischB,GonthierE,VoegelJ-C,SengerB,DecherG,FelixO,SchaafP,MesiniP,BoulmedaisF.InfluenceofCu(I)-alkynecomplexchargeonthestep-by-stepfilmbuildupthroughsharplessclickreaction.Macromolecules2010;43:3994–7.

[33]OchsCJ,SuchGK,StädlerB,CarusoF.Low-fouling,biofunc-tionalizedandbiodegradableclickcapsules.Biomacromolecules2008;9:3389–96.

[34]KinnaneCR,WarkK,SuchGK,JohnstonAPR,CarusoF.Peptide-functionalized,low-biofoulingclickmultilayersforpromotingcelladhesionandgrowth.Small2009;5:444–8.

[35]PalomakiPKB,DinolfoPH.Aversatilemolecularlayer-by-layer

thinfilmfabricationtechniqueutilizingcopper(I)-catalyzedazide-alkynecycloaddition.Langmuir2010;26:9677–85.

[36]VestbergR,MalkochM,KadeM,WuP,FokinVV,SharplessKB,

DrockenmullerE,HawkerCJ.Roleofarchitectureandmolecularweightintheformationoftailor-madeultrathinmultilayersusingdendriticmacromoleculesandclickchemistry.JPolymSciPartAPolymChem2007;45:2835–46.

[37]HaitamiAE,ThomannJ-S,JierryL,ParatA,VoegelC,SchaafP,

SengerB,BoulmedaisF,FrischB.Covalentlayer-by-layerassem-bliesofpolyelectrolytesandhomobifunctionalspacers.Langmuir2010;26:12351–7.

[38]PengJ,YuP,ZengS,LiuX,ChenJ,XuW.Applicationof

clickchemistryinthefabricationofcactus-likehierarchicalpar-ticulatesforstickysuperhydrophobicsurfaces.JPhysChemC2010;114:5926–31.

[39]NandivadaH,ChenHY,BondarenkoL,LahannJ.Reactivepolymer

coatingsthatclick.AngewChemIntEd2006;45:3360–3.

[40]ChenRT,MuirBW,SuchGK,PostmaA,EvansR,PereiraSM,McLean

KM,CarusoF.Surface“click”chemistryonbrominatedplasmapoly-merthinfilms.Langmuir2010;26:3388–93.

[41]UpadhyayKK,LeMeinsJF,MisraA,VoisinP,BouchaudV,Ibarboure

E,SchatzC,LecommandouxS.Biomimeticdoxorubicinloadedpolymersomesfromhyaluronan-block-poly(␥-benzylglutamate)copolymers.Biomacromolecules2009;10:2802–8.

[42]ChenG,AmajjaheS,StenzelMH.Synthesisofthiol-linkedneogly-copolymersandthermo-responsiveglycomicellesaspotentialdrugcarrier.ChemCommun2009:1198–200.

[43]KillopsKL,CamposLM,HawkerCJ.Robust,efficient,andorthogonal

synthesisofdendrimersviathiol–ene“click”chemistry.JAmChemSoc2008;130:5062–4.

[44]KinnaneCR,SuchGK,Antequera-GarciaG,YanY,DoddsSJ,

Liz-MarzanLM,CarusoF.Low-foulingpoly(N-vinylpyrrolidone)capsuleswithengineereddegradableproperties.Biomacro-molecules2009;10:2839–46.

[45]GaoH,MatyjaszewskiK.Synthesisofstarpolymersbyacombi-nationofATRPandthe“click”couplingmethod.Macromolecules2006;39:4960–5.

[46]JoralemonMJ,O’ReillyRK,HawkerCJ,WooleyKL.Shell

click-crosslinked(SCC)nanoparticles:anewmethodologyforsynthesisandorthogonalfunctionalization.JAmChemSoc2005;127:16892–9.

[47]JohnstonAPR,SuchGK,NgSL,CarusoF.Challengesfacingcolloidal

deliverysystems:fromsynthesistotheclinic.CurrOpinColloidInterfaceSci2011;16:171–81.

[48]GolasPL,MatyjasewskiK.Marryingclickchemistrywithpolymer-ization:expandingthescopeofpolymericmaterials.ChemSocRev2010;39:1338–54.

[49]WhittakerMR,UrbaniCN,MonteiroMJ.Synthesisof3-miktoarm

starsand1stgenerationmiktodendriticcopolymersby“living”radicalpolymerizationand“click”chemistry.JAmChemSoc2006;128:11360–1.

[50]GouPF,ZhuWP,ShenZQ.Synthesis,self-assembly,and

drug-loadingcapacityofwell-definedcyclodextrin-centereddrug-conjugatesamphiphilicA14B7miktoarmstarcopolymersbasedonpoly(e-caprolactone)andpoly(ethyleneglycol).Biomacro-molecules2010;11:934–43.

[51]MedinaSH,El-SayedMEH.Dendrimersascarriersfordeliveryof

chemotherapeuticagents.ChemRev2009;109:3141–57.

[52]MorgenrothF,ReutherE,MullenK.Polyphenylenedendrimers:

fromthree-dimensionaltotwo-dimensionalstructures.AngewChemIntEd1997;36:631–4.

[53]MausM,DeR,LorM,WeilT,MitraS,WieslerUM,HerrmannA,

HofkensJ,VoschT,MullenK,DeSchryverFC.Intramolecularenergyhoppingandenergytrappinginpolyphenylenedendrimerswithmultipleperyleneimidedonorchromophoresandaterrylenimideacceptortrapchromophore.JAmChemSoc2001;123:7668–76.[54]QinTS,ZhouG,ScheiberH,BauerRE,BaunigartenM,AnsonCE,List

EJW,MullenK.Polytriphenylenedendrimers:auniquedesignforblue-emittingmaterials.AngewChemIntEd2008;47:8292–6.[55]SzalaiML,McGrathDV,WheelerDR,ZiferT,McElhanonJR.

Dendrimersbasedonthermallyreversiblefuran-maleimideDiels–Alderadducts.Macromolecules2007;40:818–23.

[56]WuP,FeldmanAK,NugentAK,HawkerCJ,ScheelA,VoitB,Pyun

J,FréchetJMJ,SharplessKB,FokinVV.Efficiencyandfidelityinaclick-chemistryroutetotriazoledendrimersbythecopper(I)-catalyzedligationofazidesandalkynes.AngewChemIntEd2004;43:2928–32.

[57]JoralemonMJ,O’ReillyRK,MatsonJB,NugentAK,HawkerCJ,Woo-leyKL.Dendrimersclickedtogetherdivergently.Macromolecules2005;38:5436–43.

[58]AntoniP,RobbMJ,CamposL,MalmstromE,MalkochM,Hawker

CJ.Pushingthelimitsforthiol–eneandCUAACreactions:synthe-sisofa6thgenerationdendrimerinasingleday.Macromolecules2010;43:6625–31.

[59]WuP,MalkochM,HuntJN,VestbergR,KaltgradE,FinnMG,Fokin

VV,SharplessKB,HawkerCJ.Multivalent,bifunctionaldendrimerspreparedbyclickchemistry.ChemCommun2005:5775–7.

[60]KimKT,MeeuiwissenSA,NolteRJM,vanHestJCM.Smartnanocon-tainersandnanoreactors.Nanoscale2010;2:844–58.

[61]delBarrioJ,OriolL,SánchezC,SerranoJS,DiCiccoA,KellerP,Li

M-H.Self-assemblyoflinear-dendriticdiblockcopolymers:fromnanofiberstopolymersomes.JAmChemSoc2010;132:3762–9.[62]JiangX,ZhangG,NarainR,LiuS.Covalentlystabilizedtemperature

andpHresponsivefour-layernanoparticlesfabricatedfromsurface‘clickable’shellcross-linkedmicelles.SoftMatter2009;5:1530–8.[63]QuanCY,ChenJX,WangHY,LiC,ChangC,ZhangXZ,ZhuoRX.

Core-shellnanosizedassembliesmediatedbythe␣–␤cyclodex-trindimerwithatumor-triggeredtargetingproperty.ACSNano2010;4:4211–9.

[64]vanDongenSFM,NallaniM,SchoffelenS,CornelissenJJLM,Nolte

RJM,vanHestJCM.Ablockcopolymerforfunctionalizationofpoly-mersomesurfaces.MacromolRapidCommun2008;29:321–5.[65]FeliciM,Marzá-PérezM,HatzakisNS,NolteRJM,FeitersMC.

Beta-cyclodextrin-appendedgiantamphiphile:aggregationtovesiclepolymersomesandimmobilisationofenzymes.ChemEurJ2008;14:9914–20.

[66]DirksAJ,NolteRJM,CornelissenJJLM.Protein–polymerhybrid

amphiphiles.AdvMater2008;20:3953–7.

[67]DirksAJ,vanBerkelSS,HatzakisNS,OpsteenJA,vanDelftFL,

CornelissenJJLM,RowanAE,vanHestJCM,RutjesFPJT,NolteRJM.Preparationofbiohybridamphiphilesviathecoppercatal-ysedHuisgen[3+2]dipolarcycloadditionreaction.ChemCommun2005:4172–4.

[68]SchatzC,LouguetS,LeMeinsJ-F,LecommandouxS.Polysaccharide-block-polypeptidecopolymervesicles:towardssyntheticviralcapsids.AngewChemIntEd2009;48:2572–5.

[69]ZhangS,ZhaoY.Rapidreleaseofentrappedcontentsfrom

multi-functionalizable,surfacecross-linkedmicellesupondiffer-entstimulation.JAmChemSoc2010;132:10642–4.

[70]deCockLJ,DeKokerS,DeGeestBG,GrootenJ,VeraetC,Remon

JP,SukhorukovGB,AntipinaMN.Polymericmultilayercapsulesindrugdelivery.AngewChemIntEd2010;49:6954–73.

[71]SuchGK,TjiptoE,PostmaA,JohnstonAPR,CarusoF.Ultrathin,

responsivepolymerclickcapsules.NanoLett2007;7:1706–10.[72]HuangCJ,ChangFC.Usingclickchemistrytofabricateultrathin

thermoresponsivemicrocapsulesthroughdirectcovalentlayer-by-layerassembly.Macromolecules2009;42:5155–66.

[73]DeGeestBG,VanCampW,DuPrezFE,DeSmedtSC,DemeesterJ,

HenninkWE.Degradablemultilayerfilmsandhollowcapsulesviaa‘click’strategy.MacromolRapidCommun2008;29:1111–8.

[74]LeungMKM,SuchGK,JohnstonAPR,BiswasDP,ZhuZY,YanY,

LutzJF,CarusoF.Assemblyanddegradationoflow-foulingclick-functionalizedpoly(ethyleneglycol)basedmultilayerfilmsandcapsules.Small2011;7:1075–85.

[75]OchsCJ,SuchGK,YanY,vanKoeverdenMP,CarusoF.Biodegradable

clickcapsuleswithengineereddrug-loadedmultilayers.ACSNano2010;4:1653–63.

[76]OchsCJ,SuchGK,CarusoF.Modularassemblyoflayer-by-layercapsuleswithtailoreddegradationproperties.Langmuir2011;27:1275–80.

1002G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

[77]YanY,OchsCJ,SuchGK,HeathJK,NiceEC,CarusoF.Bypassing

multidrugresistanceincancercellswithbiodegradablepolymercapsules.AdvMater2010;22:5398–403.

[78]LiangK,SuchGK,ZhuZY,YanY,LomasH,CarusoF.Charge-shifting

clickcapsuleswithdual-responsivecargoreleasemechanisms.AdvMater2011;23:H273–7.

[79]ConnalLA,KinnaneCR,ZelikinAN,CarusoF.Stabilizationandfunc-tionalizationofpolymermultilayersandcapsulesviathiol–eneclickchemistry.ChemMater2009;21:576–8.

[80]KimD,KimE,LeeJ,HongS,SungW,LimN,ParkCG,KimK.Direct

synthesisofpolymernanocapsules:self-assemblyofpolymerhol-lowspheresthroughirreversiblecovalentbondformation.JAmChemSoc2010;132:9908–19.

[81]WongLJ,SevimiliS,ZareieHM,DavisTP,BulmusV.PEGy-latedfunctionalnanoparticlesfromareactivehomopolymerscaffoldmodifiedbythioladditionchemistry.Macromolecules2010;43:5365–75.

[82]YapHP,JohnstonAPR,SuchGK,CarusoF.Click-engineered,biore-sponsive,drug-loadedPEGspheres.AdvMater2009;21:4348–52.[83]vanderEndeAE,HarrellJ,SathiyakumarV,MeschievitzM,

KatzJ,AdcockK,HarthE.“Click”reactions:novelchemistriesforformingwell-definedpolyesternanoparticles.Macromolecules2010;43:5665–71.

[84]ManzenriederF,LuxenhoferR,RetzlaffM,JordanR,FinnMG.Sta-bilizationofvirus-likeparticleswithpoly(2-oxazoline)s.AngewChemIntEd2011;5:2601–5.

[85]SteinmetzNF,HongV,SpoerkeED,LuP,BreitenkampK,FinnMG,

ManchesterM.Buckyballsmeetviralnanoparticles:candidatesforbiomedicine.JAmChemSoc2009;131:17093–5.[86]Janczewski

´D,TomczakN,LiuS,HanM-Y,VancsoGJ.Covalentassemblyoffunctionalinorganicnanoparticlesby“click”chemistryinwater.ChemCommun2010;46:3253–5.

[87]SamantaB,PatraD,SubramaniC,OfirY,YesilbagG,SanyalA,Rotello

VM.Stablemagneticcolloidosomesviaclick-mediatedcrosslinkingofnanoparticlesatwater–oilinterfaces.Small2009;5:685–8.

[88]ZhangJ,WangX,WuD,LiuL,ZhaoH.BioconjugatedJanusparticles

preparedbyinsituclickchemistry.ChemMater2009;21:4012–8.[89]BhaskarS,RohK-H,JiangX,BakerGL,LahannJ.Spatioselec-tivemodificationofbicompartmentalpolymerparticlesandfibersviaHuisgen1,3-dipolarcycloaddition.MacromolRapidCommun2008;29:1655–60.

[90]ChenRT,MuirBW,SuchGK,PostmaA,McLeanKM,CarusoF.Fabri-cationofasymmetric“Janus”particlesviaplasmapolymerization.ChemCommun2010;46:5121–3.

[91]MalkochM,VestbergR,GuptaN,MespouilleL,DuboisP,Mason

AF,HedrickJL,LiaoQ,FrankCW,KingsburyK,HawkerCJ.Synthe-sisofwell-definedhydrogelnetworksusingclickchemistry.ChemCommun2006:2774–6.

[92]JohnsonJA,BaskinJM,BertozziCR,KobersteinJT,TurroNJ.Copper-freeclickchemistryfortheinsitucrosslinkingofphotodegradablestarpolymers.ChemCommun2008:3064–6.

[93]DeForestCA,PolizzottiBD,AnsethKS.Sequentialclickreactionsfor

synthesizingandpatterningthree-dimensionalcellmicroenviron-ments.NatMater2009;8:659–64.

[94]DeForestCA,SimsEA,AnsethKS.Peptide-functionalizedclick

hydrogelswithindependentlytunablemechanicsandchem-icalfunctionalityfor3Dcellculture.ChemMater2010;22:4783–90.

[95]ShiM,LuJ,ShoichetMS.Organicnanoscaledrugcarrierscoupled

withligandsfortargeteddrugdeliveryincancer.JMaterChem2009;19:5485–98.

[96]KhireVS,BenoitDSW,AnsethKS,BowmanCN.Ultrathingradient

filmsusingthiol–enepolymerizations.JPolymSciPartAPolymChem2006;44:7027–39.

[97]MehlichJ,RavooBJ.Clickchemistrybymicrocontactprintingon

self-assembledmonolayers:astructure-reactivitystudybyfluo-rescencemicroscopy.OrgBiomolChem2011;9:4108–15.

[98]BergbreiterDE,ChanceBS.“Click”-basedcovalentlayer-by-layer

assemblyonpolyethyleneusingwater-solublepolymericreagents.Macromolecules2007;40:5337–43.

[99]RengifoHR,ChenL,GrigorasC,JuJY,KobersteinJT.“Click-functional”blockcopolymersprovideprecisesurfacefunctionalityviaspincoating.Langmuir2008;24:7450–6.

[100]SunXL,StablerCL,CazalisCS,ChailofEL.Carbohydrateandprotein

immobilizationontosolidsurfacesbysequentialDiels–Alderandazide-alkynecycloadditions.BioconjugChem2006;17:52–7.

[101]OstaciRV,DamironD,CapponiS,VignaudG,Leˇ

ıgerL,GrohensY,DrockenmullerE.Polymerbrushesgraftedto“passivated”siliconsubstratesusingclickchemistry.Langmuir2008;24:2732–9.

[102]ChenGJ,TaoL,MantovaniG,LadmiralV,BurtDP,MacphersonJV,

HaddletonDM.Synthesisofazide/alkyne-terminalpolymersandapplicationforsurfacefunctionalizationthrougha[2+3]Huisgencycloadditionprocess“clickchemistry”.SoftMatter2007;3:732–9.

[103]LeeBS,LeeJK,KimWJ,JungYH,SimSJ,LeeJ,ChoiIS.Surface-initiated,atomtransferradicalpolymerizationofoligo(ethyleneglycol)methylethermethacrylateandsubsequentclickchemistryforbioconjugation.Biomacromolecules2007;8:744–9.

[104]KamphuisMMJ,JohnstonAPR,SuchGK,DamHH,EvansRA,

ScottAM,NiceEC,HeathJK,CarusoF.Targetingofcancercellsusingclick-functionalizedpolymercapsules.JAmChemSoc2010;132:15881–2.

[105]LallanaE,Fernandez-MegiaE,RigueraR.Surpassingtheuseofcop-perintheclickfunctionalizationofpolymericnanostructures:astrain-promotedapproach.JAmChemSoc2009;131:5748–50.

[106]SenGuptaS,KuzelkaJ,SinghP,LewisWG,ManchesterM,Finn

MG.Acceleratedbioorthogonalconjugation:apracticalmethodfortheligationofdiversefunctionalmoleculestoapolyvalentvirusscaffold.BioconjugChem2005;16:1572–9.

[107]GallantND,LaveryKA,AmisEJ,BeckerML.Universalgradientsub-stratesfor“click”biofunctionalization.AdvMater2007;19:965–9.

[108]ChelmowskiR,KösterSD,KerstanA,PrekeltA,GrunwaldC,Winkler

T,Metzler-NolteN,TerfortA,WöllC.Peptide-basedSAMsthatresisttheadsorptionofproteins.JAmChemSoc2008;130:14952–3.

[109]ChenL,RengifoHR,GrigorasC,LiX,LiZ,JuJ,KobersteinJT.Spin-on

end-functionaldiblockcopolymersforquantitativeDNAimmobi-lization.Biomacromolecules2008;9:2345–52.

[110]QingG,XiongH,SeelaF,SunT.SpatiallycontrolledDNAnanopat-ternsby“click”chemistryusingoligonucleotideswithdifferentanchoringsites.JAmChemSoc2010;132:15228–32.

[111]RozkiewiczDI,Janˇ

ıczewskiD,VerboomW,RavooBJ,ReinhoudtDN.“Click”chemistrybymicrocontactprinting.AngewChemIntEd2006;45:5292–6.

[112]ImSG,BongKW,KimB-S,BaxamusaSH,HammondPT,DoylePS,

GleasonKK.Patterningnanodomainswithorthogonalfunctional-ities:solventlesssynthesisofself-sortingsurfaces.JAmChemSoc2008;130:14424–5.

[113]ImSG,BongKW,KimBS,LeeLH,TenhaeffWE,HammondPT,

GleasonKK.Adirectlypatternable,click-activepolymerfilmviainitiatedchemicalvapordeposition.MacromolRapidCommun2008;29:1648–54.

[114]SpruellJM,SheriffBA,RozkiewiczDI,DichtelWR,RohdeRD,Rein-houdtDN,StoddartJF,HeathJR.Hetergeneouscatalysisthroughmicrocontactprinting.AngewChemIntEd2008;47:9927–32.

[115]RozkiewiczDI,GierlichJ,BurleyGA,GutsmiedlK,CarellT,Ravoo

BJ,ReinhoudtDN.TransferprintingofDNAby“click”chemistry.ChemBioChem2007;8:1997–2002.

[116]WendelnC,HeileA,ArlinghausHF,RavooBJ.Carbohy-dratemicroarraysbymicrocontactprinting.Langmuir2010;26:4933–40.

[117]González-CampoA,HsuS-H,PuigL,HuskensJ,ReinhoudtDN,

VeldersAH.Orthogonalcovalentandnoncovalentfunctionaliza-tionofcyclodextrin-alkynepatternedsurfaces.JAmChemSoc2010;132:11434–6.

[118]OrskiSV,PoloukhtineAA,ArumugamS,MaoL,PopikVV,Locklin

J.Highdensityorthogonalsurfaceimmobilizationviaphotoac-tivatedcopper-freeclickchemistry.JAmChemSoc2010;132:11024–6.

[119]AngelosS,YangY-W,PatelK,StoddartJF,ZinkJI.pH-responsive

supramolecularnanovalvesbasedoncucurbit[6]urilpseudorotax-anes.AngewChemIntEd2008;47:2222–6.

[120]PatelK,AngelosS,DichtelWR,CoskunA,YangY-W,ZinkJI,Stoddart

JF.Enzyme-responsivesnap-topcoveredsilicananocontainers.JAmChemSoc2008;130:2382–3.

[121]SchlossbauerA,WarnckeS,GramlichPME,KechtJ,ManettoA,

CarellT,BeinT.AprogrammableDNA-basedmolecularvalueforcolloidalmesoporoussilica.AngewChemIntEd2010;49:4734–7.

[122]BrennanJL,HatzakisNS,TshikhudoTR,DirvianskyteN,Razu-masV,PatkarS,VindJ,SvendsenA,NolteRJ,RowanAE,BrustM.Bionanoconjugationviaclickchemistry:thecreationoffunc-tionalhybridsoflipasesandgoldnanoparticles.BioconjugChem2006;17:1373–5.

[123]BernardinA,CazetA,GuyonL,DelannoyP,VinetF,BonnafféD,Tex-ierI.Copper-freeclickchemistryforhighlyluminescentquantumdotconjugates:applicationtoinvivometabolicimaging.BioconjugChem2010;21:583–8.

[124]OrneleasC,BroichhagenJ,WeckM.Strainpromotedalkyne-azide

cycloadditionforthefunctionalisedpoly(amide)-baseddendronsanddendrimers.JAmChemSoc2010;132:3923–31.

G.K.Suchetal./ProgressinPolymerScience37 (2012) 985–1003

1003

[125]LeeSM,ChenH,O’HalloranTV,NguyenST.“Clickable”polymer-cagednanobinsasamodulardrugdeliveryplatform.JAmChemSoc2009;131:9311–20.

[126]LuJ,ShiM,ShoichetMS.Clickchemistryfunctionalizedpolymeric

nanoparticlestargetcornealepithelialcellsthroughRGD-cellsur-facereceptors.BioconjugChem2009;20:87–94.

[127]ShokeenM,PresslyED,HagoolyA,ZheleznyakA,RamosN,Fia-mengoAL,WelchMJ,HawkerCJ,AndersonCJ.Evaluationofmultivalent,functionalpolymericnanoparticlesforimagingappli-cations.ACSNano2011;5:738–47.

[128]vanderEndeAE,CroceT,HamiltonM,SathiyakumarV,

HarthE.Tailoredpolyesternanoparticles:post-modificationwith

dendritictransporterandtargetingunitsviareductiveaminationandthiol–enechemistry.SoftMatter2009;5:1417–25.

[129]PassarellaRJ,SprattDE,vanderEndeAE,PhillipsJG,WuH,

SathiyakumarV,ZhouL,HallahanDE,HarthE,DiazR.Targetednanoparticlesthatdeliverasustained,specificreleaseofpaclitaxeltoirradiatedtumors.CancerRes2010;70:4550–9.

[130]vonMaltzahnG,RenY,ParkJ-H,MinD-H,KotamrajuVR,Jayakumar

J,FogalV,SailorMJ,RuoslahtiE,BhatiaSN.Invivotumorcelltarget-ingwith“click”nanoparticles.BioconjugChem2008;19:1570–8.

[131]EliasDR,ChengZ,TsourkasA.Anintegin-mediatedsite-specific

clickconjugationstrategyforimprovedtumortargetingofnanoparticlesystems.Small2010;6:2460–8.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务