DOI:10.1007/s116-012-2216-1Ó2012TMS
CarrierLifetimeMeasurementsinLong-WaveInfraredInAs/GaSbSuperlatticesUnderLowExcitationConditions
DINGWANG,1,2DMITRIDONETSKY,1SEUNGYONGJUNG,1andGREGORYBELENKY11.—DepartmentofElectricalandComputerEngineering,StonyBrookUniversity,StonyBrook,NY11794,USA.2.—e-mail:wangding1985@gmail.com
Minoritycarrierlifetimeinlong-waveinfrared(LWIR)typeIIInAs/GaSbsuperlatticeswasstudiedusingtheopticalmodulationresponse(OMR)techniqueinwiderangesofexcitationandtemperature.Themeasuredcarrierlifetimewasfoundtoincreasesuperexponentiallywithdecreasingexcitationpowerdensitybelowthelevelof1mW/cm2to2mW/cm2.Thephenomenonwasqualitativelyexplainedbythepresenceofshallowtrappingcenters.Keywords:Carrierlifetime,long-waveinfrared,superlattice
INTRODUCTION
Antimony-basedtypeIIstrained-layersuperlat-tices(T2-SLSs)areofgreatinterestinthedevel-opmentofhigh-performanceLWIRphotodetectorsandfocal-planearraysduetotheirbandgaptun-ability,materialuniformity,andlowAugerrecom-bination.1–3Inthepastseveralyears,majoreffortshavebeenmadetoimprovetheperformanceofT2-SLSphotodetectorsregardinggrowth,processing,andstructuraldesign.4–7CurrentdesignsutilizeapÀ-dopedabsorberandheterojunctionbarrierstoreducethegeneration–recombinationandtunnelingcomponentsofdarkcurrent.6TheperformanceofsuchphotodetectorswasreportedtobelimitedbytheShockley–Read–Hall(SRH)carrierrecombina-tionprocessintheabsorber.8WepreviouslyreportedthemeasurementofminoritycarrierlifetimeinaLWIRT2-SLSstruc-turewithenergygapof0.12eVat77K.9TheSRH-limitedlifetimeof30nsat77KwasdeterminedfromthedependenceoflifetimeonexcitationpowerusingtheOMRtechnique.SimilarlifetimevaluesweredeterminedfromdiodeI–Vcharacteristics10andtime-resolvedphotoluminescence(TRPL)decaymeasurements.11Inthisworkwepresenttheresultsofminoritycarrierlifetimemeasurementsperformedatlowerexcesscarrierdensities(approximatelyfrom1014cmÀ3to1015cmÀ3)inawidertemperature
(ReceivedAugust1,2011;acceptedJuly25,2012;publishedonlineAugust28,2012)
range(from20Kto250K).Theresultsrevealinterestingfeaturesofthemechanismoftheminoritycarrierrecombinationprocessunderlowexcitationconditions.
EXPERIMENTALPROCEDURES
TheSLSstructurewasgrownbymolecularbeamepitaxyonalow-dopedp-typeGaSbsubstrate.Thestructureconsistsofa1.8-lm-thickInAs/GaSbSLSlayer(400periods)enclosedwithinthinAlSbAscarrierconfinementlayers.AthinGaSbcaplayerwasgrownontopofthestructuretopreventoxi-dation.TheSLSabsorberhad13monolayers(ML)ofundopedInAsand7MLofberyllium-dopedGaSb.Thetargetbackgroundholeconcentrationat77Kwas191016cmÀ3.Thestructureexhibitedaphotoluminescence(PL)emissionpeakat0.16eVat77K.
TheminoritycarrierlifetimewasmeasuredbytheOMRtechnique.9,12Opticalexcitationwasgen-eratedbyadirectlymodulated1.5-lmfiber-coupledlaserdiode.TheexcitationbeamwasconvergedbyaCaF2lens;thebeamwidthathalf-maximumwas380lmonthespecimensurface.Weusedareflec-tiveobjectivetocollectthePLwithinasolidangleofabout1.8steradians.ThePLwasconvergedbyaZnSelensontoa250-lm-diameterliquid-nitrogen-cooledmercurycadmiumtelluride(MCT)photode-tector.ThemodulatedPLsignalwasselectedandamplifiedbyaStanfordResearchradiofrequency(RF)lock-inamplifier(SR844).Thenarrow-band
3027
3028amplificationofthesine-wavesignalbythelock-inamplifierimprovedthesignal-to-noiseratio,allowingforthereductionoftheopticalexcitation.TwoparameterswereextractedfromthefitofthePLfrequencyresponsetothedependencePLx/[1+(xs)2]0.5:thecarrierlifetimes,andtheamplitudeofthemodu-latedPLsignalinthelow-frequencylimit(x«1/s),PLthemodulationamplitudeoftheexcitationx.Whenissmallcomparedwiththesteady-stateexcitation,thederivativeofthesteady-statePLintensityPLrespecttothesteady-statecarriergenerationrate0withGbereplacedbytheratioofthemodulationamplitudes0canPLx/G1,whereG1istheamplitudeofthemodulatedexcitationintermsofthecarriergenerationrate.Therefore,PLxcanbeexpressedas
PLx¼
dPL0
dGG1
ðx(1=s;G0
1(G0Þ:
(1)
G0andG1werecalculatedfromtheexcitationpowerandareaassumingcompleteabsorptionoftheopticalexcitationinthesuperlatticelayer.Thereflectionof35%oftheexcitationpowerattheinterfacebetweenthesampleandairwastakenintoaccount.Theexcitationpowerwascontrolledbyeitherthelaseroperatingcurrentortheopticalattenuationusingavariablemetallicneutralden-sityfilter.
RESULTSANDDISCUSSION
Figure1apresentsthePLfrequencyresponsedatameasuredatT=20Kforaseriesofexcitationlevels.Thelifetimevaluederivedfromfittingwass=26nsatexcitationof13.6W/cm2,correspondingtoexcesscarrierconcentrationDn=691015cmÀ3orÀ3excesscarriergenerationrateG0=2.391023cmsÀ1.Arapiddecreaseofthereciprocalcarrierlifetime1/stowardslowexcitationwasobserved,asshowninFig.1b.Alifetimeofs=58nswasobtainedfromfittingatexcitationof0.23W/cm2.Thephenomenon
(a)20(b)515 mWT = 20 KT = 20 K)7.8 mWB4d e04.0 mW()1-ssn 37o1.9 mW0p1 se1.0 mWx( 2r L-20τ0.50 mW/1P10.26 mW-40100k1M10M01021102210231024Frequency (Hz)Carrier generation rate G-3s-10 (cm)Fig.1.(a)PLfrequencyresponsedataat20Katvarioussteady-stateexcitationpowersfrom0.26mWto152mW.EachresponsecurvewasfittedtothefunctionPLx/[1+(xs)]0.5.Theexcitationareawas1.1910À3cm2.(b)Dependenceofreciprocalcarrierlifetimeontheexcesscarriergenerationrateat20K.Wang,Donetsky,Jung,andBelenky
canbepossiblyassociatedwithashallow-trap-relatedrecombinationprocess,asdiscussedbelow.Inthesteady-statecondition,thegenerationandrecombinationratesoftheexcesscarriersareequal:
GDn0¼
s;(2)
r
wheresristherecombinationlifetimeofexcesscarriers.Previousresultshaveshownthat,inInAs/GaSbsuperlattices,theSRHprocessdominatestherecombinationofexcesscarriersforamoderatelevelofexcitation(Dn=1015%1016cmÀ3).12,13Themea-suredvaluesofs30ns,asrweretypicallyintherangefrom20nstoshowninFig.2(righty-axis)atG0>391022cmÀ3sÀ1(orDn>191015cmÀ3).Thesteady-stateminorityexcesscarriershaveaprobabilitytorecombineradiativelyandgeneratePL.Thesteady-statePLintensityinap-typematerialcanbewrittenas
PL0¼B0DnðDnþp0Þ;
(3)
whereB¢istheradiativerecombinationcoefficienttakingintoaccountthecollectionefficiencyofthedetectionsystem;p0isthebackgroundholecon-centrationatequilibrium.Theparameter(PLbecalculatedfromthederivativeofPLx/Gwith1)canrespecttoG00,combiningEqs.1–3.SinceÀs3risaslowfunctionofG0forG0>391022cmsÀ1,thederivativeofsrisomittedandtheexpressioncanbesimplifiedas
PLxG¼dPL0
%Bðp0þ2G1dG0
0srÞsrðx(1=s;G1(G0;dsr=dG0%0Þ:
ð4Þ
12060T = 20 K50)sn() .80τu.ea(m i1tG40ef/iωl LrP40eirr30aC0051015202520Carrier generation rate G22-3-10 ( x 10 cms)Fig.2.Plotof(PLx/G1)asafunctionofthesteady-stategenerationrateofexcesscarriersG0at20K(triangles,lefty-axis).PLxwasmeasuredatalowmodulationfrequencyatf=100kHz;G1wassetbelow5%ofG0duringthemeasurementtovalidateEq.1.Therighty-axisshowsthedependenceofcarrierlifetimeontheexcesscarriergenerationrateG0at20K(circles).ThegreydashedlineindicatesG0=391022cmÀ3sÀ1.CarrierLifetimeMeasurementsinLong-WaveInfraredInAs/GaSbSuperlattices3029
UnderLowExcitationConditions
Figure2(lefty-axis)showsthemeasured(PL91022cmÀ3sÀ1,(PLx/GG1)asafunctionof0.ForG0>3x/G1)wasnearlyconstant,probablyduetoarelativelylargebackgroundcarrierconcentration(p0»2Gtoalinearfunction0sr).Thus(PLx/G1)approximatespropor-tionaltotherecombinationlifetimesexcitations.However,whenther,especiallyatlowexcitationwasdecreasedtothelevelofG(PL0<391022cmÀ3sÀ1,asshowninFig.2,x/G1)droppedrapidlywhilethemeasuredlifetimeincreasedsuperexponentially.Thisdiscrepancycanbepossiblyattributedtothepresenceofshallowtraps.
Shallow-trap-basedmodelshavecommonlybeenusedtoexplaintheabnormallyhigheffectivelifetimesderivedbyphotoconductancemeasurementsunderlowinjectioninSi.13,14Trappingofminoritycarrierssup-pressestherecombinationofexcesscarriersthroughSRHcentersandresultsinalargerphotoconductanceand,therefore,anincreasedeffectivelifetime.Theprocessmayhaveasimilarimpactonthecarrierlife-timemeasuredbyopticaltechniques.15Intheconditionoflowcarrierinjection,i.e.,closetothedensityofshallowtraps,aconsiderableportionofthesteady-stateexcesselectronsinp-typematerialscanbecapturedbytheshallowtraps.Thecapturedelectronscanescapefromthetrapstotheconductionbandataslowerrate,dependingonthetemperature,theenergylevelsofthetraps,andotherfactors.Thisrecyclingprocesscandecreasetheoverallrateofelectronrecombinationthroughdeepcentersandcouldbethereasonfortheobservedincreaseofthemeasuredminoritycarrierlifetime.Statistically,sinceaconsiderableportionoftheexcesselectronsistrapped,lowPLintensityisalsoexpected.Oncethefluxdensityofexcitationphotonsisincreasedtoacertainlevel,mostoftheshallowtrapsareoccupiedbyelectrons,sothemeasuredlifetimewillreflecttheactualrecombinationrateoftheminorityelectrons.
1030925)s20τ ~ T-1/28n(15 τ107501002003001)-sT (K)7 601x(5 τ/143 T = 20 K2 T = 77 K T = 150 K10510152025G22-3-10 (x10 cms)Fig.3.DependenceofreciprocalcarrierlifetimeonexcesscarriergenerationrateG0atT=20K(circles),77K(triangles),and150K(squares).TheinsetplotstheminoritycarrierlifetimemeasuredatG0=2.391023cmÀ3sÀ1asafunctionoftemperature(dots).Thelineisthefitofthefunctions$TÀ1/2.Thesignal-to-noiseratioachievedinthisworkallowedcarrierlifetimemeasurementsinawidetemperaturerangeupto250K.Figure3presentsthedependenceofreciprocalcarrierlifetimeonexcesscarriergenerationrateatT=20K,77K,and150K.Asharpdecreaseof1/swasapparentupto77K.DeterminationofthecarrierlifetimeatlowexcitationwaslimitedbyPLquenchingatelevatedtemperatures.Thedependenceofmeasured1/2carrierlifetimesontemperaturefollowedTÀupto250Kinthemeasuredrangeofexcitation,whichcanbeattributedtothechangeofmeanthermalvelocityofexcesscarriers.TheinsetofFig.3showsthecarrierlifetimeasafunctionoftemperaturemeasuredatG0=2.391023cmÀ3sÀ1.
CONCLUSIONS
Wehavepresentedtheresultsoffrequency-domaincarrierlifetimemeasurementsinp-dopedLWIRT2-SLSunderlowexcitationconditions.Thelifetimevalueof58nswasobtainedatthelowexcitationlevelG0=391021cmÀ3sÀ1.Asuperexponentialincreaseofthemeasuredminoritycarrierlifetimewasfoundwhentheexcitationleveldecreasedbelow1mW/cm2to2mW/cm2.Aqualitativeexplanationbasedoncaptureofexcesselectronsbyshallowtrapswaspro-posed.Thecarrierlifetimewasfoundtofits$TÀ1/2inthetemperaturerangeupto250K.
ACKNOWLEDGEMENTS
TheauthorswouldliketothankDr.StefanP.Svenssonforhelpfuldiscussions.TheLWIRSLSstructureswereprovidedbyUSArmyNVESD.ThisresearchwassupportedbyUSArmyNVESDandtheNationalScienceFoundation(GrantDMR07101).
REFERENCES
1.G.A.Sai-Halasz,R.Tsu,andL.Esaki,Appl.Phys.Lett.30,
651(1977).
2.M.Razeghi,D.Hoffman,B.M.Nguyen,P.Y.Delaunay,
E.K.W.Huang,M.Z.Tidrow,andV.Nathan,Proc.IEEE97,1056(2009).
3.E.R.Youngdale,J.R.Meyer,C.A.Hoffman,F.J.Bartoli,
C.H.Grein,P.M.Young,H.Ehrenreich,R.H.Miles,andD.H.Chow,Appl.Phys.Lett.,3160(1994).
4.M.Walther,J.Schmitz,R.Rehm,S.Kopta,F.Fuchs,J.
Fleibner,W.Cabanski,andJ.Ziegler,J.Cryst.Growth278,156(2005).
5.A.Khoshakhlagh,E.Plis,S.Meyers,Y.D.Sharma,L.R.
Dawson,andS.Krishna,J.Cryst.Growth311,1901(2009).6.I.Vurgaftman,E.H.Aifer,C.L.Canedy,J.G.Tischler,J.R.
Meyer,J.H.Warner,E.M.Jackson,G.Hildebrandt,andG.J.Sullivan,Appl.Phys.Lett.,121114(2006).
7.D.Z.Y.Ting,C.J.Hill,A.Soibel,S.A.Keo,J.M.Mumolo,J.
Nguyen,andS.D.Gunapala,Appl.Phys.Lett.95,023508(2009).
8.I.Vurgaftman,C.L.Canedy,E.M.Jackson,J.A.Nolde,C.A.
Affouda,E.H.Aifer,J.R.Meyer,A.Hood,A.J.Evans,andW.T.Tennant,Opt.Eng.50,061007(2011).
9.D.Donetsky,G.Belenky,S.P.Svensson,andS.Suchalkin,
Appl.Phys.Lett.97,052108(2010).
10.J.PellegrinoandR.DeWames,Proc.SPIE7298,72981U
(2009).
3030
11.B.C.Connelly,G.D.Metcalfe,H.Shen,andM.Wraback,
Appl.Phys.Lett.97,251117(2010).
12.D.Donetsky,S.P.Svensson,L.E.Vorobjev,andG.Belenky,
Appl.Phys.Lett.95,212104(2009).
13.N.P.Harder,R.Gogolin,andR.Brendel,Appl.Phys.Lett.
97,112111(2010).
Wang,Donetsky,Jung,andBelenky
14.K.R.McIntosh,B.B.Paudyal,andD.H.Macdonald,J.Appl.
Phys.104,084503(2008).
15.S.Bandara,P.Maloney,N.Baril,J.Pellegrino,andM.
Tidrow,Opt.Eng.50,061015(2011).
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- yrrf.cn 版权所有 赣ICP备2024042794号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务