您好,欢迎来到意榕旅游网。
搜索
您的当前位置:首页(完整版)平面向量题型及方法

(完整版)平面向量题型及方法

来源:意榕旅游网
(完整版)平面向量题型及方法

平面向量方法、题型、及应试技巧总结

一.向量有关概念:

1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如:

已知A(1,2),B(4,2),则把向量AB按向量a=(-1,3)平移后得到的向量是_____(答:(3,0))

2.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;

3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是AB); |AB|4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;

5.平行向量(也叫共线向量):方向相同或相反的非零向量a、b叫做平行向量,记作:a∥b,规定零向量和任何向量平行. 提醒:

①相等向量一定是共线向量,但共线向量不一定相等;

②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;

③平行向量无传递性!(因为有0);

AC共线; ④三点A、B、C共线AB、6.相反向量:长度相等方向相反的向量叫做相反向量。a的相反向量是-a。如 下列命题:(1)若ab,则ab。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若ABDC,则ABCD是平行四边形。(4)若ABCD是平行四边形,则ABDC.(5)若ab,bc,则ac。(6)若a//b,b//c,则a//c.其中正确的是_______

(答:(4)(5))

二.向量的表示方法:

1.几何表示法:用带箭头的有向线段表示,如AB,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a,b,c等; 3.坐标表示法:在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量i,j为基底,

则平面内的任一向量a可表示为axiyjx,y,称x,y为向量a的坐标,a=x,y叫做向量a的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

三.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一

向量a,有且只有一对实数1、2,使a=1e1+2e2。如 (1)若a(1,1),b(1,1),c(1,2),则c______

(答:ab);

(2)下列向量组中,能作为平面内所有向量基底的是

A。 e1(0,0),e2(1,2) B。 e1(1,2),e2(5,7) C。 e1(3,5),e2(6,10) D. e1(2,3),e2(,)

(答:B);

(3)已知AD,BE分别是ABC的边BC,AC上的中线,且ADa,BEb,则BC可用向量a,b表示为_____

(答:ab);

234312341232(完整版)平面向量题型及方法

(4)已知ABC中,点D在BC边上,且CD2DB,CDrABsAC,则rs的值是___

(答:0)

四.实数与向量的积:实数与向量a的积是一个向量,记作a,它的长度和方向规定如

下:1aa,2当〉0时,a的方向与a的方向相同,当<0时,a的方向与a的方向相反,当=0时,a0,注意:a≠0。 五.平面向量的数量积:

1.两个向量的夹角:对于非零向量a,b,作OAa,OBb,AOB

0称为向量a,b的夹角,当=0时,a,b同向,当=时,a,b反向,当=

b垂直。

时,a,22.平面向量的数量积:如果两个非零向量a,b,它们的夹角为,我们把数量|a||b|cos叫做a与b的数量积(或内积或点积),记作:a•b,即a•b=abcos。规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。如

(1)△ABC中,|AB|3,|AC|4,|BC|5,则ABBC_________

(答:-9);

(2)已知a(1,),b(0,),cakb,dab,c与d的夹角为(3)已知a2,b5,ab3,则ab等于____

(答:23);

(4)已知a,b是两个非零向量,且abab,则a与ab的夹角为____

(答:30)

3.b在a上的投影为|b|cos,它是一个实数,但不一定大于0。如 已知|a|3,|b|5,且ab12,则向量a在向量b上的投影为______

(答:

4.a•b的几何意义:数量积a•b等于a的模|a|与b在a上的投影的积。 5.向量数量积的性质:设两个非零向量a,b,其夹角为,则:

①aba•b0;

②当a,b同向时,a•b=ab,特别地,aa•aa,aa;当a与b反向时,a•b=-

b不同向,ab0是为锐角的必要非充分条件;当为钝角ab;当为锐角时,a•b>0,且a、 b不反向,ab0是为钝角的必要非充分条件; 时,a•b<0,且a、2221212,则k等于____ 4(答:1);

12) 5③非零向量a,b夹角的计算公式:cosa•bab;④|a•b||a||b|。如

(1)已知a(,2),b(3,2),如果a与b的夹角为锐角,则的取值范围是______

(答:或0且);

13(2)已知OFQ的面积为S,且OFFQ1,若S,则OF,FQ夹角的取值范围是

224313(完整版)平面向量题型及方法

_________

(答:(,));

43(3)已知a(cosx,sinx),b(cosy,siny),a与b之间有关系式kab3akb,其中k0,①用k表示ab;②求ab的最小值,并求此时a与b的夹角的大小

1k21(答:①ab(k0);②最小值为,60)

4k2六.向量的运算:

1.几何运算:

①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设ABa,BCb,那么向量AC叫做a与b的和,即abABBCAC;

②向量的减法:用“三角形法则\":设ABa,ACb,那么abABACCA,由减向量的终点指向被减向量的终点.注意:此处减向量与被减向量的起点相同。如

(1)化简:①ABBCCD___;②ABADDC____;③(ABCD)(ACBD)_____

(答:①AD;②CB;③0);

(2)若正方形ABCD的边长为1,ABa,BCb,ACc,则|abc|=_____

(答:22);

(3)若O是ABC所在平面内一点,且满足OBOCOBOC2OA,则ABC的形状为____

(答:直角三角形); (4)若D为ABC的边BC的中点,ABC所在平面内有一点P,满足PABPCP0,设

|AP|,则的值为___ |PD|(答:2);

(5)若点O是△ABC的外心,且OAOBCO0,则△ABC的内角C为____

(答:120);

2.坐标运算:设a(x1,y1),b(x2,y2),则:

①向量的加减法运算:ab(x1x2,y1y2).如

(1)已知点A(2,3),B(5,4),C(7,10),若APABAC(R),则当=____时,点P在第一、三象限的角平分线上

(答:);

(2)已知A(2,3),B(1,4),且AB(sinx,cosy),x,y(,),则xy

221212(答:

或); 62(3)已知作用在点A(1,1)的三个力F1(3,4),F2(2,5),F3(3,1),则合力FF1F2F3的终点坐

标是

(答:(9,1))

②实数与向量的积:ax1,y1x1,y1。

③若A(x1,y1),B(x2,y2),则ABx2x1,y2y1,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。如

(完整版)平面向量题型及方法

设A(2,3),B(1,5),且ACAB,AD3AB,则C、D的坐标分别是__________

(答:(1,),(7,9));

④平面向量数量积:a•bx1x2y1y2。如

已知向量a=(sinx,cosx), b=(sinx,sinx), c=(-1,0)。(1)若x=量a、c的夹角;(2)若x∈[31,],函数f(x)ab的最大值为,求的值 84211313,求向3(答:(1)150;(2)或21);

⑤向量的模:|a|xy,a|a|2x2y2。如

已知a,b均为单位向量,它们的夹角为60,那么|a3b|=_____

(答:13);

⑥两点间的距离:若Ax1,y1,Bx2,y2,则|AB|x2x1y2y1。如

如图,在平面斜坐标系xOy中,xOy60,平面上任一点P关于斜坐标系的斜坐标是这样定义的:若OPxe1ye2,其中e1,e2分别为与x轴、y轴同方向的单位向量,则P点斜坐标为(x,y)。(1)若点P的斜坐标为(2,-2),求P到O的距离|PO|;(2)求以O为圆心,1为半径的圆在斜坐标系xOy中的方程。

(答:(1)2;(2)x2y2xy10);

七.向量的运算律:

1.交换律:abba,aa,a•bb•a;

22122222.结合律:abcabc,abcabc,a•ba•ba•b; 3.分配律:aaa,abab,ab•ca•cb•c。

22下列命题中:① a(bc)abac;② a(bc)(ab)c;③ (ab)|a|2

2|a||b||b|;④ 若ab0,则a0或b0;⑤若abcb,则ac;⑥aa;

22⑦

aba2ba;⑧(ab)2ab;⑨(ab)2a2abb。其中正确的是______

2222(答:①⑥⑨)

提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即a(b•c)(a•b)c,为什么?

八.向量平行(共线)的充要条件:a//bab(ab)2(|a||b|)2x1y2y1x2=0。如

(1)若向量a(x,1),b(4,x),当x=_____时a与b共线且方向相同

(答:2);

(2)已知a(1,1),b(4,x),ua2b,v2ab,且u//v,则x=______

(答:4);

(3)设PA(k,12),PB(4,5),PC(10,k),则k=_____时,A,B,C共线

(完整版)平面向量题型及方法

(答:-2或11)

九.向量垂直的充要条件:abab0|ab||ab| x1x2y1y20。特别地

(ABABACAC)(ABABACAC)。如

(1)已知OA(1,2),OB(3,m),若OAOB,则m

(答:);

(2)以原点O和A(4,2)为两个顶点作等腰直角三角形OAB,则点B的坐标是________ B90,

(答:(1,3)或(3,-1));

(3)已知n(a,b),向量nm,且nm,则m的坐标是________

(答:(b,a)或(b,a))

十.线段的定比分点:

1.定比分点的概念:设点P是直线P1P2上异于P1、P2的任意一点,若存在一个实数 ,PP2,则叫做点P分有向线段PP使PP112所成的比,P点叫做有向线段PP12的以定比为的定比分点;

2.的符号与分点P的位置之间的关系:当P点在线段 P1P2上时>0;当P点在线段 P1P2的延长线上时<-1;当P点在线段P2P1的延长线上时10;若点P分有向线段

PP12所成的比为,则点P分有向线段P2P1所成的比为

34321。如 若点P分AB所成的比为,则A分BP所成的比为_______

(答:)

3.线段的定比分点公式:设P1(x1,y1)、P2(x2,y2),P(x,y)分有向线段PP12所成的比为,则

xy73x1x2x1x2x21,特别地,当=1时,就得到线段P1P2的中点公式y1y2.在使用定比分点的y1y2y21坐标公式时,应明确(x,y),(x1,y1)、(x2,y2)的意义,即分别为分点,起点,终点的坐标。在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比。如

1(1)若M(—3,-2),N(6,—1),且MPMN,则点P的坐标为_______

3(答:(6,));

(2)已知A(a,0),B(3,2a),直线yax与线段AB交于M,且AM2MB,则a等于_______

(答:2或-4)

xxh十一.平移公式:如果点P(x,y)按向量ah,k平移至P(x,y),则;曲线f(x,y)0yyk7312按向量ah,k平移得曲线f(xh,yk)0.注意:(1)函数按向量平移与平常“左加右减\"有何联系?(2)向量平移具有坐标不变性,可别忘了啊!如

(1)按向量a把(2,3)平移到(1,2),则按向量a把点(7,2)平移到点______

(答:(-8,3));

(完整版)平面向量题型及方法

(2)函数ysin2x的图象按向量a平移后,所得函数的解析式是ycos2x1,则a=________

(答:(,1))

412、向量中一些常用的结论:

(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;

b同向或有0|ab||a||b| (2)||a||b|||ab||a||b|,特别地,当a、 b反向或有0|ab||a||b|||a||b|||ab|;当a、 b不共线||a||b|||ab|;当a、||a||b|||ab||a||b|(这些和实数比较类似)。

(3)在ABC中,①若Ax1,y1,Bx2,y2,Cx3,y3,则其重心的坐标为

xxxyy2y3G123,1。如 33若⊿ABC的三边的中点分别为(2,1)、(-3,4)、 (—1,—1),则⊿ABC的重心的坐标为_______

(答:(,));

(三角形中四心的向量表示)

②PG1(PAPBPC)G为ABC的重心,特别地PAPBPC0P为ABC的重心;

3③PAPBPBPCPCPAP为ABC的垂心;

|AB||AC|2433④向量(ABAC)(0)所在直线过ABC的内心(是BAC的角平分线所在直线); ⑤|AB|PC|BC|PA|CA|PB0PABC的内心;

MP1MP2,特别(3)若P分有向线段PP12所成的比为,点M为平面内的任一点,则MP1地P为P1P2的中点MPMP1MP2;

2(4)向量PA、、B、C共线存在实数、使得PAPBPC且 PB、 PC中三终点A1。如

平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(1,3),若点C满足OC1OA2OB,其中1,2R且121,则点C的轨迹是_______

(答:直线AB)



因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yrrf.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务